Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Symbiosis

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 10 Aug 2022 at 01:53 Created: 


Symbiosis refers to an interaction between two or more different organisms living in close physical association, typically to the advantage of both. Symbiotic relationships were once thought to be exceptional situations. Recent studies, however, have shown that every multicellular eukaryote exists in a tight symbiotic relationship with billions of microbes. The associated microbial ecosystems are referred to as microbiome and the combination of a multicellular organism and its microbiota has been described as a holobiont. It seems "we are all lichens now."

Created with PubMed® Query: symbiosis NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2022-08-09

Tang CC, Wang TY, Zhang XY, et al (2022)

Role of types and dosages of cations with low valance states on microalgal-bacterial symbiosis system treating wastewater.

Bioresource technology pii:S0960-8524(22)01084-7 [Epub ahead of print].

This study investigated the roles of cations with low valance states, including Mg2+, K+ and Li+, on microalgal-bacterial symbiosis (MABS) system treating wastewater. Results showed that Mg2+ and K+ improved pollutants removal at dosages of less than 1 mM, and a further increase led to poorer performances. Conversely, Li+ inhibited pollutants removal. Mechanism study indicated Mg2+ and K+ with dosages of 10 mM and Li + inhibited the activities of MABS biomass (especially Chlorella), with bad absorption efficiencies of 20.64%, 13.65% and lower than 10%, leading to more extracellular polymeric substances production. Larger ions' charge density resulted in larger attraction of water molecules, contributing to the decreased distance between microalgae cells and increased biomass aggregation. Both these two impacts led to the order of impact degree on MABS aggregates: Mg2+ > Li+ > K+. The findings can present some new perspectives on assessing effects of cations on MABS system.

RevDate: 2022-08-08

Mukherjee A, Bilecz AJ, E Lengyel (2022)

The adipocyte microenvironment and cancer.

Cancer metastasis reviews [Epub ahead of print].

Many epithelial tumors grow in the vicinity of or metastasize to adipose tissue. As tumors develop, crosstalk between adipose tissue and cancer cells leads to changes in adipocyte function and paracrine signaling, promoting a microenvironment that supports tumor growth. Over the last decade, it became clear that tumor cells co-opt adipocytes in the tumor microenvironment, converting them into cancer-associated adipocytes (CAA). As adipocytes and cancer cells engage, a metabolic symbiosis ensues that is driven by bi-directional signaling. Many cancers (colon, breast, prostate, lung, ovarian cancer, and hematologic malignancies) stimulate lipolysis in adipocytes, followed by the uptake of fatty acids (FA) from the surrounding adipose tissue. The FA enters the cancer cell through specific fatty acid receptors and binding proteins (e.g., CD36, FATP1) and are used for membrane synthesis, energy metabolism (β-oxidation), or lipid-derived cell signaling molecules (derivatives of arachidonic and linolenic acid). Therefore, blocking adipocyte-derived lipid uptake or lipid-associated metabolic pathways in cancer cells, either with a single agent or in combination with standard of care chemotherapy, might prove to be an effective strategy against cancers that grow in lipid-rich tumor microenvironments.

RevDate: 2022-08-09
CmpDate: 2022-08-09

Capasso L, Aranda M, Cui G, et al (2022)

Investigating calcification-related candidates in a non-symbiotic scleractinian coral, Tubastraea spp.

Scientific reports, 12(1):13515.

In hermatypic scleractinian corals, photosynthetic fixation of CO2 and the production of CaCO3 are intimately linked due to their symbiotic relationship with dinoflagellates of the Symbiodiniaceae family. This makes it difficult to study ion transport mechanisms involved in the different pathways. In contrast, most ahermatypic scleractinian corals do not share this symbiotic relationship and thus offer an advantage when studying the ion transport mechanisms involved in the calcification process. Despite this advantage, non-symbiotic scleractinian corals have been systematically neglected in calcification studies, resulting in a lack of data especially at the molecular level. Here, we combined a tissue micro-dissection technique and RNA-sequencing to identify calcification-related ion transporters, and other candidates, in the ahermatypic non-symbiotic scleractinian coral Tubastraea spp. Our results show that Tubastraea spp. possesses several calcification-related candidates previously identified in symbiotic scleractinian corals (such as SLC4-γ, AMT-1like, CARP, etc.). Furthermore, we identify and describe a role in scleractinian calcification for several ion transporter candidates (such as SLC13, -16, -23, etc.) identified for the first time in this study. Taken together, our results provide not only insights about the molecular mechanisms underlying non-symbiotic scleractinian calcification, but also valuable tools for the development of biotechnological solutions to better control the extreme invasiveness of corals belonging to this particular genus.

RevDate: 2022-08-09
CmpDate: 2022-08-09

Szklarzewicz T, Kalandyk-Kołodziejczyk M, A Michalik (2022)

Ovary structure and symbiotic associates of a ground mealybug, Rhizoecus albidus (Hemiptera, Coccomorpha: Rhizoecidae) and their phylogenetic implications.

Journal of anatomy, 241(3):860-872.

The ovary structure and the organization of its symbiotic system of the ground mealybug, Rhizoecus albidus (Rhizoecidae), were examined by means of microscopic and molecular methods. Each of the paired elongated ovaries of R. albidus is composed of circa one hundred short telotrophic-meroistic ovarioles, which are radially arranged along the distal part of the lateral oviduct. Analysis of serial sections revealed that each ovariole contains four germ cells: three trophocytes (nurse cells) occupying the tropharium and a single oocyte in the vitellarium. The ovaries are accompanied by giant cells termed bacteriocytes which are tightly packed with large pleomorphic bacteria. Their identity as Brownia rhizoecola (Bacteroidetes) was confirmed by means of amplicon sequencing and fluorescence in situ hybridization techniques. Moreover, to our knowledge, this is the first report on the morphology and ultrastructure of the Brownia rhizoecola bacterium. In the bacteriocyte cytoplasm bacteria Brownia co-reside with sporadic rod-shaped smaller bacteria, namely Wolbachia (Proteobacteria: Alphaproteobacteria). Both symbionts are transmitted to the next generation vertically (maternally), that is, via female germline cells. We documented that, at the time when ovarioles contain oocytes at the vitellogenic stage, these symbionts leave the bacteriocytes and move toward the neck region of ovarioles (i.e. the region between tropharium and vitellarium). Next, the bacteria enter the cytoplasm of follicular cells surrounding the basal part of the tropharium, leave them and enter the space between the follicular epithelium and surface of the nutritive cord connecting the tropharium and vitellarium. Finally, they gather in the deep depression of the oolemma at the anterior pole of the oocyte in the form of a 'symbiont ball'. Our results provide further arguments strongly supporting the validity of the recent changes in the classification of mealybugs, which involved excluding ground mealybugs from the Pseudococcidae family and raising them to the rank of their own family Rhizoecidae.

RevDate: 2022-08-09
CmpDate: 2022-08-09

Zwart H (2022)

"Love is a microbe too": Microbiome dialectics.

Endeavour, 46(1-2):100816.

Whereas the Human Genome Project was an anthropocentric research endeavour, microbiome research entails a much more interactive and symbiotic view of human existence, seeing human beings as holobionts, a term coined by Lynn Margulis to emphasise the interconnectedness and multiplicity of organisms. In this paper, building on previous authors, a dialectical perspective on microbiome research will be adopted, striving to supersede the ontological divide between self and other, humans and microbes, and to incorporate the microbiome as a crucial dimension of human existence, not only corporally, but also in terms of mood and cognition. On the practical level, microbiome insights promise to offer opportunities for self-care and self-management, allowing us to consciously interact with our microbiome to foster wellness and health. How to distinguish realistic scenarios from hype? Here again, an interactive (dialectical) approach is adopted, arguing that practices of the self should result from mutual learning between laboratory research and life-world experience.

RevDate: 2022-08-08

Saha U, Gondi R, Patil A, et al (2022)

CRISPR in Modulating Antibiotic Resistance of ESKAPE Pathogens.

Molecular biotechnology [Epub ahead of print].

The ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) isolates both from the clinical settings and food products are demonstrated to gain resistance to multiple antimicrobials. Therefore, the ESKAPE pathogens pose a serious threat to public health, which warrants specific attention to developing alternative novel therapeutics. The clustered regularly interspaced short palindromic repeats associated (CRISPR-Cas) system is one of the novel methods for managing antibiotic-resistant strains. Specific Cas nucleases can be programmed against bacterial genomic sequences to decrease bacterial resistance to antibiotics. Moreover, a few CRISPR-Cas nucleases have the ability to the sequence-specific killing of bacterial strains. However, some pathogens acquire antibiotic resistance due to the presence of the CRISPR-Cas system. In brief, there is a wide range of functional diversity of CRISPR-Cas systems in bacterial pathogens. Hence, to be an effective and safe infection treatment strategy, a comprehensive understanding of the role of CRISPR-Cas systems in modulating antibiotic resistance in ESKAPE pathogens is essential. The present review summarizes all the mechanisms by which CRISPR confers and prevents antibiotic resistance in ESKAPE. The review also emphasizes the relationship between CRISPR-Cas systems, biofilm formation, and antibiotic resistance in ESKAPE.

RevDate: 2022-08-08

Xu Z, Wang M, Zhang H, et al (2022)

Metabolism Interactions Promote the Overall Functioning of the Episymbiotic Chemosynthetic Community of Shinkaia crosnieri of Cold Seeps.

mSystems [Epub ahead of print].

Remarkably diverse bacteria have been observed as biofilm aggregates on the surface of deep-sea invertebrates that support the growth of hosts through chemosynthetic carbon fixation. Growing evidence also indicates that community-wide interactions, and especially cooperation among symbionts, contribute to overall community productivity. Here, metagenome-guided metatranscriptomic and metabolic analyses were conducted to investigate the taxonomic composition, functions, and potential interactions of symbionts dwelling on the seta of Shinkaia crosnieri lobsters in a methane cold seep. Methylococcales and Thiotrichales dominated the community, followed by the Campylobacteriales, Nitrosococcales, Flavobacteriales, and Chitinophagales Metabolic interactions may be common among the episymbionts since many separate taxon genomes encoded complementary genes within metabolic pathways. Specifically, Thiotrichales could contribute to detoxification of hydroxylamine that is a metabolic by-product of Methylococcales. Further, Nitrosococcales may rely on methanol leaked from Methylococcales cells that efficiently oxidize methane. Elemental sulfur may also serve as a community good that enhances sulfur utilization that benefits the overall community, as evidenced by confocal Raman microscopy. Stable intermediates may connect symbiont metabolic activities in cyclical oxic-hypoxic fluctuating environments, which then enhance overall community functioning. This hypothesis was partially confirmed via in situ experiments. These results highlight the importance of microbe-microbe interactions in symbiosis and deep-sea adaptation. IMPORTANCE Symbioses between chemosynthetic bacteria and marine invertebrates are common in deep-sea chemosynthetic ecosystems and are considered critical foundations for deep-sea colonization. Episymbiotic microorganisms tend to form condensed biofilms that may facilitate metabolite sharing among biofilm populations. However, the prevalence of metabolic interactions among deep-sea episymbionts and their contributions to deep-sea adaptations are not well understood due to sampling and cultivation difficulties associated with deep-sea environments. Here, we investigated metabolic interactions among the episymbionts of Shinkaia crosnieri, a dominant chemosynthetic ecosystem lobster species in the Northwest Pacific Ocean. Meta-omics characterizations were conducted alongside in situ experiments to validate interaction hypotheses. Furthermore, imaging analysis was conducted, including electron microscopy, fluorescent in situ hybridization (FISH), and confocal Raman microscopy (CRM), to provide direct evidence of metabolic interactions. The results support the Black Queen Hypothesis, wherein leaked public goods are shared among cohabitating microorganisms to enhance the overall adaptability of the community via cooperation.

RevDate: 2022-08-08

Ramesh K, Tripathi D, Bhatti MM, et al (2022)

Mathematical modeling and simulation of electromagnetohydrodynamic bio-nanomaterial flow through physiological vessels.

Journal of applied biomaterials & functional materials, 20:22808000221114708.

Gold-based metal nanoparticles serve a key role in diagnosing and treating important illnesses such as cancer and infectious diseases. In consideration of this, the current work develops a mathematical model for viscoelastic nanofluid flow in the peristaltic microchannel. Nanofluid is considered as blood-based fluid suspended with gold nanoparticles. In the investigated geometry, various parametric effects such as Joule heating, magnetohydrodynamics, electroosmosis, and thermal radiation have been imposed. The governing equations of the model are analytically solved by using the lubrication theory where the wavelength of the channel is considered large and viscous force is considered more dominant as compared to the inertia force relating the applications in biological transport phenomena. The graphical findings for relevant parameters of interest are given. In the current analysis, the ranges of the parameters have been considered as: 0<κ<6,0<λ1<0.6,2

RevDate: 2022-08-08

Holguin JA, Margetis JL, Narayan A, et al (2022)

Vascular Cognitive Impairment After Mild Stroke: Connectomic Insights, Neuroimaging, and Knowledge Translation.

Frontiers in neuroscience, 16:905979.

Contemporary stroke assessment protocols have a limited ability to detect vascular cognitive impairment (VCI), especially among those with subtle deficits. This lesser-involved categorization, termed mild stroke (MiS), can manifest compromised processing speed that negatively impacts cognition. From a neurorehabilitation perspective, research spanning neuroimaging, neuroinformatics, and cognitive neuroscience supports that processing speed is a valuable proxy for complex neurocognitive operations, insofar as inefficient neural network computation significantly affects daily task performance. This impact is particularly evident when high cognitive loads compromise network efficiency by challenging task speed, complexity, and duration. Screening for VCI using processing speed metrics can be more sensitive and specific. Further, they can inform rehabilitation approaches that enhance patient recovery, clarify the construct of MiS, support clinician-researcher symbiosis, and further clarify the occupational therapy role in targeting functional cognition. To this end, we review relationships between insult-derived connectome alterations and VCI, and discuss novel clinical approaches for identifying disruptions of neural networks and white matter connectivity. Furthermore, we will frame knowledge translation efforts to leverage insights from cutting-edge structural and functional connectomics research. Lastly, we highlight how occupational therapists can provide expertise as knowledge brokers acting within their established scope of practice to drive substantive clinical innovation.

RevDate: 2022-08-08

Miyata K, Hasegawa S, Nakajima E, et al (2022)

OsCERK2/OsRLK10, a homolog of OsCERK1, has a potential role for chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice.

Plant biotechnology (Tokyo, Japan), 39(2):119-128.

In rice, the lysin motif (LysM) receptor-like kinase OsCERK1, originally identified as the essential molecule for chitin-triggered immunity, plays a key role in arbuscular mycorrhizal (AM) symbiosis. As we previously reported, although AM colonization was largely repressed at 2 weeks after inoculation (WAI), arbuscules were observed at 5 WAI in oscerk1 mutant. Conversely, most mutant plants that defect the common symbiosis signaling pathway exhibited no arbuscule formation. Concerning the reason for this characteristic phenotype of oscerk1, we speculated that OsRLK10, which is a putative paralog of OsCERK1, may have a redundant function in AM symbiosis. The protein sequences of these two genes are highly conserved and it is estimated that the gene duplication occurred 150 million years ago. Here we demonstrated that OsCERK2/OsRLK10 induced AM colonization and chitin-triggered reactive oxygen species production in oscerk1 knockout mutant as similar to OsCERK1. The oscerk2 mutant showed a slight but significant reduction of AM colonization at 5 WAI, indicating the contribution of OsCERK2 for AM symbiosis. However, the oscerk2;oscerk1 double-knockout mutant produced arbuscules at 5 WAI as similar to the oscerk1 mutant, indicating that the redundancy of OsCERK1 and OsCERK2 did not explain the mycorrhizal colonization in oscerk1 at 5 WAI. These results indicated that OsCERK2 has a potential to regulate both chitin-triggered immunity and AM symbiosis and at least partially contributes to AM symbiosis in rice though the contribution of OsCERK2 appears to be weaker than that of OsCERK1.

RevDate: 2022-08-08

Choudhary E, Sharma R, Pal P, et al (2022)

Deciphering the Proteomic Landscape of Mycobacterium tuberculosis in Response to Acid and Oxidative Stresses.

ACS omega, 7(30):26749-26766.

The fundamental to the pathogenicity of Mycobacterium tuberculosis (Mtb) is the modulation in the control mechanisms that play a role in sensing and counteracting the microbicidal milieu encompassing various cellular stresses inside the human host. To understand such changes, we measured the cellular proteome of Mtb subjected to different stresses using a quantitative proteomics approach. We identified defined sets of Mtb proteins that are modulated in response to acid and a sublethal dose of diamide and H2O2 treatments. Notably, proteins involved in metabolic, catalytic, and binding functions are primarily affected under these stresses. Moreover, our analysis led to the observations that during acidic stress Mtb enters into energy-saving mode simultaneously modulating the acid tolerance system, whereas under diamide and H2O2 stresses, there were prominent changes in the biosynthesis and homeostasis pathways, primarily modifying the resistance mechanism in diamide-treated bacteria while causing metabolic arrest in H2O2-treated bacilli. Overall, we delineated the adaptive mechanisms that Mtb may utilize under physiological stresses and possible overlap between the responses to these stress conditions. In addition to offering important protein signatures that can be exploited for future mechanistic studies, our study highlights the importance of proteomics in understanding complex adjustments made by the human pathogen during infection.

RevDate: 2022-08-08

Montero H, U Paszkowski (2022)

A simple and versatile fluorochrome-based procedure for imaging of lipids in arbuscule-containing cells.

The Plant journal : for cell and molecular biology [Epub ahead of print].

The arbuscular mycorrhizal (AM) symbiosis is characterized by the reciprocal exchange of nutrients. AM fungi are oleaginous microorganisms that obtain essential fatty acids from host plants. A lipid biosynthesis and delivery pathway has been proposed to operate in inner root cortex cells hosting arbuscules, a cell type challenging to access microscopically. Despite the central role lipids play in the association, lipid distribution patterns during arbuscule development are currently unknown. We developed a simple co-staining method employing fluorophore-conjugated Wheat Germ Agglutinin (WGA) and a lipophilic blue fluorochrome, Ac-201, for the simultaneous imaging of arbuscules and lipids distributed within arbuscule-containing cells in high resolution. We observed lipid distribution patterns in wild-type root infection zones in a variety of plant species. In addition, we applied this methodology to mutants of the Lotus japonicus GRAS transcription factor RAM1 and the Oryza sativa half-size ABC transporter STR1, both proposed to be impaired in the symbiotic lipid biosynthesis-delivery pathway. We found that lipids accumulated in cortical cells hosting stunted arbuscules in Ljram1 and Osstr1, and observed lipids in the arbuscule body of Osstr1, suggesting that in the corresponding plant species, RAM1 and STR1 may not be essential for symbiotic lipid biosynthesis and transfer from arbuscule-containing cells, respectively. The versatility of this methodology has the potential to help elucidate key questions on the complex lipid dynamics fostering AM symbioses.

RevDate: 2022-08-06

Wang J, Tian Q, Cui L, et al (2022)

Synergism and mutualistic interactions between microalgae and fungi in fungi-microalgae symbiotic system.

Bioresource technology pii:S0960-8524(22)01057-4 [Epub ahead of print].

The method of collecting microalgae using fungal mycelium pellets has attracted widespread attention because of its high efficiency and simplicity. In this study, the interaction in FMSS was explored using Aspergillus fumigatus and Synechocystis sp. PCC6803. Under the conditions of 25-30 °C, pH of 5.0, 160 rpm, a light intensity of 1000 lx, light to darkness ratio of 6:18 h, and glucose concentration of 1.5 g/L, the FMSS had the highest biomass and recovery efficiency. SEM, TEM, and Zeta analysis showed that microalgae can be fixed on the surface of fungal mycelium pellets by the electrostatic attraction (amino, amide, phosphate, hydroxyl, and aldehyde groups) of EPS. The N cycling and CO2-O2 cycling promoted the synthesis of amino acids and provided a guarantee for gas exchange, and the intermediate metabolites (CO32- and HCO3-/H2CO3) satisfied the metabolic activities. The microalgae and fungi worked in coordination each other, which was the mutualistic symbiosis.

RevDate: 2022-08-06

Zhang L, Wu R, Mur LAJ, et al (2022)

Assembly of high-quality genomes of the locoweed Oxytropis ochrocephala and its endophyte Alternaria oxytropis provides new evidence for their symbiotic relationship and swainsonine biosynthesis.

Molecular ecology resources [Epub ahead of print].

Locoweeds are perennial forbs poisonous to livestock and cause extreme losses to animal husbandry. Locoweed toxicity is attributed to the symbiotic endophytes in Alternaria sect. Undifilum, which produce a mycotoxin swainsonine (SW). We performed a de novo whole genome sequencing of the most common locoweed in China, Oxytropis ochrocephala (2n = 16), and assembled a high-quality, chromosome-level reference genome. Its genome size is 958.83 Mb with 930.94 Mb (97.09 %) anchored and oriented onto 8 chromosomes, and 31,700 protein-coding genes were annotated. Phylogenetic and collinearity analysis showed it is closely related to Medicago truncatula with a pair of large interchromosomal rearrangements, and both species underwent a whole-genome duplication event. We also derived the genome of A. oxytropis at 74.48 Mb with a contig N50 of 8.87 Mb and 10,657 protein-coding genes, and refined the genes of SW biosynthesis. Multiple Alternaria species containing the swnK gene were grouped into a single clade, but in other genera, swnK's homologues are diverse. Resequencing of 41 A. oxytropis strains revealed one SNP in the SWN cluster causing changes in SW concentration. Comparing the transcriptomes of symbiotic and non-symbiotic interactions identified differentially expressed genes (DEG) linked to defense and secondary metabolism in the host. Within the endophyte DEGs were linked to cell wall degradation, fatty acids and nitrogen metabolism. Symbiosis induced the up-regulation of most of the SW biosynthetic genes. These two genomes and relevant sequencing data should provide valuable genetic resources for the study of the evolution, interaction, and SW biosynthesis in the symbiont.

RevDate: 2022-08-05

Nadal-Jimenez P, Siozios S, Frost CL, et al (2022)

Arsenophonus apicola sp. nov., isolated from the honeybee Apis mellifera.

International journal of systematic and evolutionary microbiology, 72(8):.

The genus Arsenophonus has been traditionally considered to comprise heritable bacterial symbionts of arthropods. Recent work has reported a microbe related to the type species Arsenophonus nasoniae as infecting the honey bee, Apis mellifera. The association was unusual for members of the genus in that the microbe-host interaction arose through environmental and social exposure rather than vertical transmission. In this study, we describe the in vitro culture of ArsBeeUST, a strain of this microbe isolated from A. mellifera in the USA. The 16S rRNA sequence of the isolated strain indicates it falls within the genus Arsenophonus. Biolog analysis indicates the bacterium has a restricted range of nutrients that support growth. In vivo experiments demonstrate the strain proliferates rapidly on injection into A. mellifera hosts. We further report the closed genome sequence for the strain. The genome is 3.3 Mb and the G+C content is 37.6 mol%, which is smaller than A. nasoniae but larger than the genomes reported for non-culturable Arsenophonus symbionts. The genome is complex, with six extrachromosomal elements and 11 predicted intact phage elements, but notably less complex than A. nasoniae. Strain ArsBeeUST is clearly distinct from the type species A. nasoniae on the basis of genome sequence, with 92 % average nucleotide identity. Based on our results, we propose Arsenophonus apicola sp. nov., with the type strain ArsBeeUST (CECT 30499T=DSM113403T=LMG 32504T).

RevDate: 2022-08-05

Moulin S (2022)

Get connected to the fungal network for improved transfer of nitrogen: the role of ZmAMT3;1 in ammonium transport in maize-arbuscular mycorrhizal symbiosis.

The Plant cell pii:6650101 [Epub ahead of print].

RevDate: 2022-08-05

Irving TB, Chakraborty S, Maia LGS, et al (2022)

An LCO-responsive homolog of NODULE INCEPTION positively regulates lateral root formation in Populus sp.

Plant physiology pii:6655945 [Epub ahead of print].

The transcription factor NODULE INCEPTION (NIN) has been studied extensively for its multiple roles in root nodule symbiosis within plants of the nitrogen-fixing clade (NFC) that associate with soil bacteria, such as rhizobia and Frankia. However, NIN homologs are present in plants outside the NFC, suggesting a role in other developmental processes. Here, we show that the biofuel crop Populus sp., which is not part of the NFC, contains eight copies of NIN with diversified protein sequence and expression patterns. Lipo-chitooligosaccharides (LCOs) are produced by rhizobia and a wide range of fungi, including mycorrhizal ones, and act as symbiotic signals that promote lateral root formation. RNAseq analysis of Populus sp. treated with purified LCO showed induction of the PtNIN2 subfamily. Moreover, the expression of PtNIN2b correlated with the formation of lateral roots and was suppressed by cytokinin treatment. Constitutive expression of PtNIN2b overcame the inhibition of lateral root development by cytokinin under high nitrate conditions. Lateral root induction in response to LCOs likely represents an ancestral function of NIN retained and repurposed in nodulating plants, as we demonstrate that the role of NIN in LCO-induced root branching is conserved in both Populus sp. and legumes. We further established a visual marker of LCO perception in Populus sp. roots, the putative sulfotransferase PtSS1, that can be used to study symbiotic interactions with the bacterial and fungal symbionts of Populus sp.

RevDate: 2022-08-05

Katirai A, Kogetsu A, Kato K, et al (2022)

Patient involvement in priority-setting for medical research: A mini review of initiatives in the rare disease field.

Frontiers in public health, 10:915438.

Patient involvement (PI) in determining medical research priorities is an important way to ensure that limited research funds are allocated to best serve patients. As a disease area for which research funds are limited, we see a particular utility for PI in priority-setting for medical research on rare diseases. In this review, we argue that PI initiatives are an important form of evidence for policymaking. We conducted a study to identify the extent to which PI initiatives are being conducted in the rare disease field, the features of such initiatives, the trends in the priorities elicited, and the extent to which translation into policy is reported in the academic literature. Here, we report the results of this exploratory review of the English-language literature gathered through online databases and search engines, with the aim of identifying journal articles published prior to December 2020, describing PI initiatives focused on determining priorities for medical research funding in the rare disease field. We identified seven recently-published articles and found that the majority made use of structured methodologies to ensure the robustness of the evidence produced, but found little reported practical implementation or concrete plans for implementation of the results of the initiatives. We conclude that priority-setting initiatives are meaningful mechanisms for involving patients in determining research directions. However, we highlight the importance of translation into policy as a necessary next step to fully utilize the results and move beyond well-intentioned exercises. Finally, we draw attention to the benefits of involving patients throughout this process.

RevDate: 2022-08-05

Sreedharan JK, Subbarayalu AV, AlRabeeah SM, et al (2022)

Quality assurance in allied healthcare education: A narrative review.

Canadian journal of respiratory therapy : CJRT = Revue canadienne de la therapie respiratoire : RCTR, 58:103-110 pii:009.

Introduction: There is no standard methodology for outlining the intricacies of allied healthcare education (AHE) or its quality. The profound misconception is that quality assurance (QA) in AHE is used on a "voluntary" basis. Given the absence of statutory regulatory mechanisms such as accreditation, validation, and audit by the peripheral agencies concerning QA, adoption of QA measures in AHE is not consistent, and it results in producing a subpar allied health workforce. This paper analyzes the need to include QA measures as an essential domain in evaluating the effectiveness of allied health professional education programs.

Method: A large database search was performed using pertinent terms, and a blueprint was developed for a meticulous literature review published between 2015 and 2021. Five hundred eighty-two articles were found and screened; a critical appraisal was performed for 22 peer-reviewed articles for relevant information.

Results: The literature review identified the need to use academic domains such as leadership, planning, delivery, and feedback as QA criteria to evaluate the efficiency of education and training in allied health professional education programs. Instructors and facilitators for specific knowledge and skill development and a description of their roles should also be used in QA evaluation.

Conclusion: Resources for effective learning and teaching in the allied healthcare domain are limited. This review highlights the significant need to include a QA system in AHE, considering the pivotal role of these students in supporting humankind, now and in the future. The findings contribute to the research by providing essential insights into current trends and focusing on existing research in AHE quality.

RevDate: 2022-08-04

Koga R, Moriyama M, Onodera-Tanifuji N, et al (2022)

Single mutation makes Escherichia coli an insect mutualist.

Nature microbiology, 7(8):1141-1150.

Microorganisms often live in symbiosis with their hosts, and some are considered mutualists, where all species involved benefit from the interaction. How free-living microorganisms have evolved to become mutualists is unclear. Here we report an experimental system in which non-symbiotic Escherichia coli evolves into an insect mutualist. The stinkbug Plautia stali is typically associated with its essential gut symbiont, Pantoea sp., which colonizes a specialized symbiotic organ. When sterilized newborn nymphs were infected with E. coli rather than Pantoea sp., only a few insects survived, in which E. coli exhibited specific localization to the symbiotic organ and vertical transmission to the offspring. Through transgenerational maintenance with P. stali, several hypermutating E. coli lines independently evolved to support the host's high adult emergence and improved body colour; these were called 'mutualistic' E. coli. These mutants exhibited slower bacterial growth, smaller size, loss of flagellar motility and lack of an extracellular matrix. Transcriptomic and genomic analyses of 'mutualistic' E. coli lines revealed independent mutations that disrupted the carbon catabolite repression global transcriptional regulator system. Each mutation reproduced the mutualistic phenotypes when introduced into wild-type E. coli, confirming that single carbon catabolite repression mutations can make E. coli an insect mutualist. These findings provide an experimental system for future work on host-microbe symbioses and may explain why microbial mutualisms are omnipresent in nature.

RevDate: 2022-08-04

Kaltenpoth M (2022)

Fast track to mutualism.

Nature microbiology, 7(8):1104-1105.

RevDate: 2022-08-04

Kolte A, Mahajan Y, L Vasa (2022)

Balanced diet and daily calorie consumption: Consumer attitude during the COVID-19 pandemic from an emerging economy.

PloS one, 17(8):e0270843 pii:PONE-D-21-38083.

This article tries to explore consumer attitudes regarding a balanced diet and daily calorie intake monitoring during the COVID-19 pandemic in India. It has become vital to boost people's immunity because of reoccurring diseases such as COVID-19, Ebola, and other chronic diseases such as diabetes, thyroid disease, etc. Healthy diets are important for supporting immune systems and keeping track of daily calorie consumption is an accompaniment to this. The research on attitudes toward a balanced diet is reviewed in this empirical study. Researchers employed a tri-component attitude model to assess consumer attitudes about a balanced diet and to track daily calorie consumption. A sample of 400 respondents was surveyed and data were collected with a structured questionnaire. The data were analysed using the structural equation modelling technique. The majority of respondents were found to lack declarative knowledge of both a balanced diet and daily calorie consumption. The effects of the COVID-19 pandemic on consumer attitudes about a healthy diet and daily calorie intake were effectively evaluated using beliefs, affection, and intentions. The repercussions for the government and business community were discussed. This study also evaluates the usefulness of the tri-component attitude model in the Indian context.

RevDate: 2022-08-04

Mendes M, Jonnalagadda M, Ozarkar S, et al (2022)

Identifying signatures of natural selection in Indian populations.

PloS one, 17(8):e0271767 pii:PONE-D-22-11088.

In this study, we present the results of a genome-wide scan for signatures of positive selection using data from four tribal groups (Kokana, Warli, Bhil, and Pawara) and two caste groups (Deshastha Brahmin and Kunbi Maratha) from West of the Maharashtra State In India, as well as two samples of South Asian ancestry from the 1KG project (Gujarati Indian from Houston, Texas and Indian Telugu from UK). We used an outlier approach based on different statistics, including PBS, xpEHH, iHS, CLR, Tajima's D, as well as two recently developed methods: Graph-aware Retrieval of Selective Sweeps (GRoSS) and Ascertained Sequentially Markovian Coalescent (ASMC). In order to minimize the risk of false positives, we selected regions that are outliers in all the samples included in the study using more than one method. We identified putative selection signals in 107 regions encompassing 434 genes. Many of the regions overlap with only one gene. The signals observed using microarray-based data are very consistent with our analyses using high-coverage sequencing data, as well as those identified with a novel coalescence-based method (ASMC). Importantly, at least 24 of these genomic regions have been identified in previous selection scans in South Asian populations or in other population groups. Our study highlights genomic regions that may have played a role in the adaptation of anatomically modern humans to novel environmental conditions after the out of Africa migration.

RevDate: 2022-08-04

Kwak Y, Argandona JA, Degnan PH, et al (2022)

Chromosomal-level assembly of Bactericera cockerelli reveals rampant gene family expansions impacting genome structure, function and insect-microbe-plant-interactions.

Molecular ecology resources [Epub ahead of print].

Lineage specific expansions and gene duplications are some of the most important sources of evolutionary novelty in eukaryotes. Although not as prevalent in eukaryotes compared to bacteria, horizontal gene transfer events can also result in key adaptations for insects, especially for those involved in insect-microbe interactions. In this study we assemble the first chromosomal assembly of the psyllid Bactericera cockerelli and reveal that the B. cockerelli genome has experienced significantly more gene expansion events compared to other Hemipteran representatives with fully sequenced genomes. We also reveal that B. cockerelli's genome is the largest psyllid genome (567 Mb) sequenced to date and is ~15% larger than the other two psyllid species genomes sequenced (Pachypsylla venusta and Diaphorina citri). Structurally, B. cockerelli appears to have an additional chromosome compared to the distantly related psyllid species P. venusta due to a previous chromosomal fission or fusion event. The increase in genome size and dynamic nature of the B. cockerelli genome may largely be contributed to the widespread expansion of type I and type II repeat elements that are rampant across all of B. cockerelli's. chromosomes. These repeat elements are distributed near equally in both euchromatic and heterochromatic regions. Furthermore, significant gene family expansions and gene duplications were uncovered for genes that are expected to be important in its adaptation to insect-plant and microbe interactions, which include transcription factors, proteases, odorant receptors, and horizontally transferred genes that are involved in the nutritional symbioses with their long-term nutritional endosymbiont Carsonella.

RevDate: 2022-08-04

Maruyama S, Unsworth JR, Sawiccy V, et al (2022)

Algae from Aiptasia egesta are robust representations of Symbiodiniaceae in the free-living state.

PeerJ, 10:e13796 pii:13796.

Many cnidarians rely on their dinoflagellate partners from the family Symbiodiniaceae for their ecological success. Symbiotic species of Symbiodiniaceae have two distinct life stages: inside the host, in hospite, and outside the host, ex hospite. Several aspects of cnidarian-algal symbiosis can be understood by comparing these two life stages. Most commonly, algae in culture are used in comparative studies to represent the ex hospite life stage, however, nutrition becomes a confounding variable for this comparison because algal culture media is nutrient rich, while algae in hospite are sampled from hosts maintained in oligotrophic seawater. In contrast to cultured algae, expelled algae may be a more robust representation of the ex hospite state, as the host and expelled algae are in the same seawater environment, removing differences in culture media as a confounding variable. Here, we studied the physiology of algae released from the sea anemone Exaiptasia diaphana (commonly called Aiptasia), a model system for the study of coral-algal symbiosis. In Aiptasia, algae are released in distinct pellets, referred to as egesta, and we explored its potential as an experimental system to represent Symbiodiniaceae in the ex hospite state. Observation under confocal and differential interference contrast microscopy revealed that egesta contained discharged nematocysts, host tissue, and were populated by a diversity of microbes, including protists and cyanobacteria. Further experiments revealed that egesta were released at night. In addition, algae in egesta had a higher mitotic index than algae in hospite, were photosynthetically viable for at least 48 hrs after expulsion, and could competently establish symbiosis with aposymbiotic Aiptasia. We then studied the gene expression of nutrient-related genes and studied their expression using qPCR. From the genes tested, we found that algae from egesta closely mirrored gene expression profiles of algae in hospite and were dissimilar to those of cultured algae, suggesting that algae from egesta are in a nutritional environment that is similar to their in hospite counterparts. Altogether, evidence is provided that algae from Aiptasia egesta are a robust representation of Symbiodiniaceae in the ex hospite state and their use in experiments can improve our understanding of cnidarian-algal symbiosis.

RevDate: 2022-08-03

Strader ME, KM Quigley (2022)

The role of gene expression and symbiosis in reef-building coral acquired heat tolerance.

Nature communications, 13(1):4513.

Predicting how reef-building corals will respond to accelerating ocean warming caused by climate change requires knowledge of how acclimation and symbiosis modulate heat tolerance in coral early life-history stages. We assayed transcriptional responses to heat in larvae and juveniles of 11 reproductive crosses of Acropora tenuis colonies along the Great Barrier Reef. Larvae produced from the warmest reef had the highest heat tolerance, although gene expression responses to heat were largely conserved by cross identity. Juvenile transcriptional responses were driven strongly by symbiosis - when in symbiosis with heat-evolved Symbiodiniaceae, hosts displayed intermediate expression between its progenitor Cladocopium and the more stress tolerant Durusdinium, indicating the acquisition of tolerance is a conserved evolutionary process in symbionts. Heat-evolved Symbiodiniaceae facilitated juvenile survival under heat stress, although host transcriptional responses to heat were positively correlated among those hosting different genera of Symbiodiniaceae. These findings reveal the relative contribution of parental environmental history as well as symbiosis establishment in coral molecular responses to heat in early life-history stages.

RevDate: 2022-08-04
CmpDate: 2022-08-04

Puretz BO, Gonzalez CJ, Mota TA, et al (2022)

Quadrastichus mendeli (Hymenoptera: Eulophidae): parasitism on Leptocybe invasa (Hymenoptera: Eulophidae) and first record in Brazil.

Brazilian journal of biology = Revista brasleira de biologia, 82:e264771 pii:S1519-69842022000100323.

RevDate: 2022-08-04
CmpDate: 2022-08-04

Hojo MK (2022)

Evolution of chemical interactions between ants and their mutualist partners.

Current opinion in insect science, 52:100943.

Mutualism is the reciprocal exploitation of interacting participants and is vulnerable to nonrewarding cheating. Ants are dominant insects in most terrestrial ecosystems, and some aphids and lycaenid butterfly species provide them with nutritional nectar rewards and employ ants as bodyguards. In this review, I discuss how chemical communication based on condition-dependent signaling and recognition plasticity regulate the payoff of interacting participants. I argue that the selfishness of both participants explains the signaling and communication among participants and contributes to the stability of these mutualisms. Uncovering the origin and maintenance of mutualistic association of ants will come from future research on ant collective behavior, the genetic and neural basis of cooperation, and a deeper understanding of the costs and benefits of these interactions.

RevDate: 2022-08-04
CmpDate: 2022-08-04

Pierce NE, E Dankowicz (2022)

Behavioral, ecological and evolutionary mechanisms underlying caterpillar-ant symbioses.

Current opinion in insect science, 52:100898.

At least 30 different groups in seventeen butterfly and moth families (Lepidoptera) include ant-associated caterpillars. The life histories of more than 900 ant-associated species have been documented from the butterfly families Lycaenidae and Riodinidae, with relationships ranging from parasitism to mutualism. Caterpillars that appear to secrete food rewards for ants are not necessarily mutualists, and a number of species are known to manipulate ants with deceptive chemical and vibratory signals. The functional variability of different exocrine glands deployed as 'ant organs' makes them prone to convergence, and it remains unclear whether ant association originated more than once in lycaenids and riodinids. The relative costs and benefits of caterpillar integration with ants is context dependent: both top-down and bottom-up effects influence the evolution of ant associations.

RevDate: 2022-08-03

Bartoli C, Boivin S, Marta M, et al (2022)

Rhizobium leguminosarum symbiovar viciae strains are natural wheat endophytes that can stimulate root development.

Environmental microbiology [Epub ahead of print].

Although rhizobia that establish a nitrogen-fixing symbiosis with legumes are also known to promote growth in non-legumes, studies on rhizobial associations with wheat roots are scarce. We searched for Rhizobium leguminosarum symbiovar viciae (Rlv) strains naturally competent to endophytically colonize wheat roots. We isolated 20 strains from surface-sterilized wheat roots, and found a low diversity of Rlv compared to that observed in the Rlv species complex. We tested the ability of a subset of these Rlv for wheat root colonization when co-inoculated with other Rlv. Only a few strains, including those isolated from wheat roots, and one strain isolated from pea nodules, were efficient in colonizing roots in co-inoculation conditions, while all the strains tested in single strain inoculation conditions were found to colonize the surface and interior of roots. Furthermore, Rlv strains isolated from wheat roots were able to stimulate root development and early arbuscular mycorrhizal fungi colonization. These responses were strain and host genotype dependent. Our results suggest that wheat can be an alternative host for Rlv; nevertheless, there is a strong competition between Rlv strains for wheat root colonization. In addition, we showed that Rlv are endophytic wheat root bacteria with potential ability to modify wheat development.

RevDate: 2022-08-03
CmpDate: 2022-08-03

Soudzilovskaia NA, He J, Rahimlou S, et al (2022)

FungalRoot v.2.0 - an empirical database of plant mycorrhizal traits: A response to Bueno et al. (2021) 'Towards a consistent benchmark for plant mycorrhizal association databases': A response to Bueno et al. (2021) 'Towards a consistent benchmark for plant mycorrhizal association databases'.

The New phytologist, 235(5):1689-1691.

RevDate: 2022-08-03
CmpDate: 2022-08-03

Gomes SIF, Fortuna MA, Bascompte J, et al (2022)

Mycoheterotrophic plants preferentially target arbuscular mycorrhizal fungi that are highly connected to autotrophic plants.

The New phytologist, 235(5):2034-2045.

How mycoheterotrophic plants that obtain carbon and soil nutrients from fungi are integrated in the usually mutualistic arbuscular mycorrhizal networks is unknown. Here, we compare autotrophic and mycoheterotrophic plant associations with arbuscular mycorrhizal fungi and use network analysis to investigate interaction preferences in the tripartite network. We sequenced root tips from autotrophic and mycoheterotrophic plants to assemble the combined tripartite network between autotrophic plants, mycorrhizal fungi and mycoheterotrophic plants. We compared plant-fungi interactions between mutualistic and antagonist networks, and searched for a diamond-like module defined by a mycoheterotrophic and an autotrophic plant interacting with the same pair of fungi to investigate whether pairs of fungi simultaneously linked to plant species from each interaction type were overrepresented throughout the network. Mycoheterotrophic plants as a group interacted with a subset of the fungi detected in autotrophs but are indirectly linked to all autotrophic plants, and fungi with a high overlap in autotrophic partners tended to interact with a similar set of mycoheterotrophs. Moreover, pairs of fungi sharing the same mycoheterotrophic and autotrophic plant species are overrepresented in the network. We hypothesise that the maintenance of antagonistic interactions is maximised by targeting well linked mutualistic fungi, thereby minimising the risk of carbon supply shortages.

RevDate: 2022-08-03
CmpDate: 2022-08-03

Calla B (2022)

Friend or foe: How plants discriminate between pathogenic and mutualistic bacteria.

Plant physiology, 189(4):1893-1895.

RevDate: 2022-08-02

Banerji R, Iyer P, Bhagwat A, et al (2022)

Spermidine promotes lysozyme tolerance and acid stress resistance in Streptococcus pyogenes M3.

Microbiology (Reading, England), 168(8):.

Streptococcus pyogenes are Gram-positive opportunistic pathogens residing in the human nasopharynx and skin. Changes in environmental conditions, such as pH, temperature and availability of essential ions, can stimulate the expression of S. pyogenes virulence factors. One such factor could be the availability of an extracellular pool of polyamines. Polyamines are synthesized from amino acids, and are universally present in the environment. Polyamines have been implicated in the ecology of pathogenesis by modulating quorum sensing, host adaptation and virulence. Polyamines mediate pathogenesis and help the pathogen resist environmental stress. In this study, we investigated the ability of the polyamine, spermidine, to promote acid stress survival of S. pyogenes. S. pyogenes does not synthesize spermidine, but the extracellular pool of spermidine constituted by the host and microbiome could be utilized as a signalling molecule. We report that spermidine promotes acid stress resistance in S. pyogenes. Moreover, spermidine affects the morphology of S. pyogenes by decreasing the cell size and increasing the dltA gene expression. Along with dltA, spermidine upregulated the gene expression of cell wall-modifying genes such as mur, pgdA, pepO and srtA, which might help the bacteria to resist acidic stress.

RevDate: 2022-08-02

Isenberg RY, Christensen DG, Visick KL, et al (2022)

High Levels of Cyclic Diguanylate Interfere with Beneficial Bacterial Colonization.

mBio [Epub ahead of print].

During colonization of the Hawaiian bobtail squid (Euprymna scolopes), Vibrio fischeri bacteria undergo a lifestyle transition from a planktonic motile state in the environment to a biofilm state in host mucus. Cyclic diguanylate (c-di-GMP) is a cytoplasmic signaling molecule that is important for regulating motility-biofilm transitions in many bacterial species. V. fischeri encodes 50 proteins predicted to synthesize and/or degrade c-di-GMP, but a role for c-di-GMP regulation during host colonization has not been investigated. We examined strains exhibiting either low or high levels of c-di-GMP during squid colonization and found that while a low-c-di-GMP strain had no colonization defect, a high c-di-GMP strain was severely impaired. Expression of a heterologous c-di-GMP phosphodiesterase restored colonization, demonstrating that the effect is due to high c-di-GMP levels. In the constitutive high-c-di-GMP state, colonizing V. fischeri exhibited reduced motility, altered biofilm aggregate morphology, and a regulatory interaction where transcription of one polysaccharide locus is inhibited by the presence of the other polysaccharide. Our results highlight the importance of proper c-di-GMP regulation during beneficial animal colonization, illustrate multiple pathways regulated by c-di-GMP in the host, and uncover an interplay of multiple exopolysaccharide systems in host-associated aggregates. IMPORTANCE There is substantial interest in studying cyclic diguanylate (c-di-GMP) in pathogenic and environmental bacteria, which has led to an accepted paradigm in which high c-di-GMP levels promote biofilm formation and reduce motility. However, considerably less focus has been placed on understanding how this compound contributes to beneficial colonization. Using the Vibrio fischeri-Hawaiian bobtail squid study system, we took advantage of recent genetic advances in the bacterium to modulate c-di-GMP levels and measure colonization and track c-di-GMP phenotypes in a symbiotic interaction. Studies in the animal host revealed a c-di-GMP-dependent genetic interaction between two distinct biofilm polysaccharides, Syp and cellulose, that was not evident in culture-based studies: elevated c-di-GMP altered the composition and abundance of the in vivo biofilm by decreasing syp transcription due to increased cellulose synthesis. This study reveals important parallels between pathogenic and beneficial colonization and additionally identifies c-di-GMP-dependent regulation that occurs specifically in the squid host.

RevDate: 2022-08-02

Alarcon-Enos J, Quiroz-Carreño S, Muñoz-Nuñez E, et al (2022)

Cyclopeptide alkaloids from Discaria chacaye (Rhamnaceae) as result of symbiosis with Frankia (Actinomycetales).

Chemistry & biodiversity [Epub ahead of print].

Cyclopeptide alkaloids with different biological activities are present in plants of the family Rhamnaceae. Plants of this family grow in a symbiotic relationship with aerobic Gram-positive actinomycetes belonging to the genus Frankia . This goal of this research was a study of the comparative profile of alkaloids present in Discaria chacaye and to establish a connection between the presence or absence of Frankia sp. and the alkaloids. In addition, insecticidal activities of the alkaloidal extract were examined. A total of 24 alkaloids were identified, of which 12 have a benzylisoquinoline skeleton, 9 were cyclopeptides, 2 isoquinolines, and 1 an aporphine. The presence of cyclopeptide alkaloids is associated with Frankia nodules in the plant root. The alkaloid extracts showed insecticidal activity with mortality dose-dependence and LD 50 values between 44 to 71 µg/mL.

RevDate: 2022-08-02
CmpDate: 2022-08-02

Chen XG, Wu YH, Li NQ, et al (2022)

What role does the seed coat play during symbiotic seed germination in orchids: an experimental approach with Dendrobium officinale.

BMC plant biology, 22(1):375.

BACKGROUND: Orchids require specific mycorrhizal associations for seed germination. During symbiotic germination, the seed coat is the first point of fungal attachment, and whether the seed coat plays a role in the identification of compatible and incompatible fungi is unclear. Here, we compared the effects of compatible and incompatible fungi on seed germination, protocorm formation, seedling development, and colonization patterns in Dendrobium officinale; additionally, two experimental approaches, seeds pretreated with NaClO to change the permeability of the seed coat and fungi incubated with in vitro-produced protocorms, were used to assess the role of seed coat played during symbiotic seed germination.

RESULTS: The two compatible fungi, Tulasnella sp. TPYD-2 and Serendipita indica PI could quickly promote D. officinale seed germination to the seedling stage. Sixty-two days after incubation, 67.8 ± 5.23% of seeds developed into seedlings with two leaves in the PI treatment, which was significantly higher than that in the TPYD-2 treatment (37.1 ± 3.55%), and massive pelotons formed inside the basal cells of the protocorm or seedlings in both compatible fungi treatments. In contrast, the incompatible fungus Tulasnella sp. FDd1 did not promote seed germination up to seedlings at 62 days after incubation, and only a few pelotons were occasionally observed inside the protocorms. NaClO seed pretreatment improved seed germination under all three fungal treatments but did not improve seed colonization or promote seedling formation by incompatible fungi. Without the seed coat barrier, the colonization of in vitro-produced protocorms by TPYD-2 and PI was slowed, postponing protocorm development and seedling formation compared to those in intact seeds incubated with the same fungi. Moreover, the incompatible fungus FDd1 was still unable to colonize in vitro-produced protocorms and promote seedling formation.

CONCLUSIONS: Compatible fungi could quickly promote seed germination up to the seedling stage accompanied by hyphal colonization of seeds and formation of many pelotons inside cells, while incompatible fungi could not continuously colonize seeds and form enough protocorms to support D. officinale seedling development. The improvement of seed germination by seed pretreatment may result from improving the seed coat hydrophilicity and permeability, but seed pretreatment cannot change the compatibility of a fungus with an orchid. Without a seed coat, the incompatible fungus FDd1 still cannot colonize in vitro-produced protocorms or support seedling development. These results suggest that seed coats are not involved in symbiotic germination in D. officinale.

RevDate: 2022-08-02
CmpDate: 2022-08-02

Hale KRS, Maes DP, FS Valdovinos (2022)

Simple Mechanisms of Plant Reproductive Benefits Yield Different Dynamics in Pollination and Seed Dispersal Mutualisms.

The American naturalist, 200(2):202-216.

AbstractPollination and seed dispersal mutualisms are critical for biodiversity and ecosystem services yet face mounting threats from anthropogenic perturbations that cause their populations to decline. Characterizing the dynamics of these mutualisms when populations are at low density is important to anticipate consequences of these perturbations. We developed simple population dynamic models detailed enough to distinguish different mechanisms by which plant populations benefit from animal pollination or seed dispersal. We modeled benefits as functions of foraging rate by animals on plant rewards and specified whether they affected plant seed set, germination, or negative density dependence during recruitment. We found that pollination and seed dispersal mutualisms are stable at high density but exhibit different dynamics at low density, depending on plant carrying capacity, animal foraging efficiency, and whether populations are obligate on their partners for persistence. Under certain conditions, all mutualisms experience destabilizing thresholds in which one population declines because its partner is too rare. Plants additionally experience Allee effects when obligate on pollinators. Finally, pollination mutualisms can exhibit bistable coexistence at low or high density when plants are facultative on pollinators. Insights from our models can inform conservation efforts, as mutualist populations continue to decline globally.

RevDate: 2022-08-02
CmpDate: 2022-08-02

Sless TJL, Searle JB, BN Danforth (2022)

Genome of the bee Holcopasites calliopsidis-a species showing the common apid trait of brood parasitism.

G3 (Bethesda, Md.), 12(8):.

Brood parasites represent a substantial but often poorly studied fraction of the wider diversity of bees. Brood parasitic bees complete their life cycles by infiltrating the nests of solitary host bees thereby enabling their offspring to exploit the food provisions intended for the host's offspring. Here, we present the draft assembly of the bee Holcopasites calliopsidis, the first brood parasitic species to be the subject of detailed genomic analysis. Consistent with previous findings on the genomic signatures of parasitism more broadly, we find that H. calliopsidis has the smallest genome currently known among bees (179 Mb). This small genome does not appear to be the result of purging of repetitive DNA, with some indications of novel repetitive elements which may show signs of recent expansion. Nor does H. calliopsidis demonstrate any apparent net loss of genic content in comparison with nonparasitic species, though many individual gene families do show significant contractions. Although the basis of the small genome size of this species remains unclear, the identification of over 12,000 putative genes-with functional annotation for nearly 10,000 of these-is an important step in investigating the genomic basis of brood parasitism and provides a valuable dataset to be compared against new genomes that remain to be sequenced.

RevDate: 2022-08-02
CmpDate: 2022-08-02

Creed RP, Brown BL, J Skelton (2022)

The potential impacts of invasions on native symbionts.

Ecology, 103(8):e3726.

Symbionts, including parasites, pathogens, and mutualists, can play important roles in determining whether or not invasions by host species will be successful. Loss of enemies from the native habitat, such as parasites and pathogens, can allow for higher invader fitness in the invaded habitat. The presence of mutualists (e.g., pollinators, seed dispersers, mycorrhizae, and rhizobial bacteria) in the invaded habitat can facilitate invasion success. Although there has been a great deal of research focusing on how invading hosts may benefit from enemy losses or mutualist gains, far less attention has focused on how native symbiont populations and communities respond to invasion by non-indigenous hosts and symbionts. In this paper, we present a conceptual framework examining how symbionts such as parasites, pathogens, commensals, and mutualists can influence invader success and whether these native symbionts will benefit or decline during invasion. The first major factor in this framework is the competence of the invading host relative to the native hosts. Low- or non-competent hosts that support few if any native symbionts could cause declines in native symbiont taxa. Competent invading hosts could potentially support native parasites, pathogens, commensals, and mutualists, especially if there is a closely related or similar host in the invaded range. These symbionts could inhibit or facilitate invasion or have no discernible effect on the invading host. An understanding of how native symbionts interact with competent versus non-competent invading hosts as well as various invading symbionts is critical to our understanding of invasion success, its consequences for invaded communities and how native symbionts in these communities will fare in the face of invasion.

RevDate: 2022-08-01

T T Tsang C, Schubart CD, Hou Chu K, et al (2022)

Molecular phylogeny of Thoracotremata crabs (Decapoda, Brachyura): toward adopting monophyletic superfamilies, invasion history into terrestrial habitats and multiple origins of symbiosis.

Molecular phylogenetics and evolution pii:S1055-7903(22)00209-3 [Epub ahead of print].

The Thoracotremata is a large and successful group of "true" crabs (Decapoda, Brachyura, Eubrachyura) with a great diversity of lifestyles and well-known intertidal representatives. The group represents the largest brachyuran radiation into terrestrial and semi-terrestrial environments and comprises multiple lineages of obligate symbiotic species. In consequence, they exhibit very diverse physiological and morphological adaptations. Our understanding of their evolution is, however, largely obscured by their confused classification. Here, we resolve interfamilial relationships of Thoracotremata, using 10 molecular markers and exemplars from all nominal families in order to reconstruct the pathways of lifestyle transition and to propose a new taxonomy corresponding to phylogenetic relationships. The results confirm the polyphyly of three superfamilies as currently defined (Grapsoidea, Ocypodoidea and Pinnotheroidea). At the family level, Dotillidae, Macrophthalmidae, and Varunidae are not monophyletic. Ancestral state reconstruction analyses and divergent time estimations indicate that the common ancestor of thoracotremes already thrived in intertidal environments in the Late Cretaceous and terrestrialization became a major driver of thoracotreme diversification. Multiple semi-terrestrial and terrestrial lineages originated and radiated in the Early Eocene, coinciding with the global warming event at the Paleocene-Eocene Thermal Maximum (PETM). Secondary invasions into subtidal regions and colonizations of freshwater habitats occurred independently through multiple semi-terrestrial and terrestrial lineages. Obligate symbiosis between thoracotremes and other marine macro-invertebrates evolved at least twice. On the basis of the current molecular phylogenetic hypothesis, it will be necessary in the future to revise and recognize seven monophyletic superfamilies and revisit the morphological character states which define them.

RevDate: 2022-08-01

Bollati E, Lyndby NH, D'Angelo C, et al (2022)

Green fluorescent protein-like pigments optimise the internal light environment in symbiotic reef-building corals.

eLife, 11: pii:73521.

Pigments homologous to the green fluorescent protein (GFP) have been proposed to fine-tune the internal light microclimate of corals, facilitating photoacclimation of photosynthetic coral symbionts (Symbiodiniaceae) to life in different reef habitats and environmental conditions. However, direct measurements of the in vivo light conditions inside the coral tissue supporting this conclusion are lacking. Here, we quantified the intra-tissue spectral light environment of corals expressing GFP-like proteins from widely different light regimes. We focus on: (1) photoconvertible red fluorescent proteins (pcRFPs), thought to enhance photosynthesis in mesophotic habitats via wavelength conversion, and (2) chromoproteins (CPs), which provide photoprotection to the symbionts in shallow water via light absorption. Optical microsensor measurements indicated that both pigment groups strongly alter the coral intra-tissue light environment. Estimates derived from light spectra measured in pcRFP-containing corals showed that fluorescence emission can contribute to >50% of orange-red light available to the photosynthetic symbionts at mesophotic depths. We further show that upregulation of pink CPs in shallow-water corals during bleaching leads to a reduction of orange light by 10-20% compared to low-CP tissue. Thus, screening by CPs has an important role in mitigating the light-enhancing effect of coral tissue scattering and skeletal reflection during bleaching. Our results provide the first experimental quantification of the importance of GFP-like proteins in fine-tuning the light microclimate of corals during photoacclimation.

RevDate: 2022-07-30

Cecere AG, TI Miyashiro (2022)

Impact of transit time on the reproductive capacity of Euprymna scolopes as a laboratory animal.

Laboratory animal research, 38(1):25.

BACKGROUND: The Hawaiian bobtail squid Euprymna scolopes hosts various marine bacterial symbionts, and these symbioses have served as models for the animal-microbe relationships that are important for host health. Within a light organ, E. scolopes harbors populations of the bacterium Vibrio fischeri, which produce low levels of bioluminescence that the squid uses for camouflage. The symbiosis is initially established after a juvenile squid hatches from its egg and acquires bacterial symbionts from the ambient marine environment. The relative ease with which a cohort of wild-caught E. scolopes can be maintained in a mariculture facility has facilitated over 3 decades of research involving juvenile squid. However, because E. scolopes is native to the Hawaiian archipelago, their transport from Hawaii to research facilities often represents a stress that has the potential to impact their physiology.

RESULTS: Here, we describe animal survival and reproductive capacity associated with a cohort of squid assembled from two shipments with markedly different transit times. We found that the lower juvenile squid counts generated by animals with the longer transit time were not due to the discrepancy in shipment but instead to fewer female squid that produced egg clutches at an elevated rate, which we term hyper-reproductivity. We find that hyper-reproductive females were responsible for 58% of the egg clutches laid.

CONCLUSIONS: The significance of these findings for E. scolopes biology and husbandry is discussed, thereby providing a platform for future investigation and further development of this cephalopod as a valuable lab animal for microbiology research.

RevDate: 2022-07-29

Zhukova M, Sapountzis P, Schiøtt M, et al (2022)

Phylogenomic analysis and metabolic role reconstruction of mutualistic Rhizobiales hindgut symbionts of Acromyrmex leaf-cutting ants.

FEMS microbiology ecology pii:6652133 [Epub ahead of print].

Rhizobiales are well-known plant-root nitrogen-fixing symbionts, but the functions of insect-associated Rhizobiales are poorly understood. We obtained genomes of three strains associated with Acromyrmex leaf-cutting ants and show that, in spite of being extracellular gut symbionts, they lost all pathways for essential amino acid biosynthesis, making them fully dependent on their hosts. Comparison with 54 Rhizobiales genomes showed that all insect-associated Rhizobiales lost the ability to fix nitrogen and that the Acromyrmex symbionts had exceptionally also lost the urease genes. However, the Acromyrmex strains share biosynthesis pathways for riboflavin vitamin, queuosine and a wide range of antioxidant enzymes likely to be beneficial for the ant fungus-farming symbiosis. We infer that the Rhizobiales symbionts catabolize excess of fungus-garden-derived arginine to urea, supplementing complementary Mollicutes symbionts that turn arginine into ammonia and infer that these combined symbiont activities stabilize the fungus-farming mutualism. Similar to the Mollicutes symbionts, the Rhizobiales species have fully functional CRISPR/Cas and R-M phage defenses, suggesting that these symbionts are important enough for the ant hosts to have precluded the evolution of metabolically cheaper defenseless strains.

RevDate: 2022-07-28

Morrow KM, Pankey MS, MP Lesser (2022)

Community structure of coral microbiomes is dependent on host morphology.

Microbiome, 10(1):113.

BACKGROUND: The importance of symbiosis has long been recognized on coral reefs, where the photosynthetic dinoflagellates of corals (Symbiodiniaceae) are the primary symbiont. Numerous studies have now shown that a diverse assemblage of prokaryotes also make-up part of the microbiome of corals. A subset of these prokaryotes is capable of fixing nitrogen, known as diazotrophs, and is also present in the microbiome of scleractinian corals where they have been shown to supplement the holobiont nitrogen budget. Here, an analysis of the microbiomes of 16 coral species collected from Australia, Curaçao, and Hawai'i using three different marker genes (16S rRNA, nifH, and ITS2) is presented. These data were used to examine the effects of biogeography, coral traits, and ecological life history characteristics on the composition and diversity of the microbiome in corals and their diazotrophic communities.

RESULTS: The prokaryotic microbiome community composition (i.e., beta diversity) based on the 16S rRNA gene varied between sites and ecological life history characteristics, but coral morphology was the most significant factor affecting the microbiome of the corals studied. For 15 of the corals studied, only two species Pocillopora acuta and Seriotopora hystrix, both brooders, showed a weak relationship between the 16S rRNA gene community structure and the diazotrophic members of the microbiome using the nifH marker gene, suggesting that many corals support a microbiome with diazotrophic capabilities. The order Rhizobiales, a taxon that contains primarily diazotrophs, are common members of the coral microbiome and were eight times greater in relative abundances in Hawai'i compared to corals from either Curacao or Australia. However, for the diazotrophic component of the coral microbiome, only host species significantly influenced the composition and diversity of the community.

CONCLUSIONS: The roles and interactions between members of the coral holobiont are still not well understood, especially critical functions provided by the coral microbiome (e.g., nitrogen fixation), and the variation of these functions across species. The findings presented here show the significant effect of morphology, a coral "super trait," on the overall community structure of the microbiome in corals and that there is a strong association of the diazotrophic community within the microbiome of corals. However, the underlying coral traits linking the effects of host species on diazotrophic communities remain unknown. Video Abstract.

RevDate: 2022-07-28

Cziesielski MJ, Liew YJ, Cui G, et al (2022)

Increased incompatibility of heterologous algal symbionts under thermal stress in the cnidarian-dinoflagellate model Aiptasia.

Communications biology, 5(1):760.

Rising ocean temperatures are increasing the rate and intensity of coral mass bleaching events, leading to the collapse of coral reef ecosystems. To better understand the dynamics of coral-algae symbioses, it is critical to decipher the role each partner plays in the holobiont's thermotolerance. Here, we investigated the role of the symbiont by comparing transcriptional heat stress responses of anemones from two thermally distinct locations, Florida (CC7) and Hawaii (H2) as well as a heterologous host-symbiont combination composed of CC7 host anemones inoculated with the symbiont Breviolum minutum (SSB01) from H2 anemones (CC7-B01). We find that oxidative stress and apoptosis responses are strongly influenced by symbiont type, as further confirmed by caspase-3 activation assays, but that the overall response to heat stress is dictated by the compatibility of both partners. Expression of genes essential to symbiosis revealed a shift from a nitrogen- to a carbon-limited state only in the heterologous combination CC7-B01, suggesting a bioenergetic disruption of symbiosis during stress. Our results indicate that symbiosis is highly fine-tuned towards particular partner combinations and that heterologous host-symbiont combinations are metabolically less compatible under stress. These results are essential for future strategies aiming at increasing coral resilience using heterologous thermotolerant symbionts.

RevDate: 2022-07-28

Sun X, Li X, Tang S, et al (2022)

A review on algal-bacterial symbiosis system for aquaculture tail water treatment.

The Science of the total environment pii:S0048-9697(22)04718-0 [Epub ahead of print].

Aquaculture is one of the fastest growing fields of global food production industry in recent years. To maintain the ecological health of aquaculture water body and the sustainable development of aquaculture industry, the treatment of aquaculture tail water (ATW) is becoming an indispensable task. This paper discussed the demand of environmentally friendly and cost-effective technologies for ATW treatment and the potential of algal-bacterial symbiosis system (ABSS) in ATW treatment. The characteristics of ABSS based technology for ATW treatment were analyzed, such as energy consumption, greenhouse gas emission, environmental adaptability and the possibility of removal or recovery of carbon, nitrogen and phosphorus as resource simultaneously. Based on the principle of ABSS, this paper introduced the key environmental factors that should be paid attention to in the establishment of ABSS, and then summarized the species of algae, bacteria and the proportion of algae and bacteria commonly used in the establishment of ABSS. Finally, the reactor technologies and the relevant research gaps in the establishment of ABSS were reviewed and discussed.

RevDate: 2022-07-28

Ayala-García P, Jimenez-Guerrero I, Jacott C, et al (2022)

The Rhizobium tropici CIAT 899 NodD2 protein promotes symbiosis and extends rhizobial nodulation range by constitutive nodulation factor synthesis.

Journal of experimental botany pii:6651353 [Epub ahead of print].

In the symbiotic associations between rhizobia and legumes, the NodD regulators orchestrate the transcription of the specific nodulation genes. This set of genes is involved in the synthesis of nodulation factors, which are responsible for initiating the nodulation process. Rhizobium tropici CIAT 899 is the most successful symbiont of Phaseolus vulgaris and can nodulate a variety of legumes. Among the five NodD regulators present in this rhizobium, only NodD1 and NodD2 seem to have a role in the symbiotic process. However, the individual role of each NodD in the absence of the other proteins has remained elusive. In this work, we show that the CIAT 899 NodD2 does not require activation by inducers to promote the synthesis of nodulation factors. In fact, a CIAT 899 strain overexpressing nodD2-but lacking all additional nodD genes-can nodulate three different legumes as efficiently as wild-type. Interestingly, CIAT 899 NodD2-mediated gain of nodulation can be extended to another rhizobial species, since its overproduction in Sinorhizobium fredii HH103 not only increases the number of nitrogen-fixing nodules in two host legumes but also results in nodule development in incompatible legumes. These findings potentially open exciting opportunities to develop rhizobial inoculants and increase legume crop production.

RevDate: 2022-07-28

de Faria SM, Ringelberg JJ, Gross E, et al (2022)

The innovation of the symbiosome has enhanced the evolutionary stability of nitrogen fixation in legumes.

The New phytologist [Epub ahead of print].

Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade.

RevDate: 2022-07-28

Huang A, Shi H, Cui R, et al (2022)

Effects of Taurine on Primary Metabolism and Transcription in a Coral Symbiodinium sp.

Frontiers in microbiology, 13:797688.

Coral reefs belong to the marine ecosystems and host the richest biodiversity of marine organisms. Coral reefs are formed as a result of the symbiotic relationship between the host coral animal and photosynthetic dinoflagellates, namely Symbiodinium sp. Coral animals induce the release of carbon fixation products of symbiotic Symbiodinium sp. through secreting host release factors (HRFs) such as taurine. To study the potential effect of taurine on photosynthesis and release of carbon fixation products of Symbiodinium sp., we compared the growth of Symbiodinium sp. under control and taurine-stimulated conditions. Photosynthesis parameters were detected to monitor the photosynthetic efficiency. Biomass and the contents of total soluble sugar, total insoluble sugar, total protein, total lipids, chlorophyll a were analyzed. Metabolome and transcriptome analyses were performed to analyze the potential effect of taurine on primary metabolism and mRNA transcription. The results revealed that taurine significantly increased the growth, photosynthesis efficiency, total soluble sugar, chlorophyll a, and chlorophyll b and free amino acid content of Symbiodinium sp. while decreased the content of total insoluble sugar. Results of metabolome and transcriptome analyses suggested that taurine might affect metabolic pathways in Symbiodinium sp. by altering the permeability of the algal cell membrane, diverting photosynthetically fixed carbon from storage compounds to translocated compounds, releasing a signal of low concentrations of nitrogen to initiate a series of response mechanisms, and controlling the density of Symbiodinium sp. through the quorum sensing effect. These results help to explore how corals control carbon metabolism in Symbiodinium sp. and to provide theoretical guidance for furthering our understanding of Symbiodinium sp. biology and coral-algal symbiosis.

RevDate: 2022-07-28
CmpDate: 2022-07-28

Alías-Villegas C, Fuentes-Romero F, Cuéllar V, et al (2022)

Surface Motility Regulation of Sinorhizobium fredii HH103 by Plant Flavonoids and the NodD1, TtsI, NolR, and MucR1 Symbiotic Bacterial Regulators.

International journal of molecular sciences, 23(14): pii:ijms23147698.

Bacteria can spread on surfaces to colonize new environments and access more resources. Rhizobia, a group of α- and β-Proteobacteria, establish nitrogen-fixing symbioses with legumes that rely on a complex signal interchange between the partners. Flavonoids exuded by plant roots and the bacterial transcriptional activator NodD control the transcription of different rhizobial genes (the so-called nod regulon) and, together with additional bacterial regulatory proteins (such as TtsI, MucR or NolR), influence the production of different rhizobial molecular signals. In Sinorhizobium fredii HH103, flavonoids and NodD have a negative effect on exopolysaccharide production and biofilm production. Since biofilm formation and motility are often inversely regulated, we have analysed whether flavonoids may influence the translocation of S. fredii HH103 on surfaces. We show that the presence of nod gene-inducing flavonoids does not affect swimming but promotes a mode of surface translocation, which involves both flagella-dependent and -independent mechanisms. This surface motility is regulated in a flavonoid-NodD1-TtsI-dependent manner, relies on the assembly of the symbiotic type 3 secretion system (T3SS), and involves the participation of additional modulators of the nod regulon (NolR and MucR1). To our knowledge, this is the first evidence indicating the participation of T3SS in surface motility in a plant-interacting bacterium. Interestingly, flavonoids acting as nod-gene inducers also participate in the inverse regulation of surface motility and biofilm formation, which could contribute to a more efficient plant colonisation.

RevDate: 2022-07-27

Tanabe N, Takasu R, Hirose Y, et al (2022)

Diaphorin, a Polyketide Produced by a Bacterial Symbiont of the Asian Citrus Psyllid, Inhibits the Growth and Cell Division of Bacillus subtilis but Promotes the Growth and Metabolic Activity of Escherichia coli.

Microbiology spectrum [Epub ahead of print].

Diaphorin is a polyketide produced by "Candidatus Profftella armatura" (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a notorious agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Diaphorin belongs to the pederin family of bioactive agents found in various host-symbiont systems, including beetles, lichens, and sponges, harboring phylogenetically diverse bacterial producers. Previous studies showed that diaphorin, which is present in D. citri at concentrations of 2 to 20 mM, has inhibitory effects on various eukaryotes, including the natural enemies of D. citri. However, little is known about its effects on prokaryotic organisms. To address this issue, the present study assessed the biological activities of diaphorin on two model prokaryotes, Escherichia coli (Gammaproteobacteria: Enterobacterales) and Bacillus subtilis (Firmicutes: Bacilli). Their growth and morphological features were analyzed using spectrophotometry, optical microscopy followed by image analysis, and transmission electron microscopy. The metabolic activity of E. coli was further assessed using the β-galactosidase assay. The results revealed that physiological concentrations of diaphorin inhibit the growth and cell division of B. subtilis but promote the growth and metabolic activity of E. coli. This finding implies that diaphorin functions as a defensive agent of the holobiont (host plus symbionts) against some bacterial lineages but is metabolically beneficial for others, which potentially include obligate symbionts of D. citri. IMPORTANCE Certain secondary metabolites, including antibiotics, evolve to mediate interactions among organisms. These molecules have distinct spectra for microorganisms and are often more effective against Gram-positive bacteria than Gram-negative ones. However, it is rare that a single molecule has completely opposite activities on distinct bacterial lineages. The present study revealed that a secondary metabolite synthesized by an organelle-like bacterial symbiont of psyllids inhibits the growth of Gram-positive Bacillus subtilis but promotes the growth of Gram-negative Escherichia coli. This finding not only provides insights into the evolution of microbiomes in animal hosts but also may potentially be exploited to promote the effectiveness of industrial material production by microorganisms.

RevDate: 2022-07-27

Kameoka H, C Gutjahr (2022)

Functions of Lipids in Development and Reproduction of Arbuscular Mycorrhiza Fungi.

Plant & cell physiology pii:6650609 [Epub ahead of print].

Arbuscular mycorrhizal fungi (AMF) form mutualistic associations with most land plants. The symbiosis is based on the exchange of nutrients: AMF receive photosynthetically fixed carbon from the plants and deliver mineral nutrients in return. Lipids are important players in the symbiosis. They act as components of the plant-derived membrane surrounding arbuscules, as carbon sources transferred from plants to AMF, as a major form of carbon storage in AMF, and as triggers of developmental responses in AMF. In this review, we describe the role of lipids in AM symbiosis and AMF development.

RevDate: 2022-07-27

Chen H, Renault S, J Markham (2022)

The Effect of Frankia and Hebeloma crustiliniforme on Alnus alnobetula subsp. Crispa Growing in Saline Soil.

Plants (Basel, Switzerland), 11(14): pii:plants11141860.

The mining of the oil sands region of Canada's boreal forest creates disturbed land with elevated levels of salts. Understanding how native plants respond to salt stress is critical in reclaiming these lands. The native species, Alnus alnobetula subsp. crispa forms nitrogen-fixing nodules with Frankia, and ectomycorrhizae with a number of fungal species. These relationships may make the plant particularly well suited for restoring disturbed land. We inoculated A. alnobetula subsp. crispa with Frankia and Hebeloma crustiliniforme and exposed the plants to 0, 50, or 100 mM NaCl for seven weeks. Frankia-inoculated plants had increased biomass regardless of salt exposure, even though salt exposure reduced nitrogen fixation and reduced the efficiency of nitrogen-fixing nodules. The nitrogen-fixing symbiosis also decreased leaf stress and increased root phosphatase levels. This suggests that N-fixing plants not only have increased nitrogen nutrition but also have increased access to soil phosphorus. Mycorrhizae did not affect plant growth but did reduce nodule numbers and nodule efficiency. These results suggest that the nitrogen-fixing trait is more critical than mycorrhizae. While salt stress inhibits nitrogen-fixing symbiosis, plants still benefit from nitrogen fixation when exposed to salt.

RevDate: 2022-07-27

Alai S, Gautam M, Palkar S, et al (2022)

Characterization of Bordetella pertussis Strains Isolated from India.

Pathogens (Basel, Switzerland), 11(7): pii:pathogens11070794.

Despite high level vaccination and the availability of two different types of vaccines, whole cell (wP) and acellular vaccines (aP), the resurgence of pertussis has been reported in many countries. Antigenic variation within circulating and vaccine strains is the most documented reason reported for the resurgence of pertussis. Research on genetic divergence among circulating and vaccine strains has largely been reported in countries using aP vaccines. There are inadequate data available for antigenic variation in B. pertussis from wP-using countries. India has used wP for more than 40 years in their primary immunization program. The present study reports five clinical isolates of B. pertussis from samples of pediatric patients with pertussis symptoms observed in India. Genotypic and phenotypic characterization of clinical isolates were performed by serotyping, genotyping, whole genome analyses and comparative genomics. All clinical isolates showed serotype 1, 2 and 3 based on the presence of fimbriae 2 and 3. Genotyping showed genetic similarities in allele types for five aP genes within vaccine strains and clinical isolates reported from India. The presence of the ptxP3 genotype was observed in two out of five clinical isolates. Whole-genome sequencing was performed for clinical isolates using the hybrid strategy of combining Illumina (short reads) and oxford nanopore (long reads) sequencing strategies. Clinical isolates (n = 5) and vaccine strains (n = 7) genomes of B. pertussis from India were compared with 744 B. pertussis closed genomes available in the public databases. The phylogenomic comparison of B. pertussis genomes reported from India will be advantageous in better understanding pertussis resurgence reported globally with respect to pathogen adaptation.

RevDate: 2022-07-27

Mosaico G, Artuso G, Pinna M, et al (2022)

Host Microbiota Balance in Teenagers with Gum Hypertrophy Concomitant with Acne Vulgaris: Role of Oral Hygiene Associated with Topical Probiotics.

Microorganisms, 10(7): pii:microorganisms10071344.

Gum hypertrophy is a very frequent condition linked to orthodontic treatment, especially in teenagers, and the same time, about 80% of young adults are affected by acne vulgaris, a chronic inflammatory skin disease, typically treated with antibacterial therapy. The use of probiotics has gained popularity in the medical field, and many studies have demonstrated its effectiveness, such as the positive effects of some bacterial strains belonging to Lactobacillus species. The aim of this study is to document the effect of Lactobacillus reuteri (L. reuteri) on facial skin that was randomly observed in two orthodontic patients. We present two case reports of a 14-year-old female patient and a 15-year-old male patient suffering from acne vulgaris who, during fixed orthodontic treatment, showed clinical signs of gingivitis with high values of Full Mouth Plaque Score (FMPS) and Bleeding on Probing (BOP). The patients were treated first with professional oral hygiene sessions and Scaling and Root Planing (SRP) procedures, and then with the administration of a formulate containing L. reuteri as a probiotic. The follow-up was made at four weeks. During the follow-up analysis, both patients showed a significant clinical remission for gum hypertrophy and skin acne vulgaris.

RevDate: 2022-07-27

Valentini V, Silvestri V, Bucalo A, et al (2022)

A Possible Link between Gut Microbiome Composition and Cardiovascular Comorbidities in Psoriatic Patients.

Journal of personalized medicine, 12(7): pii:jpm12071118.

Cardiovascular disease (CVD) is one of the most common comorbidities that may affect psoriatic patients. Several exogenous and endogenous factors are involved in the etiology and progression of both psoriasis and CVD. A potential genetic link between the two diseases has emerged; however, some gaps remain in the understanding of the CVD prevalence in psoriatic patients. Recently, the role of the gut microbiome dysbiosis was documented in the development and maintenance of both diseases. To investigate whether gut microbiome dysbiosis might influence the occurrence of CVD in psoriatic patients, 16S rRNA gene sequencing was performed to characterize the gut microbiome of 28 psoriatic patients, including 17 patients with and 11 without CVD. The comparison of the gut microbiome composition between patients with and without CVD showed a higher prevalence of Barnesiellaceae and Phascolarctobacterium in patients with CVD. Among patients with CVD, those undergoing biologic therapy had lower abundance levels of Barnesiellaceae, comparable to those found in patients without CVD. Overall, these findings suggest that the co-occurrence of psoriasis and CVD might be linked to gut microbiome dysbiosis and that therapeutic strategies could help to restore the intestinal symbiosis, potentially improving the clinical management of psoriasis and its associated comorbidities.

RevDate: 2022-07-27

Li X, Zhang X, Xu M, et al (2022)

Improved Tolerance of Artemisia ordosica to Drought Stress via Dark Septate Endophyte (DSE) Symbiosis.

Journal of fungi (Basel, Switzerland), 8(7): pii:jof8070730.

Dark septate endophytes (DSEs) usually colonize plant roots, especially in stress environments. However, their relationship with plants ranges from beneficial to harmful and has remained largely uncharacterized. In the present study, 14 DSE species grouped into 11 genera were isolated from the roots of a desert plant, Artemisia ordosica, which is widely distributed in northwest China. Three dominant DSE species-Paraphoma chrysanthemicola (Pc), Alternaria chartarum (Ac), and Acrocalymma vagum (Av)-were selected and tested for their resistance to drought in vitro. Furthermore, we characterized the responses of A. ordosica under drought conditions in relation to the presence of these DSEs following inoculation. The results showed that all three strains grew well under in vitro drought stress, and the biomass of Ac and Av was significantly higher than that of the unstressed control. The effects of DSE inoculation on the growth of A. ordosica under drought stress varied according to the different DSE species but were generally beneficial. Under drought stress, Av and Pc promoted plant growth, antioxidant enzyme activity, and root development of the hosts. The Ac strain conferred obvious positive effects on the antioxidant enzyme activity of the hosts. In general, Av and Pc demonstrated better application potential for improving the drought resistance of A. ordosica.

RevDate: 2022-07-27

Bullones-Bolaños A, Bernal-Bayard J, F Ramos-Morales (2022)

The NEL Family of Bacterial E3 Ubiquitin Ligases.

International journal of molecular sciences, 23(14): pii:ijms23147725.

Some pathogenic or symbiotic Gram-negative bacteria can manipulate the ubiquitination system of the eukaryotic host cell using a variety of strategies. Members of the genera Salmonella, Shigella, Sinorhizobium, and Ralstonia, among others, express E3 ubiquitin ligases that belong to the NEL family. These bacteria use type III secretion systems to translocate these proteins into host cells, where they will find their targets. In this review, we first introduce type III secretion systems and the ubiquitination process and consider the various ways bacteria use to alter the ubiquitin ligation machinery. We then focus on the members of the NEL family, their expression, translocation, and subcellular localization in the host cell, and we review what is known about the structure of these proteins, their function in virulence or symbiosis, and their specific targets.

RevDate: 2022-07-27

Ogata M, Uchiyama J, Ahhmed AM, et al (2022)

Effects of Inherent Lactic Acid Bacteria on Inhibition of Angiotensin I-Converting Enzyme and Antioxidant Activities in Dry-Cured Meat Products.

Foods (Basel, Switzerland), 11(14): pii:foods11142123.

The aim of this study was to investigate the inherent bacteria that contribute to expressing the angiotensin I-converting enzyme (ACE) inhibitory activity and the antioxidant activity of dry-cured meat products without a bacterial starter. Among the ten dry-cured meat product samples, Coppa and Milano salami exhibited high ACE inhibitory activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability, and oxygen radical absorbance capacity (ORAC). No consistent trend was observed in the pH values or the total peptide and imidazole dipeptide concentration of the products that exhibited high ACE inhibitory and antioxidant activities in the tested samples. To investigate the bacteria contributing to the ACE inhibitory and antioxidant activities of the product, 16S rRNA sequencing analysis, isolation, and identification of bacteria were performed using not only Coppa and Milano salami but also the Jamon Serrano and Parma prosciutto products that had low functional activities. Results suggest the Lactobacillales order, particularly the species Latilactobacillus sakei and Pediococcus pentosaceus, were the main inherent bacteria in Coppa and Milano salami, respectively, compared with the Jamon Serrano and Parma prosciutto products. Therefore, the inherent lactic acid bacteria in dry-cured meat products without bacterial starter is important for ACE inhibitory and antioxidant activities of the products.

RevDate: 2022-07-27

Mustar S, N Ibrahim (2022)

A Sweeter Pill to Swallow: A Review of Honey Bees and Honey as a Source of Probiotic and Prebiotic Products.

Foods (Basel, Switzerland), 11(14): pii:foods11142102.

Honey bees and honey, have been the subject of study for decades due to their importance in improving health. At times, some of the probiotics may be transferred to the honey stored in the honeycomb. Consumers may benefit from consuming live-probiotics honey, which can aid in suppressing the reproduction of pathogens in their digestive system. Prebiotics, on the other hand, are mainly carbohydrates that promote the growth of native microflora probiotics in the digestive tract to maintain a healthy environment and improve the gut performance of the host. Therefore, this narrative review aims to present and analyze ten years' worth of information on the probiotic and prebiotic potential of honey bees and honey since not many review articles were found discussing this topic. Results showed that not many studies have been performed on the probiotic and prebiotic aspects of honey bees and honey. If further research is conducted, isolated probiotics from the bee's gut combined with honey's prebiotic properties can be manipulated as potential sources of probiotics and prebiotics for human and animal benefits since they appear to be interrelated and function in symbiosis.

RevDate: 2022-07-27

Kovaleva OV, Podlesnaya P, Sorokin M, et al (2022)

Macrophage Phenotype in Combination with Tumor Microbiome Composition Predicts RCC Patients' Survival: A Pilot Study.

Biomedicines, 10(7): pii:biomedicines10071516.

The identification of new prognostic markers of renal cell carcinoma (RCC) is an urgent problem in oncourology. To investigate the potential prognostic significance of tumor microbiome and stromal inflammatory markers, we studied a cohort of 66 patients with RCC (23 clear cell RCC, 19 papillary RCC and 24 chromophobe RCC). The microbiome was analyzed in tumor and normal tissue by 16S rRNA amplicon sequencing. Characterization of the tumor stroma was performed using immunohistochemistry. A significant difference in alpha diversity was demonstrated between normal kidney tissue and all types of RCC. Further, we demonstrated that the bacterial burden was higher in adjacent normal tissue than in a tumor. For the first time, we demonstrated a significant correlation between bacterial burden and the content of PU.1+ macrophages and CD66b+ neutrophils in kidney tumors. Tumors with high content of PU.1+ cells and CD66b+ cells in the stroma were characterized by a lower bacterial burden. In the tumors with high bacterial burden, the number of PU.1+ cells and CD66b+ was associated with a poor prognosis. The identified associations indicate the great prognostic potential of a combined tumor microbiome and stromal cell analysis.

RevDate: 2022-07-27
CmpDate: 2022-07-22

Yang Y, Nguyen M, Khetrapal V, et al (2022)

Within-host evolution of a gut pathobiont facilitates liver translocation.

Nature, 607(7919):563-570.

Gut commensal bacteria with the ability to translocate across the intestinal barrier can drive the development of diverse immune-mediated diseases1-4. However, the key factors that dictate bacterial translocation remain unclear. Recent studies have revealed that gut microbiota strains can adapt and evolve throughout the lifetime of the host5-9, raising the possibility that changes in individual commensal bacteria themselves over time may affect their propensity to elicit inflammatory disease. Here we show that within-host evolution of the model gut pathobiont Enterococcus gallinarum facilitates bacterial translocation and initiation of inflammation. Using a combination of in vivo experimental evolution and comparative genomics, we found that E. gallinarum diverges into independent lineages adapted to colonize either luminal or mucosal niches in the gut. Compared with ancestral and luminal E. gallinarum, mucosally adapted strains evade detection and clearance by the immune system, exhibit increased translocation to and survival within the mesenteric lymph nodes and liver, and induce increased intestinal and hepatic inflammation. Mechanistically, these changes in bacterial behaviour are associated with non-synonymous mutations or insertion-deletions in defined regulatory genes in E. gallinarum, altered microbial gene expression programs and remodelled cell wall structures. Lactobacillus reuteri also exhibited broadly similar patterns of divergent evolution and enhanced immune evasion in a monocolonization-based model of within-host evolution. Overall, these studies define within-host evolution as a critical regulator of commensal pathogenicity that provides a unique source of stochasticity in the development and progression of microbiota-driven disease.

RevDate: 2022-07-27
CmpDate: 2022-07-27

Wei J, Yang XK, Zhang SK, et al (2022)

Parallel metatranscriptome analysis reveals degradation of plant secondary metabolites by beetles and their gut symbionts.

Molecular ecology, 31(15):3999-4016.

Switching to a new host plant is a driving force for divergence and speciation in herbivorous insects. This process of incorporating a novel host plant into the diet may require a number of adaptations in the insect herbivores that allow them to consume host plant tissue that may contain toxic secondary chemicals. As a result, herbivorous insects are predicted to have evolved efficient ways to detoxify major plant defences and increase fitness by either relying on their own genomes or by recruiting other organisms such as microbial gut symbionts. In the present study we used parallel metatranscriptomic analyses of Altica flea beetles and their gut symbionts to explore the contributions of beetle detoxification mechanisms versus detoxification by their gut consortium. We compared the gut meta-transcriptomes of two sympatric Altica species that feed exclusively on different host plant species as well as their F1 hybrids that were fed one of the two host plant species. These comparisons revealed that gene expression patterns of Altica are dependent on both beetle species identity and diet. The community structure of gut symbionts was also dependent on the identity of the beetle species, and the gene expression patterns of the gut symbionts were significantly correlated with beetle species and plant diet. Some of the enriched genes identified in the beetles and gut symbionts are involved in the degradation of secondary metabolites produced by plants, suggesting that Altica flea beetles may use their gut microbiota to help them feed on and adapt to their host plants.

RevDate: 2022-07-26

Kageyama A, Suyama A, Kinoshita R, et al (2022)

Dynamic changes of intracellular zinc ion level during maturation, fertilization, activation, and development in mouse oocytes.

Animal science journal = Nihon chikusan Gakkaiho, 93(1):e13759.

Although it is well known that calcium oscillations are required for fertilization in all mammalian species studied to date, recent studies also showed the ejection of zinc into the extracellular milieu in a series of coordinated events, called "zinc spark," during mammalian fertilization. These results led us to the hypothesis that a zinc ion-dependent signal is important for oocyte maturation, fertilization (activation), and further embryonic development. In this study, we evaluated the amounts and localization of intracellular zinc ions during maturation, fertilization, activation, and embryonic development in mouse oocytes. Our results show that abundant zinc ions are present in both immature and mature oocytes. After in vitro fertilization, the amounts of zinc ions were dramatically decreased at the pronuclear (PN) stage. Artificial activation by cycloheximide, SrCl2 , and TPEN also reduced the amounts of zinc ions in the PN stage. On the other hand, PN embryos derived from sperm injection still showed high level of zinc ions. However, the amounts of zinc ions rapidly increased at the blastocysts regardless of activation method. We showed here that the amounts of zinc ions dramatically changed during maturation, fertilization, activation, and development in mouse oocytes.

RevDate: 2022-07-25

Van Hese I, Goossens K, Ampe B, et al (2022)

Exploring the microbial composition of Holstein Friesian and Belgian Blue colostrum in relation to the transfer of passive immunity.

Journal of dairy science pii:S0022-0302(22)00404-0 [Epub ahead of print].

For centuries, multicellular organisms have lived in symbiosis with microorganisms. The interaction with microorganisms has been shown to be very beneficial for humans and animals. During a natural birth, the initial inoculation with bacteria occurs when the neonate passes through the birth canal. Colostrum and milk intake are associated with the acquisition of a healthy gut flora. However, little is known about the microbial composition of bovine colostrum and the possible beneficial effects for the neonatal calf. In this prospective cohort study, the microbial composition of first-milking colostrum was analyzed in 62 Holstein Friesian (HF) and 46 Belgian Blue (BB) cows by performing amplicon sequencing of the bacterial V3-V4 region of the 16S rRNA gene. Calves received, 3 times, 2 L of their dam's colostrum within 24 h after birth. Associations between colostral microbial composition and its IgG concentration, as well as each calf's serum IgG levels, were analyzed. Colostrum samples were dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. The 10 most abundant genera in the complete data set were Acinetobacter (16.2%), Pseudomonas (15.1%), a genus belonging to the Enterobacteriaceae family (4.9%), Lactococcus (4.0%), Chryseobacterium (3.9%), Staphylococcus (3.6%), Proteus (1.9%), Streptococcus (1.8%), Enterococcus (1.7%), and Enhydrobacter (1.5%). The remaining genera (other than these top 10) accounted for 36.5% of the counts, and another 8.7% were unidentified. Bacterial diversity differed significantly between HF and BB samples. Within each breed, several genera were found to be differentially abundant between colostrum of different quality. Moreover, in HF, the bacterial composition of colostrum leading to low serum IgG levels in the calf differed from that of colostrum leading to high serum IgG levels. Results of the present study indicate that the microbes present in colostrum are associated with transfer of passive immunity in neonatal calves.

RevDate: 2022-07-26
CmpDate: 2022-07-26

Liebrenz K, Frare R, Gómez C, et al (2022)

Multiple ways to evade the bacteriostatic action of glyphosate in rhizobia include the mutation of the conserved serine 90 of the nitrogenase subunit NifH to alanine.

Research in microbiology, 173(6-7):103952.

The genome resequencing of spontaneous glyphosate-resistant mutants derived from the soybean inoculant E109 allowed identifying genes most likely associated with the uptake (gltL and cya) and metabolism (zigA and betA) of glyphosate, as well as with nitrogen fixation (nifH). Mutations in these genes reduce the lag phase and improve nodulation under glyphosate stress. In addition to providing glyphosate resistance, the amino acid exchange Ser90Ala in NifH increased the citrate synthase activity, growth rate and plant growth-promoting efficiency of E109 in the absence of glyphosate stress, suggesting roles for this site during both the free-living and symbiotic growth stages.

RevDate: 2022-07-25

Votta C, Fiorilli V, Haider I, et al (2022)

Zaxinone Synthase controls arbuscular mycorrhizal colonization level in rice.

The Plant journal : for cell and molecular biology [Epub ahead of print].

The rice carotenoid cleavage dioxygenase OsZAS was described to produce zaxinone, a novel plant-growth promoting apocarotenoid. A zas mutant line showed a reduced arbuscular mycorrhizal (AM) colonization but the mechanisms underlying this behavior are unknown. Here, we investigated how OsZAS and exogenous zaxinone treatment regulate mycorrhization. Micromolar exogenous supply of zaxinone rescued the root growth but not the mycorrhizal defects of the zas mutant and even reduced mycorrhization in wild type and zas genotypes. The zas line did not display an increase in strigolactones (SLs) level as observed in wild type plants at 7 day post inoculation with the AM fungus. Moreover, an exogenous treatment with the synthetic SLs analog, GR24, rescued the zas mutant mycorrhizal phenotype, indicating that the lower AM colonization rate of zas is due to a SLs deficiency at the early stages of the interaction and pointing out that, during this phase, OsZAS activity is required to induce SLs production, possibly mediated by the Dwarf14-Like (D14L) signaling pathway. OsZAS is expressed in arbuscule-containing cells and OsPT11prom::OsZAS transgenic lines, where OsZAS expression is driven by the OsPT11 promoter active in arbusculated cells, exhibit an increased mycorrhization compared to wild type. Overall, our results show that the genetic manipulation of OsZAS activity in planta leads to a different effect on the AM symbiosis from that of an exogenous zaxinone treatment and demonstrate that OsZAS controls AM colonization extent acting as a novel component of a regulatory network that involves SLs.

RevDate: 2022-07-25

Quilbé J, Nouwen N, Pervent M, et al (2022)

A mutant-based analysis of the establishment of Nod-independent symbiosis in the legume Aeschynomene evenia.

Plant physiology pii:6649624 [Epub ahead of print].

Intensive research on nitrogen-fixing symbiosis in two model legumes has uncovered the molecular mechanisms whereby rhizobial Nod factors activate a plant symbiotic signaling pathway that controls infection and nodule organogenesis. By constrast, the so-called Nod-independent symbiosis found between Aeschynomene evenia and photosynthetic bradyrhizobia, which does not involve Nod factor recognition nor infection thread formation, is less well known. To gain knowledge on how Nod-independent symbiosis is established, we conducted a phenotypic and molecular characterization of A. evenia lines carrying mutations in different nodulation genes. Besides investigating the effect of the mutations on rhizobial symbiosis, we examined their consequences on mycorrhizal symbiosis and in non-symbiotic conditions. Analysing allelic mutant series for AePOLLUX, AeCCaMK (Ca2+/calmodulin dependent kinase), AeCYCLOPS, AeNSP2 (nodulation signaling pathway 2), and AeNIN (nodule inception) demonstrated that these genes intervene at several stages of intercellular infection and during bacterial accommodation. We provide evidence that AeNSP2 has an additional nitrogen-dependent regulatory function in the formation of axillary root hairs at lateral root bases, which are rhizobia-colonized infection sites. Our investigation of the recently discovered symbiotic actor AeCRK (cysteine-rich receptor-like kinase) specified that it is not involved in mycorrhization; however, it is essential for both symbiotic signaling and early infection during nodulation. These findings provide important insights on the modus operandi of Nod-independent symbiosis and contribute to the general understanding of how rhizobial-legume symbioses are established by complementing the information acquired in model legumes.

RevDate: 2022-07-25

Landini L, Dadson P, Gallo F, et al (2022)

Microbiota in Anorexia Nervosa - Potential for Treatment.

Nutrition research reviews pii:S0954422422000130 [Epub ahead of print].

Anorexia nervosa (AN) is characterised by the restriction of energy intake in relation to energy needs and a significantly lowered body weight than normally expected, coupled with an intense fear of gaining weight. Treatment of AN is currently based on psychological and refeeding approaches, but their efficacy remains limited, since 40% of patients after ten years of medical care, still present symptoms of AN. The intestine hosts a large community of microorganisms, called the "microbiota", which live in symbiosis with the human host. The gut microbiota of a healthy human is dominated by bacteria from two phyla: Firmicutes and majorly Bacteroidetes. However, the proportion in their representation differs on an individual basis and depends on many external factors, such as medical treatment, geographical location, and hereditary, immunological and lifestyle factors. Drastic changes in dietary intake may profoundly impact the composition of the gut microbiota, and the resulting dysbiosis may play a part in the onset and/or maintenance of comorbidities associated with AN, such as gastrointestinal disorders, anxiety, and depression, as well as appetite dysregulation. Furthermore, studies have reported the presence of atypical intestinal microbial composition in patients with AN compared to healthy normal-weight controls. This review addresses the current knowledge about the role of the gut microbiota in the pathogenesis and treatment of AN. The review also focuses on the bidirectional interaction between the gastrointestinal tract and the central nervous system (microbiota-gut-brain axis), considering the potential use of the gut microbiota manipulation in the prevention and treatment of AN.

RevDate: 2022-07-25

Yin S, Wang Y, J Xu (2022)

Developing a Conceptual Partner Matching Framework for Digital Green Innovation of Agricultural High-End Equipment Manufacturing System Toward Agriculture 5.0: A Novel Niche Field Model Combined With Fuzzy VIKOR.

Frontiers in psychology, 13:924109.

Digital green innovation (DGI) is the core factor that affects the digitalization and decarbonization strategy of agricultural high-end equipment manufacturing (AHEM) system. Although AHEM enterprises actively cooperate with academic research institutes to develop agricultural high-end equipment, there are many obstacles in the process of DGI. Moreover, the integration of digital technology and green innovation from the perspective of partner matching for the AHEM system has not been fully introduced in current literature. Hence, this study aimed to (i) establish a suitable framework system for the AHEM system in general, (ii) quantify the selection of DGI by academic research institutions based on niche theory, and (iii) propose an extended niche field model combined with fuzzy VIKOR model. First, a theoretical framework consisting of three core elements of technology superposition, mutual benefit, and mutual trust, and technological complementarity was constructed based on niche intensity and niche overlap degree. DGI ability superposition of technology, mutual trust, and technical complementarity are beneficial for transferring DGI knowledge from academic research institutes to the AHEM industry. Second, triangle fuzzy number and prospect theory combined with the VIKOR method were introduced into the field theory to construct the complementary field model of DGI resources. The niche field model has been successfully applied to practical cases to illustrate how the model can be implemented to solve the problem of DGI partner selection. Third, the results of a case study show that the criteria framework and the niche field model can be applied to real-world partner selection for AHEM enterprises. This study not only puts forward the standard framework of niche fitness evaluation based on niche theory but also establishes the niche domain model of innovation partner selection management based on niche theory. The standard framework and novel niche field model can help enterprises to carry out digital green innovation in the development of high-end agricultural equipment. The study has the following theoretical and practical implications: (i) constructing a criteria framework based on niche theory; (ii) developing a novel niche field model for DGI partner selection of AHEM enterprises; and (iii) assisting AHEM enterprises to perform DGI practice.

RevDate: 2022-07-25

Gao T, Liu X, Tan K, et al (2022)

Introducing melatonin to the horticultural industry: physiological roles, potential applications, and challenges.

Horticulture research, 9:uhac094 pii:uhac094.

Melatonin (N-acetyl-5-methoxytryptamine) is an emerging biomolecule that influences horticultural crop growth, flowering, fruit ripening, postharvest preservation, and stress protection. It functions as a plant growth regulator, preservative and antimicrobial agent to promote seed germination, regulate root system architecture, influence flowering and pollen germination, promote fruit production, ensure postharvest preservation, and increase resistance to abiotic and biotic stresses. Here, we highlight the potential applications of melatonin in multiple aspects of horticulture, including molecular breeding, vegetative reproduction, production of virus-free plants, food safety, and horticultural crop processing. We also discuss its effects on parthenocarpy, autophagy, and arbuscular mycorrhizal symbiosis. Together, these many features contribute to the promise of melatonin for improving horticultural crop production and food safety. Effective translation of melatonin to the horticultural industry requires an understanding of the challenges associated with its uses, including the development of economically viable sources.

RevDate: 2022-07-25
CmpDate: 2022-07-25

Freitas S, Castelo-Branco R, Wenzel-Storjohann A, et al (2022)

Structure and Biosynthesis of Desmamides A-C, Lipoglycopeptides from the Endophytic Cyanobacterium Desmonostoc muscorum LEGE 12446.

Journal of natural products, 85(7):1704-1714.

Certain cyanobacteria of the secondary metabolite-rich order Nostocales can establish permanent symbioses with a large number of cycads, by accumulating in their coralloid roots and shifting their metabolism to dinitrogen fixation. Here, we report the discovery of two new lipoglycopeptides, desmamides A (1) and B (2), together with their aglycone desmamide C (3), from the nostocalean cyanobacterium Desmonostoc muscorum LEGE 12446 isolated from a cycad (Cycas revoluta) coralloid root. The chemical structures of the compounds were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The desmamides are decapeptides featuring O-glycosylation of tyrosine (in 1 and 2) and an unusual 3,5-dihydroxy-2-methyldecanoic acid residue. The biosynthesis of the desmamides was studied by substrate incubation experiments and bioinformatics. We describe herein the dsm biosynthetic gene cluster and propose it to be associated with desmamide production. The discovery of this class of very abundant (>1.5% d.w.) bacterial lipoglycopeptides paves the way for exploration of their potential role in root endosymbiosis.

RevDate: 2022-07-25
CmpDate: 2022-07-25

Suito T, Nagao K, Juni N, et al (2022)

Regulation of thermoregulatory behavior by commensal bacteria in Drosophila.

Bioscience, biotechnology, and biochemistry, 86(8):1060-1070.

Commensal bacteria affect many aspects of host physiology. In this study, we focused on the role of commensal bacteria in the thermoregulatory behavior of Drosophila melanogaster. We demonstrated that the elimination of commensal bacteria caused an increase in the preferred temperature of Drosophila third-instar larvae without affecting the activity of transient receptor potential ankyrin 1 (TRPA1)-expressing thermosensitive neurons. We isolated eight bacterial strains from the gut and culture medium of conventionally reared larvae and found that the preferred temperature of the larvae was decreased by mono-association with Lactobacillus plantarum or Corynebacterium nuruki. Mono-association with these bacteria did not affect the indices of energy metabolism such as ATP and glucose levels of larvae, which are closely linked to thermoregulation in animals. Thus, we show a novel role for commensal bacteria in host thermoregulation and identify two bacterial species that affect thermoregulatory behavior in Drosophila.

RevDate: 2022-07-25
CmpDate: 2022-07-25

Schneider SA, Sodano J, JS LaPolla (2022)

Distinguishing Symbiotic Partners of Acropyga Ants from Free-Living Soil Inhabitants.

Neotropical entomology, 51(4):641-647.

The fruitful study of associations between ants and scale insects yields insight into the mechanisms that shape these symbioses. Field collections provide the basic information linking partnered species, and as such it is critical that collection techniques from the field reflect true species-to-species partnerships in the published literature. It is equally critical that such practices limit the potential for mistaking free-living "neighbors" for symbiotic partners and publishing erroneous associations. This article describes a protocol for collecting subterranean scale insects and associated Acropyga Roger ants, which relies upon the activity of worker ants to sort and distinguish symbionts from free-living scale insects that happen to live near the colony. By collecting samples of ants and scales into nest boxes and allowing a resting period of several hours, worker ants will gather symbiotic partners into dense, protected clusters in which symbionts are actively tended. Free-living scale insects neighboring the colony can be collected from soil along with colony samples, but these free-living individuals are excluded from protective clusters and ignored by workers. Following confirmation of ant attendance, true symbiotic partners can be confidently collected, preserved, and recorded for future study. We illustrate the value of employing this collection protocol using a case study from Peru.

RevDate: 2022-07-22

Guzmán-Cornejo L, Pacheco L, Camargo-Ricalde SL, et al (2022)

Endorhizal fungal symbiosis in lycophytes and metal(loid)-accumulating ferns growing naturally in mine wastes in Mexico.

International journal of phytoremediation [Epub ahead of print].

Ferns and lycophytes are pioneer plants that can be useful for revegetation. Their natural distribution and interaction with soil fungal endophytes can increase plant fitness but have received little attention. This study aimed to identify these plant species in mine wastes, and determine colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE). The pseudo-total and diethylenetriamine pentaacetic acid (DTPA)-extractable rhizosphere concentrations of As, Cu, Cd, Pb, and Zn, bioavailability index (BI), and bioconcentration factor (BCF) were analyzed. Six ferns and one lycophyte were identified. Arsenic and metal concentrations were high, which were plant and site-dependent. All species showed hyperaccumulation of As in fronds, especially Argyrochosma formosa (2,883) and Notholaena affinis (2,160) had the highest concentrations (mg kg-1). All plants were colonized by AMF (3%-24%) and DSE (2%-33%). Astrolepis sinuata and Myriopteris notholaenoides had the maximum colonization by AMF and A. formosa by DSE. This study identifies for the first time five ferns and one lycophyte species on mine wastes, their As hyperaccumulation capacity and the simultaneous fungal colonization by AMF and DSE. These are relevant plant traits for phytoremediation. However, fungal identification and the role colonization by AMF and DSE requires full analysis.

RevDate: 2022-07-23

Goes AC, Kooij PW, Culot L, et al (2022)

Distinct and enhanced hygienic responses of a leaf-cutting ant toward repeated fungi exposures.

Ecology and evolution, 12(7):e9112.

Leaf-cutting ants and their fungal crops are a textbook example of a long-term obligatory mutualism. Many microbes continuously enter their nest containing the fungal cultivars, destabilizing the symbiosis and, in some cases, outcompeting the mutualistic partners. Preferably, the ant workers should distinguish between different microorganisms to respond according to their threat level and recurrence in the colony. To address these assumptions, we investigated how workers of Atta sexdens sanitize their fungal crop toward five different fungi commonly isolated from the fungus gardens: Escovopsis sp., Fusarium oxysporum, Metarhizium anisopliae, Trichoderma spirale, and Syncephalastrum sp. Also, to investigate the plasticity of these responses toward recurrences of these fungi, we exposed the colonies with each fungus three times fourteen days apart. As expected, intensities in sanitization differed according to the fungal species. Ants significantly groom their fungal crop more toward F. oxysporum, M. anisopliae, and Syncephalastrum sp. than toward Escovopsis sp. and T. spirale. Weeding, self-, and allogrooming were observed in less frequency than fungus grooming in all cases. Moreover, we detected a significant increase in the overall responses after repeated exposures for each fungus, except for Escovopsis sp. Our results indicate that A. sexdens workers are able to distinguish between different fungi and apply distinct responses to remove these from the fungus gardens. Our findings also suggest that successive exposures to the same antagonist increase hygiene, indicating plasticity of ant colonies' defenses to previously encountered pathogens.

RevDate: 2022-07-23

Thirkell TJ, Grimmer M, James L, et al (2022)

Variation in mycorrhizal growth response among a spring wheat mapping population shows potential to breed for symbiotic benefit.

Food and energy security, 11(2):e370.

All cereal crops engage in arbuscular mycorrhizal symbioses which can have profound, but sometimes deleterious, effects on plant nutrient acquisition and growth. The mechanisms underlying variable mycorrhizal responsiveness in cereals are not well characterised or understood. Adapting crops to realise mycorrhizal benefits could reduce fertiliser requirements and improve crop nutrition where fertiliser is unavailable. We conducted a phenotype screen in wheat (Triticum aestivum L.), using 99 lines of an Avalon × Cadenza doubled-haploid mapping population. Plants were grown with or without a mixed inoculum containing 5 species of arbuscular mycorrhizal fungi. Plant growth, nutrition and mycorrhizal colonisation were quantified. Plant growth response to inoculation was remarkably varied among lines, ranging from more than 30% decrease to 80% increase in shoot biomass. Mycorrhizal plants did not suffer decreasing shoot phosphorus concentration with increasing biomass as observed in their non-mycorrhizal counterparts. The extent to which mycorrhizal inoculation was beneficial for individual lines was negatively correlated with shoot biomass in the non-mycorrhizal state but was not correlated with the extent of mycorrhizal colonisation of roots. Highly variable mycorrhizal responsiveness among closely related wheat lines and the identification of several QTL for these traits suggests the potential to breed for improved crop-mycorrhizal symbiosis.

RevDate: 2022-07-23

Jensen GG, Fiévet R, JO Haerter (2022)

The Diurnal Path to Persistent Convective Self-Aggregation.

Journal of advances in modeling earth systems, 14(5):e2021MS002923.

Clustering of tropical thunderstorms constitutes an important climate feedback because it influences the radiative balance. Convective self-aggregation (CSA) is a profound modeling paradigm for explaining the clustering of tropical oceanic thunderstorms. However, CSA is hampered in the realistic limit of fine model resolution when cold pools-dense air masses beneath thunderstorm clouds-are well-resolved. Studies on CSA usually assume the surface temperature to be constant, despite realistic surface temperatures varying significantly between night and day. Here we mimic the diurnal cycle in cloud-resolving numerical experiments by prescribing a surface temperature oscillation. Our simulations show that the diurnal cycle enables CSA at fine resolutions, and that the process is even accelerated by finer resolutions. We attribute these findings to vigorous combined cold pools emerging in symbiosis with mesoscale convective systems. Such cold pools suppress buoyancy in extended regions (∼100 km) and enable the formation of persistent dry patches. Our findings help clarify how the tropical cloud field forms sustained clusters under the diurnal forcing and may have implications for the origin of extreme thunderstorm rainfall and tropical cyclones.

RevDate: 2022-07-22
CmpDate: 2022-07-22

Pecrix Y, Sallet E, Moreau S, et al (2022)

DNA demethylation and hypermethylation are both required for late nodule development in Medicago.

Nature plants, 8(7):741-749.

Plant epigenetic regulations are involved in transposable element silencing, developmental processes and responses to the environment1-7. They often involve modifications of DNA methylation, particularly through the DEMETER (DME) demethylase family and RNA-dependent DNA methylation (RdDM)8. Root nodules host rhizobia that can fix atmospheric nitrogen for the plant's benefit in nitrogen-poor soils. The development of indeterminate nodules, as in Medicago truncatula, involves successive waves of gene activation9-12, control of which raises interesting questions. Using laser capture microdissection (LCM) coupled to RNA-sequencing (SYMbiMICS data11), we previously identified 4,309 genes (termed NDD) activated in the nodule differentiation and nitrogen fixation zones, 36% of which belong to co-regulated genomic regions dubbed symbiotic islands13. We found MtDME to be upregulated in the differentiation zone and required for nodule development, and we identified 474 differentially methylated regions hypomethylated in the nodule by analysing ~2% of the genome4. Here, we coupled LCM and whole-genome bisulfite sequencing for a comprehensive view of DNA methylation, integrated with gene expression at the tissue level. Furthermore, using CRISPR-Cas9 mutagenesis of MtDRM2, we showed the importance of RdDM for CHH hypermethylation and nodule development. We thus proposed a model of DNA methylation dynamics during nodule development.

RevDate: 2022-07-21

Liao D, Sun C, Liang H, et al (2022)

SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato.

The Plant cell pii:6648108 [Epub ahead of print].

Forming mutualistic symbioses with arbuscular mycorrhizae (AMs) improves the acquisition of mineral nutrients for most terrestrial plants. However, the formation of AM symbiosis usually occurs under phosphate (Pi)-deficient conditions. Here, we identify SlSPX1 (SYG1 (suppressor of yeast GPA1) /Pho81(phosphate 81)/XPR1 (xenotropic and polytropic retrovirus receptor 1) as the major repressor of the AM symbiosis in tomato (Solanum lycopersicum) under phosphate-replete conditions. Loss of SlSPX1 function promotes direct Pi uptake and enhances AM colonization under phosphate-replete conditions. We determine that SlSPX1 integrates Pi signaling and AM symbiosis by directly interacting with a set of arbuscule-induced SlPHR proteins (SlPHR1, SlPHR4, SlPHR10, SlPHR11, and SlPHR12). The association with SlSPX1 represses the ability of SlPHR proteins to activate AM marker genes required for the arbuscular mycorrhizal symbiosis. SlPHR proteins exhibit functional redundancy, and no defective AM symbiosis was detected in the single mutant of SlPHR proteins. However, silencing SlPHR4 in the Slphr1 mutant background led to reduced AM colonization. Therefore, our results support the conclusion that SlSPX1-SlPHRs form a Pi-sensing module to coordinate the AM symbiosis under different Pi-availability conditions.

RevDate: 2022-07-21

Voronin D, BL Makepeace (2022)

Symbionts on the Brain: How Wolbachia Is Strictly Corralled in Some Neotropical Drosophila spp.

mBio [Epub ahead of print].

Wolbachia is a heritable alphaproteobacterial symbiont of arthropods and nematodes, famous for its repertoire of host manipulations, including cytoplasmic incompatibility. To be vertically transmitted, Wolbachia must efficiently colonize the female germ line, although somatic tissues outside the gonads are also infected. In Drosophila spp., Wolbachia is usually distributed systemically in multiple regions of the adult fly, but in some neotropical hosts, Wolbachia's only somatic niches are cerebral bacteriocyte-like structures and the ovarian follicle cells. In their recent article, Strunov and colleagues (A. Strunov, K. Schmidt, M. Kapun, and W. J. Miller. mBio 13:e03863-21, 2022, compared the development of Drosophila spp. with systemic or restricted infections and demonstrated that the restricted pattern is determined in early embryogenesis by an apparently novel autophagic process, involving intimate interactions of Wolbachia with the endoplasmic reticulum. This work has implications not only for the evolution of neotropical Drosophila spp. but also for our understanding of how Wolbachia infections are controlled in other native or artificial hosts.

RevDate: 2022-07-21

Song Y, Pfeiffer F, Radek R, et al (2022)

Comparative Analysis of Brucepastera parasyntrophica gen. nov., sp. nov. and Teretinema zuelzerae gen. nov., comb. nov. (Treponemataceae) Reveals the Importance of Interspecies Hydrogen Transfer in the Energy Metabolism of Spirochetes.

Applied and environmental microbiology [Epub ahead of print].

Most members of the family Treponemataceae (Spirochaetales) are associated with vertebrate hosts. However, a diverse clade of uncultured, putatively free-living treponemes comprising several genus-level lineages is present in other anoxic environments. The only cultivated representative to date is Treponema zuelzerae, isolated from freshwater mud. Here, we describe the isolation of strain RmG11 from the intestinal tract of cockroaches. The strain represents a novel genus-level lineage of Treponemataceae and is metabolically distinct from T. zuelzerae. While T. zuelzerae grows well on various sugars, forming acetate and H2 as major fermentation products, strain RmG11 grew poorly on glucose, maltose, and starch, forming mainly ethanol and only small amounts of acetate and H2. In contrast to the growth of T. zuelzerae, that of strain RmG11 was strongly inhibited at high H2 partial pressures but improved considerably when H2 was removed from the headspace. Cocultures of strain RmG11 with the H2-consuming Methanospirillum hungatei produced acetate and methane but no ethanol. Comparative genomic analysis revealed that strain RmG11 possesses only a single, electron-confurcating hydrogenase that forms H2 from NADH and reduced ferredoxin, whereas T. zuelzerae also possesses a second, ferredoxin-dependent hydrogenase that allows the thermodynamically more favorable formation of H2 from ferredoxin via the Rnf complex. In addition, we found that T. zuelzerae utilizes xylan and possesses the genomic potential to degrade other plant polysaccharides. Based on phenotypic and phylogenomic evidence, we describe strain RmG11 as Brucepastera parasyntrophica gen. nov., sp. nov. and Treponema zuelzerae as Teretinema zuelzerae gen. nov., comb. nov. IMPORTANCE Spirochetes are widely distributed in various anoxic environments and commonly form molecular hydrogen as a major fermentation product. Here, we show that two closely related members of the family Treponemataceae differ strongly in their sensitivity to high hydrogen partial pressure, and we explain the metabolic mechanisms that cause these differences by comparative genome analysis. We demonstrate a strong boost in the growth of the hydrogen-sensitive strain and a shift in its fermentation products to acetate during cocultivation with a H2-utilizing methanogen. Our results add a hitherto unrecognized facet to the fermentative metabolism of spirochetes and also underscore the importance of interspecies hydrogen transfer in not-obligately-syntrophic interactions among fermentative and hydrogenotrophic guilds in anoxic environments.

RevDate: 2022-07-21

Wang P, Li M, Dong L, et al (2022)

Comparative Genomics of Thaumarchaeota From Deep-Sea Sponges Reveal Their Niche Adaptation.

Frontiers in microbiology, 13:869834.

Thaumarchaeota account for a large portion of microbial symbionts in deep-sea sponges and are even dominant in some cases. In this study, we investigated three new sponge-associated Thaumarchaeota from the deep West Pacific Ocean. Thaumarchaeota were found to be the most dominant phylum in this sponge by both prokaryotic 16S rRNA amplicons and metagenomic sequencing. Fifty-seven published Thaumarchaeota genomes from sponges and other habitats were included for genomic comparison. Similar to shallow sponge-associated Thaumarchaeota, those Thaumarchaeota in deep-sea sponges have extended genome sizes and lower coding density compared with their free-living lineages. Thaumarchaeota in deep-sea sponges were specifically enriched in genes related to stress adapting, symbiotic adhesion and stability, host-microbe interaction and protein transportation. The genes involved in defense mechanisms, such as the restriction-modification system, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, and toxin-antitoxin system were commonly enriched in both shallow and deep sponge-associated Thaumarchaeota. Our study demonstrates the significant effects of both depth and symbiosis on forming genomic characteristics of Thaumarchaeota, and provides novel insights into their niche adaptation in deep-sea sponges.

RevDate: 2022-07-21
CmpDate: 2022-07-21

Arifin AR, Phillips RD, Weinstein AM, et al (2022)

Cryptostylis species (Orchidaceae) from a broad geographic and habitat range associate with a phylogenetically narrow lineage of Tulasnellaceae fungi.

Fungal biology, 126(8):534-546.

While many Australian terrestrial orchids have highly specialized mycorrhizal associations, we tested the hypothesis that the geographically widespread orchid genus Cryptostylis associates with a diversity of fungal species. Using fungal isolation and molecular approaches, we investigated the mycorrhizal associations of five Australian Cryptostylis species (27 sites sampled) and included limited sampling from three Asiatic Cryptostylis species (two sites). Like related orchid genera, Tulasnellaceae formed the main fungal associations of the Cryptostylis species we sampled, although some ectomycorrhizal, ericoid and saprotrophic fungi were detected infrequently. Each species of Australian Cryptostylis associated with three to seven Tulasnella Operational Taxonomic Units (OTUs), except for C. hunteriana where only one Tulasnella OTU was detected. In total, eleven Tulasnella OTUs associated with Australian Cryptostylis. The Asiatic Cryptostylis associated with four different Tulasnella OTUs belonging to the same lineage as the Australian species. While five Tulasnella OTUs (T. australiensis, T. prima, T. warcupii, T. densa, and T. punctata) were used by multiple species of Australian Cryptostylis, the most commonly used OTU differed between orchid species. The association with different Tulasnella fungi by Cryptostylis species co-occurring at the same site suggests that in any given environmental condition, Cryptostylis species may intrinsically favour different fungal OTUs.

RevDate: 2022-07-21
CmpDate: 2022-07-21

Rueger T, Bhardwaj AK, Turner E, et al (2022)

Vertebrate growth plasticity in response to variation in a mutualistic interaction.

Scientific reports, 12(1):11238.

Vertebrate growth can be phenotypically plastic in response to predator-prey and competitive interactions. It is unknown however, if it can be plastic in response to mutualistic interactions. Here we investigate plasticity of vertebrate growth in response to variation in mutualistic interactions, using clown anemonefish and their anemone hosts. In the wild, there is a positive correlation between the size of the fish and the size of the anemone, but the cause of this correlation is unknown. Plausible hypotheses are that fish exhibit growth plasticity in response to variation in food or space provided by the host. In the lab, we pair individuals with real anemones of various sizes and show that fish on larger anemones grow faster than fish on smaller anemones. By feeding the fish a constant food ration, we exclude variation in food availability as a cause. By pairing juveniles with artificial anemones of various sizes, we exclude variation in space availability as a single cause. We argue that variation in space availability in conjunction with host cues cause the variability in fish growth. By adjusting their growth, anemonefish likely maximize their reproductive value given their anemone context. More generally, we demonstrate vertebrate growth plasticity in response to variation in mutualistic interactions.

RevDate: 2022-07-20

Tang YJ, Zhou DY, Dai J, et al (2022)

Potential Specificity Between Mycorrhizal Fungi Isolated from Widespread Dendrobium spp. and Rare D. huoshanense Seeds.

Current microbiology, 79(9):264.

In nature, orchid seed germination and seedling development depend on compatible mycorrhizal fungi. Mycorrhizal generalist and specificity affect the orchid distribution and rarity. Here, we investigated the specificity toward fungi in the rare D. huoshanense by mycorrhizal fungal isolation and symbiotic germination in vitro. Twenty mycorrhizal fungal strains were isolated from the roots of adult Dendrobium spp. (six and 12 strains from rare D. huoshanense and widespread D. officinale, respectively, and two strains from D. nobile and D. moniliforme, respectively) and 13 strains belong to Tulasnellaceae and seven strains belong to Serendipitaceae. Germination trials in vitro revealed that all 20 tested fungal strains can stimulate seed germination of D. huoshanense, but only nine strains (~ 50%) can support it up to the seedling stage. This finding indicates that generalistic fungi are important for early germination, but only a few can maintain a symbiosis with host in seedling stage. Thus, a shift of the microbial community from seedling to mature stage probably narrows the D. huoshanense distribution range. In addition, to further understand the relationship between the fungal capability to promote seed germination and fungal enzyme activity, we screened the laccase and pectase activity. The results showed that the two enzymes activities of fungi cannot be directly correlated with their germination-promoting activities. Understanding the host specificity degree toward fungi can help to better interpret the limited geographic distribution of D. huoshanense and provides opportunities for in situ and ex situ conservation and reintroduction programs.

RevDate: 2022-07-20

Masson F, Rommelaere S, Schüpfer F, et al (2022)

Disproportionate investment in Spiralin B production limits in-host growth and favors the vertical transmission of Spiroplasma insect endosymbionts.

Proceedings of the National Academy of Sciences of the United States of America, 119(30):e2208461119.

Insects frequently harbor endosymbionts, which are bacteria housed within host tissues. These associations are stably maintained over evolutionary timescales through vertical transmission of endosymbionts from host mothers to their offspring. Some endosymbionts manipulate host reproduction to facilitate spread within natural populations. Consequently, such infections have major impacts on insect physiology and evolution. However, technical hurdles have limited our understanding of the molecular mechanisms underlying such insect-endosymbiont interactions. Here, we investigate the nutritional interactions between endosymbiotic partners using the tractable insect Drosophila melanogaster and its natural endosymbiont Spiroplasma poulsonii. Using a combination of functional assays, metabolomics, and proteomics, we show that the abundance and amino acid composition of a single Spiroplasma membrane lectin, Spiralin B (SpiB), dictates the amino acid requirements of the endosymbiont and determines its proliferation within host tissues. Ectopically increasing SpiB levels in host tissues disrupts localization of endosymbionts in the fly egg chambers and decreases vertical transmission. We find that SpiB is likely to be required by the endosymbiont to enter host oocytes, which may explain the massive investment of S. poulsonii in SpiB synthesis. SpiB both permits vertical transmission of the symbiont and limits its growth in nutrient-limiting conditions for the host; therefore, a single protein plays a pivotal role in ensuring durability of the interaction in a variable environment.

RevDate: 2022-07-20

Batstone RT, Burghardt LT, KD Heath (2022)

Phenotypic and genomic signatures of interspecies cooperation and conflict in naturally occurring isolates of a model plant symbiont.

Proceedings. Biological sciences, 289(1978):20220477.

Given the need to predict the outcomes of (co)evolution in host-associated microbiomes, whether microbial and host fitnesses tend to trade-off, generating conflict, remains a pressing question. Examining the relationships between host and microbe fitness proxies at both the phenotypic and genomic levels can illuminate the mechanisms underlying interspecies cooperation and conflict. We examined naturally occurring genetic variation in 191 strains of the model microbial symbiont Sinorhizobium meliloti, paired with each of two host Medicago truncatula genotypes in single- or multi-strain experiments to determine how multiple proxies of microbial and host fitness were related to one another and test key predictions about mutualism evolution at the genomic scale, while also addressing the challenge of measuring microbial fitness. We found little evidence for interspecies fitness conflict; loci tended to have concordant effects on both microbe and host fitnesses, even in environments with multiple co-occurring strains. Our results emphasize the importance of quantifying microbial relative fitness for understanding microbiome evolution and thus harnessing microbiomes to improve host fitness. Additionally, we find that mutualistic coevolution between hosts and microbes acts to maintain, rather than erode, genetic diversity, potentially explaining why variation in mutualism traits persists in nature.

RevDate: 2022-07-20

Zheng Z, Zhu Y, Qiu F, et al (2022)

Coupling Relationship Among Technological Innovation, Industrial Transformation and Environmental Efficiency: A Case Study of the Huaihai Economic Zone, China.

Chinese geographical science, 32(4):686-706.

The 14th Five-Year Plan period is a critical period for China to achieve high-quality development. Based on super-efficiency slacks-based measure (SBM) model, grey-related analysis (GRA) and other models, this paper studies the heterogeneity of the coupling relationship among technological innovation, industrial transformation and environmental efficiency in the Huaihai Economic Zone during the period of 2005-2019. In addition, it analyzes the coupling mechanism of single and binary systems to the ternary system, which is of great significance for the collaborative symbiosis among systems. The findings are as follows. 1) The technological innovation, industrial transformation and environmental efficiency (TIE) systems of the Huaihai Economic Zone had significant spatial-temporal heterogeneity. Although their evaluation value fluctuated, the development trends are all positive. Ultimately, technological innovation is characterized by being high in the northeast and low in the southwest around Xuzhou, while other systems are relatively staggered in space. 2) The coupling of TIE systems is in transition, lack of orderly integration and benign interaction. However, the developing trend of interaction is also upward, and a spatial pattern driven by Xuzhou and Linyi as the dual cores has gradually formed. Moreover, the coupling is mostly manifested as outdated technological innovation and industrial transformation. Except for the final coordination of regenerative cities, the other resource types are all in transition. Cities in all traffic locations are still in transition. The overall system interaction of cities on Longhai Line (Lanzhou-Lianyungang Railway) is relatively optimal, and cities on Xinshi Line (Xinxiang-Rizhao Railway) are accelerating toward synergy. 3) The coupling status of TIE systems depends on the development of the single system and the interaction of the binary (2E) system. The coupling is closely related to technological innovation and Technology-Industry system, and is hindered by the inefficient interaction of Technology-Environment system. Specifically, the synergy of regenerative cities is attributed to the advantage of a single system and the effective integration of 2E systems. Beneficial from the advantages of environmental efficiency, the cities on Xinshi Line promote the synergy of the 2E and TIE systems. Therefore, while the Huaihai Economic Zone stimulates the development potential of the single and 2E systems, it is necessary to amplify the superimposition effect of systems in accordance on the basis of resource and location.

RevDate: 2022-07-21

Bhatia K, Misra P, Soe YN, et al (2022)

A pilot study on DNA hypermethylation status in promoter region of P16 gene in patients with sporadic breast cancer.

Medical journal, Armed Forces India, 78(3):322-326.

Background: Epigenetic modification of cancer-related genes plays a role over and above their genetic alterations and contributes to the tumor initiation and progression of breast cancer. Promoter methylation of tumor suppressor genes is one such epigenetic modification, which can be potential biomarker. In this study, promoter methylation status of p16 gene was studied in blood samples of patients with breast carcinoma.

Methods: Seventy-five patients, freshly diagnosed with carcinoma of breast and 20 age and sex matched healthy control subjects were recruited for the study. DNA extracted from EDTA blood sample was bisulfite converted and subjected to methylation-specific PCR to amplify the p16 promoter region.

Results: Out of 75 patients, 25 (33%) patients showed hypermethylation in promoter region of p16 gene, which was statistically significant in comparison with the control group (p < 0.05). In subgroup analysis, lymph node involvement, cancer grade, and histopathological finding did not show any difference with methylation status of p16 promoter.

Conclusion: Significant hypermethylation of p16 promoter region in the blood of histopathologically proven cases of breast cancer was observed suggesting promoter hypermethylation of p16 may be a possible mechanism accounting for sporadic carcinoma of breast.

RevDate: 2022-07-20

Narvaez P, Morais RA, Vaughan DB, et al (2022)

Cleaner fish are potential super-spreaders.

The Journal of experimental biology pii:276034 [Epub ahead of print].

Cleaning symbiosis is critical for maintaining healthy biological communities in tropical marine ecosystems. However, potential negative impacts of mutualism, such as the transmission of pathogens and parasites during cleaning interactions, have rarely been evaluated. Here, we investigated whether the dedicated bluestreak cleaner wrasse Labroides dimidiatus, is susceptible to, and can transmit generalist ectoparasites between client fish. In laboratory experiments, L. dimidiatus were exposed to infective stages of three generalist ectoparasite species with contrasting life-histories. Labroides dimidiatus were susceptible to infection by the gnathiid isopod, Gnathia aureamaculosa, but significantly less susceptible to the ciliate protozoan, Cryptocaryon irritans, and the monogenean flatworm, Neobenedenia girellae, compared to control host species (Coris batuensis or Lates calcarifer). The potential for parasite transmission from a client fish to the cleaner fish was simulated using experimentally transplanted mobile adult (i.e., egg-producing) monogenean flatworms on L. dimidiatus. Parasites remained attached to cleaners for an average of two days, during which parasite egg production continued, but was reduced compared to control fish. Over this timespan, a wild cleaner may engage in several thousand cleaning interactions, providing numerous opportunities for mobile parasites to exploit cleaners as vectors. Our study provides the first experimental evidence that L. dimidiatus exhibits resistance to infective stages of some parasites yet has the potential to temporarily transport adult parasites. We propose that some parasites that evade being eaten by cleaner fish could exploit cleaning interactions as a mechanism for transmission and spread.

RevDate: 2022-07-21

Boubakri H, Chihaoui SA, Najjar E, et al (2022)

Comprehensive identification, evolutionary patterns and the divergent response of PRX genes in Phaseolus vulgaris under biotic and abiotic interactions.

3 Biotech, 12(8):175.

Peroxiredoxins (Prxs) are novel cysteine-based peroxidases which are involved in protecting cells from oxidative damage by catalyzing the reduction of different peroxides. The present study addressed, for the first time, genome-wide identification, evolutionary patterns and expression dynamics of Phaseolus vulgaris Prx gene family (PvPrx). Nine Prx proteins were identified in P. vulgaris based on homology searches. The phylogeny analysis of Prxs from seven plant species revealed that Prx proteins can be clustered into four groups (1C-Prx, 2C-Prxs, PrxQ and type II Prxs). Both tandem and segmental duplication contributed to PvPrx gene family expansion. Intragenic reorganizations including gain/loss of exon/intron and insertions/deletions have also contributed to PvPrx gene diversification. The collinearity analysis revealed the presence of some orthologous Prx gene pairs between A. thaliana and P. vulgaris genomes. The Ka/Ks ratio indicated that two of the three PvPrx duplicated gene pairs have undergone a purifying selection. Redundant stress-related cis-acting elements were also found in the promoters of most PvPrx genes. RT q-PCR analysis revealed an upregulation of key PvPrx members in response to symbiosis and different abiotic factors. The upregulation of targeted PvPrx members, particularly in leaves exposed to salinity or drought, was accompanied by an accumulation of hydrogen peroxide (H2O2). When exogenously applied, H2O2 modulated almost all PvPrx genes, suggesting a potential H2O2-scavenging role for these proteins. Collectively, our analysis provided valuable information for further functional analysis of key PvPrx members to improve common bean stress tolerance and/or its symbiotic performance.

Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03246-8.

RevDate: 2022-07-21
CmpDate: 2022-07-21

Zhang R, Liu X, C Wei (2022)

Dynamic analysis of stochastic delay mutualistic system of leaf-cutter ants with stage structure and their fungus garden.

Journal of biological dynamics, 16(1):565-584.

In this paper, we propose a stochastic delay mutualistic model of leaf-cutter ants with stage structure and their fungus garden, in which we explore how the discrete delay and white noise affect the dynamic of the population system. The existence and uniqueness of global positive solution are proved, and the asymptotic behaviours of the stochastic model around the positive equilibrium point of the deterministic model are also investigated. Furthermore, the sufficient conditions for the persistence of the population are established. Finally, some numerical simulations are performed to show the effect of random environmental fluctuation on the model.

RevDate: 2022-07-19
CmpDate: 2022-07-19

Kozieł M, Kalita M, M Janczarek (2022)

Genetic diversity of microsymbionts nodulating Trifolium pratense in subpolar and temperate climate regions.

Scientific reports, 12(1):12144.

Rhizobia are soil-borne bacteria forming symbiotic associations with legumes and fixing atmospheric dinitrogen. The nitrogen-fixation potential depends on the type of host plants and microsymbionts as well as environmental factors that affect the distribution of rhizobia. In this study, we compared genetic diversity of bacteria isolated from root nodules of Trifolium pratense grown in two geographical regions (Tromsø, Norway and Lublin, Poland) located in distinct climatic (subpolar and temperate) zones. To characterize these isolates genetically, three PCR-based techniques (ERIC, BOX, and RFLP of the 16S-23S rRNA intergenic spacer), 16S rRNA sequencing, and multi-locus sequence analysis of chromosomal house-keeping genes (atpD, recA, rpoB, gyrB, and glnII) were done. Our results indicate that a great majority of the isolates are T. pratense microsymbionts belonging to Rhizobium leguminosarum sv. trifolii. A high diversity among these strains was detected. However, a lower diversity within the population derived from the subpolar region in comparison to that of the temperate region was found. Multi-locus sequence analysis showed that a majority of the strains formed distinct clusters characteristic for the individual climatic regions. The subpolar strains belonged to two (A and B) and the temperate strains to three R. leguminosarum genospecies (B, E, and K), respectively.

RevDate: 2022-07-19
CmpDate: 2022-07-19

Mendez P, Walsh B, EA Hallem (2022)

Using newly optimized genetic tools to probe Strongyloides sensory behaviors.

Molecular and biochemical parasitology, 250:111491.

The oft-neglected human-parasitic threadworm, Strongyloides stercoralis, infects roughly eight percent of the global population, placing disproportionate medical and economic burden upon marginalized communities. While current chemotherapies treat strongyloidiasis, disease recrudescence and the looming threat of anthelminthic resistance necessitate novel strategies for nematode control. Throughout its life cycle, S. stercoralis relies upon sensory cues to aid in environmental navigation and coordinate developmental progression. Odorants, tastants, gases, and temperature have been shown to shape parasite behaviors that drive host seeking and infectivity; however, many of these sensory behaviors remain poorly understood, and their underlying molecular and neural mechanisms are largely uncharacterized. Disruption of sensory circuits essential to parasitism presents a promising strategy for future interventions. In this review, we describe our current understanding of sensory behaviors - namely olfactory, gustatory, gas sensing, and thermosensory behaviors - in Strongyloides spp. We also highlight the ever-growing cache of genetic tools optimized for use in Strongyloides that have facilitated these findings, including transgenesis, CRISPR/Cas9-mediated mutagenesis, RNAi, chemogenetic neuronal silencing, and the use of fluorescent biosensors to measure neuronal activity. Bolstered by these tools, we are poised to enter an era of rapid discovery in Strongyloides sensory neurobiology, which has the potential to shape pioneering advances in the prevention and treatment of strongyloidiasis.

RevDate: 2022-07-21
CmpDate: 2022-07-21

Rojas-Gätjens D, Valverde-Madrigal KS, Rojas-Jimenez K, et al (2022)

Antibiotic-producing Micrococcales govern the microbiome that inhabits the fur of two- and three-toed sloths.

Environmental microbiology, 24(7):3148-3163.

Sloths have a dense coat on which insects, algae and fungi coexist in a symbiotic relationship. This complex ecosystem requires different levels of controls; however, most of these mechanisms remain unknown. We investigated the bacterial communities inhabiting the hair of two- (Choloepus Hoffmanni) and three-toed (Bradypus variegatus) sloths and evaluated their potential for producing antibiotic molecules capable of exerting control over the hair microbiota. The analysis of 16S rRNA amplicon sequence variants revealed that the communities in both host species are dominated by Actinobacteriota and Firmicutes. The most abundant genera were Brevibacterium, Kocuria/Rothia, Staphylococcus, Rubrobacter, Nesterenkonia and Janibacter. Furthermore, we isolated nine strains of Brevibacterium and Rothia capable of producing substances that inhibited the growth of common mammalian pathogens. The analysis of the biosynthetic gene clusters of these nine isolates suggests that the pathogen-inhibitory activity could be mediated by the presence of siderophores, terpenes, beta-lactones, Type III polyketide synthases, ribosomally synthesized and post-translationally modified peptides, non-alpha poly-amino acids like e-Polylysine, ectoine or non-ribosomal peptides. Our data suggest that Micrococcales that inhabit sloth hair could have a role in controlling microbial populations in that habitat, improving our understanding of this highly complex ecosystem.

RevDate: 2022-07-21
CmpDate: 2022-07-21

Bunbury F, Deery E, Sayer AP, et al (2022)

Exploring the onset of B12 -based mutualisms using a recently evolved Chlamydomonas auxotroph and B12 -producing bacteria.

Environmental microbiology, 24(7):3134-3147.

Cobalamin (vitamin B12) is a cofactor for essential metabolic reactions in multiple eukaryotic taxa, including major primary producers such as algae, and yet only prokaryotes can produce it. Many bacteria can colonize the algal phycosphere, forming stable communities that gain preferential access to photosynthate and in return provide compounds such as B12 . Extended coexistence can then drive gene loss, leading to greater algal-bacterial interdependence. In this study, we investigate how a recently evolved B12 -dependent strain of Chlamydomonas reinhardtii, metE7, forms a mutualism with certain bacteria, including the rhizobium Mesorhizobium loti and even a strain of the gut bacterium E. coli engineered to produce cobalamin. Although metE7 was supported by B12 producers, its growth in co-culture was slower than the B12 -independent wild-type, suggesting that high bacterial B12 provision may be necessary to favour B12 auxotrophs and their evolution. Moreover, we found that an E. coli strain that releases more B12 makes a better mutualistic partner, and although this trait may be more costly in isolation, greater B12 release provided an advantage in co-cultures. We hypothesize that, given the right conditions, bacteria that release more B12 may be selected for, particularly if they form close interactions with B12 -dependent algae.

RevDate: 2022-07-18
CmpDate: 2022-07-18

Keegstra JM, Carrara F, R Stocker (2022)

The ecological roles of bacterial chemotaxis.

Nature reviews. Microbiology, 20(8):491-504.

How bacterial chemotaxis is performed is much better understood than why. Traditionally, chemotaxis has been understood as a foraging strategy by which bacteria enhance their uptake of nutrients and energy, yet it has remained puzzling why certain less nutritious compounds are strong chemoattractants and vice versa. Recently, we have gained increased understanding of alternative ecological roles of chemotaxis, such as navigational guidance in colony expansion, localization of hosts or symbiotic partners and contribution to microbial diversity by the generation of spatial segregation in bacterial communities. Although bacterial chemotaxis has been observed in a wide range of environmental settings, insights into the phenomenon are mostly based on laboratory studies of model organisms. In this Review, we highlight how observing individual and collective migratory behaviour of bacteria in different settings informs the quantification of trade-offs, including between chemotaxis and growth. We argue that systematically mapping when and where bacteria are motile, in particular by transgenerational bacterial tracking in dynamic environments and in situ approaches from guts to oceans, will open the door to understanding the rich interplay between metabolism and growth and the contribution of chemotaxis to microbial life.

RevDate: 2022-07-16
CmpDate: 2022-05-24

Scharfenstein HJ, Chan WY, Buerger P, et al (2022)

Evidence for de novo acquisition of microalgal symbionts by bleached adult corals.

The ISME journal, 16(6):1676-1679.

Early life stages of most coral species acquire microalgal endosymbionts (Symbiodiniaceae) from the environment, but whether exogenous symbiont uptake is possible in the adult life stage is unclear. Deep sequencing of the Symbiodiniaceae ITS2 genetic marker has revealed novel symbionts in adult corals following bleaching; however these strains may have already been present at densities below detection limits. To test whether acquisition of symbionts from the environment occurs, we subjected adult fragments of corals (six species in four families) to a chemical bleaching treatment (menthol and DCMU). The treatment reduced the native microalgal symbiont abundance to below 2% of their starting densities. The bleached corals were then inoculated with a cultured Cladocopium C1acro strain. Genotyping of the Symbiodiniaceae communities before bleaching and after reinoculation showed that fragments of all six coral species acquired the Cladocopium C1acro strain used for inoculation. Our results provide strong evidence for the uptake of Symbiodiniaceae from the environment by adult corals. We also demonstrate the feasibility of chemical bleaching followed by reinoculation to manipulate the Symbiodiniaceae communities of adult corals, providing an innovative approach to establish new symbioses between adult corals and heat-evolved microalgal symbionts, which could prove highly relevant to coral reef restoration efforts.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )