Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Symbiosis

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 21 Feb 2019 at 01:46 Created: 


Symbiosis refers to an interaction between two or more different organisms living in close physical association, typically to the advantage of both. Symbiotic relationships were once thought to be exceptional situations. Recent studies, however, have shown that every multicellular eukaryote exists in a tight symbiotic relationship with billions of microbes. The associated microbial ecosystems are referred to as microbiome and the combination of a multicellular organism and its microbiota has been described as a holobiont. It seems "we are all lichens now."

Created with PubMed® Query: symbiosis NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-02-20

Cognato AI, Smith SM, Li Y, et al (2019)

Genetic Variability Among Xyleborus glabratus Populations Native to Southeast Asia (Coleoptera: Curculionidae: Scolytinae: Xyleborini) and the Description of Two Related Species.

Journal of economic entomology pii:5321154 [Epub ahead of print].

The redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is native to Southeast Asia, where it specializes on Lauraceae trees. It forms a symbiosis with the ambrosia fungus Raffaelea lauricola T.C. Harr., Fraedrich & Aghayeva, which can act as a pathogen in living host trees. The beetle and fungus were recently introduced into the United States, where they have killed millions of native Lauraceae trees and threaten the avocado industry. These introduced populations have limited genetic variation. In the native range, the fungi are genetically variable, but the native genetic variability of the beetles is unknown. It is important to assess the beetle's native genetic variation because different lineages may vary in the capacity to vector this fungus, which may affect disease etiology. Here, we analyzed genetic variation in several Chinese, Taiwanese, and Vietnamese populations of X. glabratus using mitochondrial (COI) and nuclear DNA (CAD) markers. Phylogenetic analysis revealed nine COI haplotypes and four CAD genotypes. Uncorrected 'p' distance for intrapopulation comparisons ranged from 0 to 0.1 and 0 to 0.013 and interpopulation comparisons ranged from 0.137 to 0.168 and 0.015 to 0.032 for COI and CAD, respectively. Two populations exceeded the range of intraspecific nucleotide differences for both genes. Given that individuals from these populations also exhibited consistent morphological differences, they are described as two new species: Xyleborus insidiosus Cognato & Smith, n. sp. and Xyleborus mysticulus Cognato & Smith, n. sp. Xyleborus glabratus was redescribed and a lectotype was designated to facilitate its recognition in light of these new species. These results indicate that X. glabratus is genetically variable and is related to two morphologically similar species. Whether these new species and X. glabratus lineages associate with different fungal strains is unknown. Given that the biology and host colonization of these new species are unknown, preventing their introduction to other regions is prudent.

RevDate: 2019-02-20

Simón-Grao S, Nieves M, Martínez-Nicolás JJ, et al (2019)

Arbuscular mycorrhizal symbiosis improves tolerance of Carrizo citrange to excess boron supply by reducing leaf B concentration and toxicity in the leaves and roots.

Ecotoxicology and environmental safety, 173:322-330 pii:S0147-6513(19)30180-0 [Epub ahead of print].

This study explores the possibility of using mycorrhization as a novel technique for diminishing the negative effects of boron (B) in the nutrient solution on seedlings of Carrizo citrange rootstock plants. For this, an experiment was planned for studying the physiological (gas exchange and chlorophyll fluorescence parameters), morphological (vegetative growth parameters), nutritional (organic solutes, carbohydrates) and oxidative stress responses of seedlings that were either mycorrhized (+AM, Rhizophagus irregularis; previously known as Glomus intraradices) or not mycorrhized (-AM), and irrigated with water containing different concentrations of B (0.5, 5 and 10 mg L-1). It was observed that an excess of B in the nutrient solution decreased the vegetative growth in both +AM and -AM plants, but this decrease was greater in -AM plants. Mycorrhized plants (+AM) under high B concentration accumulated less B in the leaves, and had a smaller reduction of net assimilation rate of CO2 and lower MDA concentration than non-mycorrhized plants. Thus, it can be concluded that mycorrhization increased the tolerance to high boron concentration in the irrigation water of citrange Carrizo seedlings by reducing both the B concentration in the plant tissue and the B toxicity in the physiological processes. The study of organic solutes and carbohydrates also pointed to a different response model between +AM and -AM plants that could be related to the different tolerance observed between these plants.

RevDate: 2019-02-20

Clarke BB, White JF, Hurley RH, et al (2006)

Endophyte-Mediated Suppression of Dollar Spot Disease in Fine Fescues.

Plant disease, 90(8):994-998.

In 1989, a close association was found between single-plant progenies of strong creeping red fescue infected with the endophyte Epichloë festucae and enhanced suppression of dollar spot, a widespread foliar disease of turfgrass caused by Sclerotinia homoeocarpa. From this limited observation, extensive field evaluations were conducted on a wide range of fine fescue germplasm obtained throughout the United States and Europe to determine the frequency and magnitude of this association. In five field trials established between 1985 and 1991, endophyte-infected Chewings, hard, blue, and strong creeping red fescue cultivars, selections, and crosses consistently exhibited endophyte-mediated suppression of dollar spot, when compared with closely related endophyte-free entries. Endophyte-infected Chewings and hard fescue cultivars and selections also had greater turf density and supported less foliar mycelium of S. homoeocarpa than endophyte-free entries.

RevDate: 2019-02-20

Petit E, WD Gubler (2006)

Influence of Glomus intraradices on Black Foot Disease Caused by Cylindrocarpon macrodidymum on Vitis rupestris Under Controlled Conditions.

Plant disease, 90(12):1481-1484.

We examined the influence of an arbuscular-mycorrhizal fungus, Glomus intraradices (INVAM CA 501), on black foot disease caused by the fungus Cylindrocarpon macrodidymum on Vitis rupestris cv. St. George under controlled conditions. Mycorrhizal or nonmycorrhizal grape rootings were inoculated with the pathogen. Eight months following inoculation with the pathogen, we evaluated disease severity, vine growth, and mycorrhizal colonization. Mycorrhizal plants developed significantly less leaf and root symptoms than nonmycorrhizal plants (P = 0.04 and P < 0.0001, respectively). Only nonmycorrhizal grape rootings inoculated with the pathogen had significantly less dry root and leaf weights compared with the noninoculated control (P = 0.0021 and P = 0.0017, respectively). Mycorrhizal colonization was high (48.3% for the noninfected control and 54.5% for plants infected with C. macrodidymum) and not significantly affected by inoculation with C. macrodidymum (P = 0.2256). Thus, V. rupestris preinoculated with G. intraradices were less susceptible to black foot disease than nonmycorrhizal plants. Results from this study suggest that preplant applications of G. intraradices may help prevent black foot disease in the nursery and in the vineyard.

RevDate: 2019-02-19

Vangelisti A, Mascagni F, Giordani T, et al (2019)

Arbuscular mycorrhizal fungi induce the expression of specific retrotransposons in roots of sunflower (Helianthus annuus L.).

PloS one, 14(2):e0212371 pii:PONE-D-18-32875.

Retrotransposon expression during arbuscular mycorrhizal (AM) fungal colonisation of sunflower roots (Helianthus annuus) was analysed using Illumina RNA-Seq, in order to verify whether mycorrhizal symbiosis can activate retrotransposable elements. Illumina cDNA libraries were produced from RNAs isolated from the roots of sunflower plants at 4 and 16 days after inoculation with the AM fungus Rhizoglomus irregulare and from their respective control plants. Illumina reads were mapped to a library of reverse transcriptase-encoding sequences, putatively belonging to long terminal repeat retrotransposons of Gypsy and Copia superfamilies. Forty-six different reverse transcriptase sequences were transcribed, although at a low rate, in mycorrhizal or control roots and only four were significantly over-expressed at day 16, compared with control roots. Almost all expressed or over-expressed sequences belonged to low-copy elements, mostly, of the Copia superfamily. A meta-analysis, using publicly available Illumina cDNA libraries obtained from sunflower plants treated with different hormones and chemicals, mimicking stimuli produced by abiotic and biotic stresses, was also conducted. Such analyses indicated that the four reverse transcriptase sequences over-expressed in mycorrhizal roots were explicitly induced only by AM symbiosis, showing the specificity of AM stimuli compared to that of other fungal/plant interactions.

RevDate: 2019-02-19

Neumann C, Blume J, Roy U, et al (2019)

c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host-microbiota homeostasis.

Nature immunology pii:10.1038/s41590-019-0316-2 [Epub ahead of print].

Foxp3+ regulatory T cells (Treg cells) are crucial for the maintenance of immune homeostasis both in lymphoid tissues and in non-lymphoid tissues. Here we demonstrate that the ability of intestinal Treg cells to constrain microbiota-dependent interleukin (IL)-17-producing helper T cell (TH17 cell) and immunoglobulin A responses critically required expression of the transcription factor c-Maf. The terminal differentiation and function of several intestinal Treg cell populations, including RORγt+ Treg cells and follicular regulatory T cells, were c-Maf dependent. c-Maf controlled Treg cell-derived IL-10 production and prevented excessive signaling via the kinases PI(3)K (phosphatidylinositol-3-OH kinase) and Akt and the metabolic checkpoint kinase complex mTORC1 (mammalian target of rapamycin) and expression of inflammatory cytokines in intestinal Treg cells. c-Maf deficiency in Treg cells led to profound dysbiosis of the intestinal microbiota, which when transferred to germ-free mice was sufficient to induce exacerbated intestinal TH17 responses, even in a c-Maf-competent environment. Thus, c-Maf acts to preserve the identity and function of intestinal Treg cells, which is essential for the establishment of host-microbe symbiosis.

RevDate: 2019-02-19

Green RT, East AK, Karunakaran R, et al (2019)

Transcriptomic analysis of Rhizobium leguminosarum bacteroids in determinate and indeterminate nodules.

Microbial genomics [Epub ahead of print].

Two common classes of nitrogen-fixing legume root nodules are those that have determinate or indeterminate meristems, as in Phaseolus bean and pea, respectively. In indeterminate nodules, rhizobia terminally differentiate into bacteroids with endoreduplicated genomes, whereas bacteroids from determinate nodules are less differentiated and can regrow. We used RNA sequencing to compare bacteroid gene expression in determinate and indeterminate nodules using two Rhizobium leguminosarum strains whose genomes differ due to replacement of the symbiosis (Sym) plasmid pRP2 (strain Rlp4292) with pRL1 (strain RlvA34), thereby switching symbiosis hosts from Phaseolus bean (determinate nodules) to pea (indeterminate nodules). Both bacteroid types have gene expression patterns typical of a stringent response, a stressful environment and catabolism of dicarboxylates, formate, amino acids and quaternary amines. Gene expression patterns were indicative that bean bacteroids were more limited for phosphate, sulphate and iron than pea bacteroids. Bean bacteroids had higher levels of expression of genes whose products are predicted to be associated with metabolite detoxification or export. Pea bacteroids had increased expression of genes associated with DNA replication, membrane synthesis and the TCA (tricarboxylic acid) cycle. Analysis of bacteroid-specific transporter genes was indicative of distinct differences in sugars and other compounds in the two nodule environments. Cell division genes were down-regulated in pea but not bean bacteroids, while DNA synthesis was increased in pea bacteroids. This is consistent with endoreduplication of pea bacteroids and their failure to regrow once nodules senesce.

RevDate: 2019-02-19

Buckley KM, Schuh NW, Heyland A, et al (2019)

Analysis of immune response in the sea urchin larva.

Methods in cell biology, 150:333-355.

Sea urchin larvae deploy a complex immune system in the context of relatively simple morphology. Several types of phagocytic or granular immune cells respond rapidly to microbes and microbial components within the body cavity. Many of these cells also respond to microbial disturbances in the gut lumen. In the course of immune response, hundreds of genes are up- and downregulated, many of which have homologs involved in immunity in other species. Thus, the larval sea urchin provides an experimentally advantageous model for investigating the response to immune challenge at the level of cell behavior and gene regulatory networks. Importantly, the morphological simplicity and optical clarity of these larvae allow studies to be carried out within the intact animal. Here, we outline techniques to probe and visualize the immune system of the feeding sea urchin larva, particularly for quantifying gene expression and cell migration as the animal responds to both pathogens and symbionts. Techniques addressed in this chapter include (1) exposure of larvae to microbes and microbial products in sea water and by blastocoelar microinjection, (2) time-lapse imaging of immune response, (3) isolation of culturable bacteria associated with feeding larvae, (4) quantification of larval associations with isolated bacterial strains and (5) preparation of secreted products from isolated bacteria for testing in larval culture.

RevDate: 2019-02-19
CmpDate: 2019-02-18

Simo G, Kanté ST, Madinga J, et al (2019)

Molecular identification of Wolbachia and Sodalis glossinidius in the midgut of Glossina fuscipes quanzensis from the Democratic Republic of Congo.

Parasite (Paris, France), 26:5.

During the last 30 years, investigations on the microbiome of different tsetse species have generated substantial data on the bacterial flora of these cyclical vectors of African trypanosomes, with the overarching goal of improving the control of trypanosomiases. It is in this context that the presence of Wolbachia and Sodalis glossinidius was studied in wild populations of Glossina fuscipes quanzensis from the Democratic Republic of Congo. Tsetse flies were captured with pyramidal traps. Of the 700 Glossina f. quanzensis captured, 360 were dissected and their midguts collected and analyzed. Sodalis glossinidius and Wolbachia were identified by PCR. The Wolbachia-positive samples were genetically characterized with five molecular markers. PCR revealed 84.78% and 15.55% midguts infected by Wolbachia and S. glossinidius, respectively. The infection rates varied according to capture sites. Of the five molecular markers used to characterize Wolbachia, only the fructose bis-phosphate aldolase gene was amplified for about 60% of midguts previously found with Wolbachia infections. The sequencing results confirmed the presence of Wolbachia and revealed the presence of S. glossinidius in the midgut of Glossina f. quanzensis. A low level of midguts were naturally co-infected by both bacteria. The data generated in this study open a framework for investigations aimed at understanding the contribution of these symbiotic microorganisms to the vectorial competence of Glossina fuscipes quanzensis.

RevDate: 2019-02-19
CmpDate: 2019-02-18

Kallala N, M'sehli W, Jelali K, et al (2018)

Inoculation with Efficient Nitrogen Fixing and Indoleacetic Acid Producing Bacterial Microsymbiont Enhance Tolerance of the Model Legume Medicago truncatula to Iron Deficiency.

BioMed research international, 2018:9134716.

The aim of this study was to assess the effect of symbiotic bacteria inoculation on the response of Medicago truncatula genotypes to iron deficiency. The present work was conducted on three Medicago truncatula genotypes: A17, TN8.20, and TN1.11. Three treatments were performed: control (C), direct Fe deficiency (DD), and induced Fe deficiency by bicarbonate (ID). Plants were nitrogen-fertilized (T) or inoculated with two bacterial strains: Sinorhizobium meliloti TII7 and Sinorhizobium medicae SII4. Biometric, physiological, and biochemical parameters were analyzed. Iron deficiency had a significant lowering effect on plant biomass and chlorophyll content in all Medicago truncatula genotypes. TN1.11 showed the highest lipid peroxidation and leakage of electrolyte under iron deficiency conditions, which suggest that TN1.11 was more affected than A17 and TN8.20 by Fe starvation. Iron deficiency affected symbiotic performance indices of all Medicago truncatula genotypes inoculated with both Sinorhizobium strains, mainly nodules number and biomass as well as nitrogen-fixing capacity. Nevertheless, inoculation with Sinorhizobium strains mitigates the negative effect of Fe deficiency on plant growth and oxidative stress compared to nitrogen-fertilized plants. The highest auxin producing strain, TII7, preserves relatively high growth and root biomass and length when inoculated to TN8.20 and A17. On the other hand, both TII7 and SII4 strains improve the performance of sensitive genotype TN1.11 through reduction of the negative effect of iron deficiency on chlorophyll and plant Fe content. The bacterial inoculation improved Fe-deficient plant response to oxidative stress via the induction of the activities of antioxidant enzymes.

RevDate: 2019-02-19
CmpDate: 2019-02-18

Sun K, Cao W, Hu LY, et al (2019)

Symbiotic fungal endophyte Phomopsis liquidambari-rice system promotes nitrogen transformation by influencing below-ground straw decomposition in paddy soil.

Journal of applied microbiology, 126(1):191-203.

AIMS: To explore if and how symbiotic Phomopsis liquidambari-rice system influences below-ground straw decomposition and then nitrogen(N) transformation in response to environmental N levels.

METHODS AND RESULTS: Litter bag experiments were utilized to trace the decay process during rice growth phases (seedling (T1), tillering (T2), heading (T3) and maturing (T4) stage), with (E+) and without endophyte (E-), under low (LN), medium (MN) and high nitrogen (HN) supply. Litter, soil and plant samples were collected to evaluate the decay process, N transformations, plant quality and relative abundance of soil ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and P. liquidambari. The results showed that straw decomposition increased by 19·76% (LN, T2 stage), 14·05% (MN, T3 stage) and 16·88% (MN, T4 stage) in E+ pots when compared with E- pots. Further analysis revealed that no significant endophyte × N interaction was found for straw decay rate and that the decay rate was reduced by a higher N supply (LN, 37·16 ± 0·65%; MN, 32·27 ± 1·72%; HN, 29·44 ± 1·22%) at the T1 stage, whereas straw decay rate and N release increased by 9·38 and 11·16%, respectively, mainly by endophyte colonization at the T4 stage. The abundance of AOA and AOB were altered, corresponding with the decay rate. Soil mineral N, straw mineral N and plant quality were shown to increase in E+ pots, depending on environmental N conditions and growth phase. The yield increased by 2·98% for E+ plants under MN level.

CONCLUSIONS: Symbiotic P. liquidambari-rice system promoted below-ground straw decomposition and N transformation, depending on environmental N levels and plant growth phase.

This study provides evidence that fungal endophyte-plant systems are able to promote N transformation by increasing straw decomposition. A reasonable combination of N inputs could enhance its advantage in agriculture ecosystems.

RevDate: 2019-02-19
CmpDate: 2019-02-18

Queller DC (2018)

Nancy A. Moran - Recipient of the 2017 Molecular Ecology Prize.

Molecular ecology, 27(1):35-37.

RevDate: 2019-02-19
CmpDate: 2019-02-18

Erwin PM, Rhodes RG, Kiser KB, et al (2017)

High diversity and unique composition of gut microbiomes in pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales.

Scientific reports, 7(1):7205.

Mammals host diverse bacterial and archaeal symbiont communities (i.e. microbiomes) that play important roles in digestive and immune system functioning, yet cetacean microbiomes remain largely unexplored, in part due to sample collection difficulties. Here, fecal samples from stranded pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales were used to characterize the gut microbiomes of two closely-related species with similar diets. 16S rRNA gene sequencing revealed diverse microbial communities in kogiid whales dominated by Firmicutes and Bacteroidetes. Core symbiont taxa were affiliated with phylogenetic lineages capable of fermentative metabolism and sulfate respiration, indicating potential symbiont contributions to energy acquisition during prey digestion. The diversity and phylum-level composition of kogiid microbiomes differed from those previously reported in toothed whales, which exhibited low diversity communities dominated by Proteobacteria and Actinobacteria. Community structure analyses revealed distinct gut microbiomes in K. breviceps and K. sima, driven by differential relative abundances of shared taxa, and unique microbiomes in kogiid hosts compared to other toothed and baleen whales, driven by differences in symbiont membership. These results provide insight into the diversity, composition and structure of kogiid gut microbiomes and indicate that host identity plays an important role in structuring cetacean microbiomes, even at fine-scale taxonomic levels.

RevDate: 2019-02-19
CmpDate: 2019-02-18

Smolentseva O, Gusarov I, Gautier L, et al (2017)

Mechanism of biofilm-mediated stress resistance and lifespan extension in C. elegans.

Scientific reports, 7(1):7137.

Bacteria naturally form communities of cells known as biofilms. However the physiological roles of biofilms produced by non-pathogenic microbiota remain largely unknown. To assess the impact of a biofilm on host physiology we explored the effect of several non-pathogenic biofilm-forming bacteria on Caenorhabditis elegans. We show that biofilm formation by Bacillus subtilis, Lactobacillus rhamnosus and Pseudomonas fluorescens induces C. elegans stress resistance. Biofilm also protects against pathogenic infection and prolongs lifespan. Total mRNA analysis identified a set of host genes that are upregulated in response to biofilm formation by B. subtilis. We further demonstrate that mtl-1 is responsible for the biofilm-mediated increase in oxidative stress resistance and lifespan extension. Induction of mtl-1 and hsp-70 promotes biofilm-mediated thermotolerance. ilys-2 activity accounts for biofilm-mediated resistance to Pseudomonas aeruginosa killing. These results reveal the importance of non-pathogenic biofilms for host physiology and provide a framework to study commensal biofilms in higher organisms.

RevDate: 2019-02-18

Liang J, Klingl A, Lin YY, et al (2019)

A sub-compatible rhizobium strain reveals infection duality in Lotus.

Journal of experimental botany pii:5331621 [Epub ahead of print].

Lotus species develop infection threads to guide rhizobia into nodule cells. However, there is evidence that some species have a genetic repertoire to allow other modes of infection. Conducting confocal and electron microscopy, quantification of marker gene expression, and phenotypic analysis of transgenic roots infected with mutant rhizobia we elucidated the infection mechanism used by Rhizobium leguminosarum Norway to colonise Lotus burttii. R. leguminosarum Norway induces a distinct host transcriptional response compared to Mesorhizobium loti. It infects L.burttii utilising an epidermal and trans-cellular infection thread-independent mechanism at high frequency. The entry into plant cells occurs directly from the apoplast and is primarily mediated by "peg"-like structures, the formation of which is dependent on the production of Nod factor by the rhizobia. These results demonstrate that Lotus species can exhibit duality in their infection mechanisms depending on the rhizobial strain that they encounter. This is especially relevant in the context of interactions in the rhizosphere where legumes do not encounter single strains, but complex rhizobial communities. Additionally, our findings support a perception mechanism at the nodule cell entry interface reinforcing the idea that there are successive checkpoints during rhizobial infection.

RevDate: 2019-02-17

Mishra N, Damle G, Dhas Y, et al (2019)

Association of vitamin D deficiency with insulin resistance in middle-aged type 2 diabetics.

Clinica chimica acta; international journal of clinical chemistry pii:S0009-8981(19)30066-X [Epub ahead of print].

BACKGROUND: Vitamin D deficiency contributes to the pathophysiology of insulin resistance (IR) and type 2 diabetes mellitus (T2DM). We investigated the association of 25-hydroxyvitamin D [25(OH)D] with IR and β-cell function in middle-aged participants.

METHODS: We enrolled 90 controls and 90 T2DM patients of both genders aged 30-50 y. Serum 25(OH)D, fasting plasma insulin (FPI), fasting plasma glucose (FPG), HbA1c, and lipid profile were measured by standard methods. Insulin resistance and sensitivity were assessed by triglyceride glucose (TyG) index, homeostatic model assessment (HOMA-IR), and quantitative insulin sensitivity check index (QUICKI), and β-cell function by HOMA-B.

RESULTS: 25(OH)D deficiency was reported as 40% in control and 70% in T2DM patients. 25(OH)D concentration was positively associated with age, blood pressure, T2DM duration, FPG, HbA1c, TyG index, and HOMA-IR and negatively associated with HOMA-B and QUICKI among all the participants (p ≤.001). Participants with severe 25(OH)D deficiency (<10 ng/ml) were 38.927 times higher odds of being T2DM, while, those with moderate deficiency (10-19n g/ml) and insufficiency (20-29 ng/ml) were 15 times and 13 times higher odds of being T2DM, respectively.

CONCLUSION: Sufficient 25(OH)D concentration may lower the risk of development of IR and T2DM in middle-aged control and diabetic participants.

RevDate: 2019-02-17

Yu H, Bao H, Zhang Z, et al (2019)

Immune Signaling Pathway during Terminal Bacteroid Differentiation in Nodules.

Trends in plant science pii:S1360-1385(19)30025-1 [Epub ahead of print].

Plant innate immunity plays an important role in regulating symbiotic associations with rhizobia, including during rhizobial infection, rhizobial colonization, and bacteroid differentiation in leguminous plants. Here we propose that an immune signaling pathway similar to plant pattern-triggered immunity (PTI) is required for the regulation of bacteroid differentiation in Medicago truncatula nodules.

RevDate: 2019-02-15

Yoshida T, Furihata HY, To TK, et al (2019)

Genome defense against integrated organellar DNA fragments from plastids into plant nuclear genomes through DNA methylation.

Scientific reports, 9(1):2060 pii:10.1038/s41598-019-38607-6.

Nuclear genomes are always faced with the modification of themselves by insertions and integrations of foreign DNAs and intrinsic parasites such as transposable elements. There is also substantial number of integrations from symbiotic organellar genomes to their host nuclear genomes. Such integration might have acted as a beneficial mutation during the evolution of symbiosis, while most of them have more or less deleterious effects on the stability of current genomes. Here we report the pattern of DNA substitution and methylation on organellar DNA fragments integrated from plastid into plant nuclear genomes. The genome analyses of 17 plants show homology-dependent DNA substitution bias. A certain number of these sequences are DNA methylated in the nuclear genome. The intensity of DNA methylation also decays according to the increase of relative evolutionary times after being integrated into nuclear genomes. The methylome data of epigenetic mutants shows that the DNA methylation of organellar DNA fragments in nuclear genomes are mainly dependent on the methylation maintenance machinery, while other mechanisms may also affect on the DNA methylation level. The DNA methylation on organellar DNA fragments may contribute to maintaining the genome stability and evolutionary dynamics of symbiotic organellar and their host's genomes.

RevDate: 2019-02-15

Zhou D, Li Y, Wang X, et al (2019)

Mesorhizobium huakuii HtpG interaction with nsLTP AsE246 is required for symbiotic nitrogen fixation.

Plant physiology pii:pp.18.00336 [Epub ahead of print].

Plant non-specific lipid transfer proteins (nsLTPs) are involved in a number of biological processes including root nodule symbiosis. However, the role of nsLTPs in legume-rhizobium symbiosis remains poorly understood, and no rhizobia proteins that interact with nsLTPs have been reported to date. In this study, we used a bacteria two-hybrid system and identified the HtpG protein from Mesorhizobium huakuii that interacts with the nsLTP AsE246. The interaction between HtpG and AsE246 was confirmed by far-western blotting and bimolecular fluorescence complementation. Our results indicated that the HSP90 domain of HtpG mediates the HtpG-AsE246 interaction. Immunofluorescence assay showed that HtpG was co-localized with AsE246 in infected nodule cells and symbiosome membranes. Expression of the htpG gene was relatively higher in young nodules and was highly expressed in the infection zones. Further investigaton showed that htpG expression affects lipid abundance and profiles in root nodules and plays an essential role in nodule development and nitrogen fixation. Our findings provide further insights into the functional mechanisms behind the transport of symbiosome lipids via nsLTPs in root nodules.

RevDate: 2019-02-15
CmpDate: 2019-02-15

Grobler Y, Yun CY, Kahler DJ, et al (2018)

Whole genome screen reveals a novel relationship between Wolbachia levels and Drosophila host translation.

PLoS pathogens, 14(11):e1007445.

Wolbachia is an intracellular bacterium that infects a remarkable range of insect hosts. Insects such as mosquitos act as vectors for many devastating human viruses such as Dengue, West Nile, and Zika. Remarkably, Wolbachia infection provides insect hosts with resistance to many arboviruses thereby rendering the insects ineffective as vectors. To utilize Wolbachia effectively as a tool against vector-borne viruses a better understanding of the host-Wolbachia relationship is needed. To investigate Wolbachia-insect interactions we used the Wolbachia/Drosophila model that provides a genetically tractable system for studying host-pathogen interactions. We coupled genome-wide RNAi screening with a novel high-throughput fluorescence in situ hybridization (FISH) assay to detect changes in Wolbachia levels in a Wolbachia-infected Drosophila cell line JW18. 1117 genes altered Wolbachia levels when knocked down by RNAi of which 329 genes increased and 788 genes decreased the level of Wolbachia. Validation of hits included in depth secondary screening using in vitro RNAi, Drosophila mutants, and Wolbachia-detection by DNA qPCR. A diverse set of host gene networks was identified to regulate Wolbachia levels and unexpectedly revealed that perturbations of host translation components such as the ribosome and translation initiation factors results in increased Wolbachia levels both in vitro using RNAi and in vivo using mutants and a chemical-based translation inhibition assay. This work provides evidence for Wolbachia-host translation interaction and strengthens our general understanding of the Wolbachia-host intracellular relationship.

RevDate: 2019-02-15
CmpDate: 2019-02-15

Pang R, Chen M, Yue L, et al (2018)

A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host.

PLoS genetics, 14(10):e1007725.

Symbiotic bacteria are important drivers of phenotypic diversity in insects. One of the widespread symbionts to have emerged belongs to the genus Arsenophonus, however, its biological functions in most host insects remain entirely unknown. Here we report two distinct Arsenophonus strains in the brown planthopper (BPH), Nilaparvata lugens, a major pest insect in Asian countries that causes significant economic damage through rice crop destruction. Genomic resequencing data suggested that one Arsenophonus strain (S-type) negatively affected the insecticide resistance of the host. Indeed, replacement of the resident Arsenophonus with the S-type Arsenophonus significantly decreased host insecticide resistance. Transcriptome and metabolome analysis revealed down-regulation of xenobiotic metabolism and increased amino acid accumulation in the S-type Arsenophonus infected host. This study demonstrates how a symbiont-mediated phenotypic change can occur. The results of this study will aid in developing strategies that work through imposing an ecological disadvantage on insect pests, which will be of great value for pest control in agricultural industry.

RevDate: 2019-02-15
CmpDate: 2019-02-15

Britstein M, Saurav K, Teta R, et al (2018)

Identification and chemical characterization of N-acyl-homoserine lactone quorum sensing signals across sponge species and time.

FEMS microbiology ecology, 94(2):.

Marine sponges form symbiotic relationships with complex microbial communities, yet little is known about the mechanisms by which these microbes regulate their behavior through gene expression. Many bacterial communities regulate gene expression using chemical signaling termed quorum sensing. While a few previous studies have shown presence of N-acyl-homoserine lactone (AHL)-based quorum sensing in marine sponges, the chemical identity of AHL signals has been published for only two sponge species. In this study, we screened for AHLs in extracts from 15 sponge species (109 specimens in total) from the Mediterranean and Red Sea, using a wide-range AHL biosensor. This is the first time that AHL presence was examined over time in sponges. We detected the presence of AHL in 46% of the sponge species and found that AHL signals differ for certain sponge species in time and across sponge individuals. Furthermore, for the Mediterranean sponge species Sarcotragus fasciculatus, we identified 14 different AHLs. The constant presence of specific AHL molecules in all specimens, together with varying signaling molecules between the different specimens, makes Sa. fasciculatus a good model to further investigate the function of quorum sensing in sponge-associated bacteria. This study extends the knowledge of AHL-based quorum sensing in marine sponges.

RevDate: 2019-02-14

Cao-Pham AH, Hiong KC, Boo MV, et al (2019)

Molecular characterization, cellular localization, and light-enhanced expression of Beta-Na+/H+ Exchanger-like in the whitish inner mantle of the giant clam, Tridacna squamosa, denote its role in light-enhanced shell formation.

Gene pii:S0378-1119(19)30116-7 [Epub ahead of print].

The fluted giant clam, Tridacna squamosa, lives in symbiosis with photosynthetic zooxanthellae, and can engage in light-enhanced growth and shell formation. Light-enhanced shell formation necessitates the elimination of excess H+ from the extrapallial fluid adjacent to the shell. This study aimed to clone Na+/H+Exchanger (NHE) from the whitish inner mantle adjacent to the extrapallial fluid of T. squamosa, to determine its cellular and subcellular localization, and to evaluate the effect of light exposure on its mRNA expression level and protein abundance therein. The complete coding cDNA sequence of NHE obtained was identified as a homolog of beta NHE (βNHE-like). It consisted of 2925 bp, encoding for a polypeptide of 974 amino acids and 107.1 kDa, and was expressed predominantly in the inner mantle. There, βNHE-like was localized in the apical membrane of the seawater-facing epithelium by immunofluorescence microscopy. After exposure to light for 12 h, the seawater-facing epithelium of the inner mantle displayed consistently stronger immunostaining than that of the control exposed to 12 h of darkness. Western blotting confirmed that light exposure significantly enhanced the protein abundance of βNHE-like in the inner mantle. These results denote that some of the excess H+ generated during light-enhanced shell formation can be excreted through the light-dependent βNHE-like of the seawater-facing epithelium to minimize the impact on the whole-body pH. Importantly, the excreted H+ could dehydrate exogenous HCO3-, and facilitate the absorption of inorganic carbon through the seawater-facing epithelium dedicated for light-enhanced shell formation due to its close proximity with the shell-facing epithelium. NUCLEOTIDE SYMBOL COMBINATIONS: Pairs: R = A/G; W = A/T; Y = C/T. Triples: D = A/G/T.

RevDate: 2019-02-14

Abi Khattar Z, Lanois A, Hadchity L, et al (2019)

Spatiotemporal expression of the putative MdtABC efflux pump of Phtotorhabdus luminescens occurs in a protease-dependent manner during insect infection.

PloS one, 14(2):e0212077 pii:PONE-D-18-35871.

Photorhabdus luminescens is an enterobacterium establishing a mutualistic symbiosis with nematodes, that also kills insects after septicaemia and connective tissue colonization. The role of the bacterial mdtABC genes encoding a putative multidrug efflux system from the resistance/nodulation/cell division family was investigated. We showed that a mdtA mutant and the wild type had similar levels of resistance to antibiotics, antimicrobial peptides, metals, detergents and bile salts. The mdtA mutant was also as pathogenic as the wild-type following intrahaemocoel injection in Locusta migratoria, but had a slightly attenuated phenotype in Spodoptera littoralis. A transcriptional fusion of the mdtA promoter (PmdtA) and the green fluorescent protein (gfp) encoding gene was induced by copper in bacteria cultured in vitro. The PmdtA-gfp fusion was strongly induced within bacterial aggregates in the haematopoietic organ during late stages of infection in L. migratoria, whereas it was only weakly expressed in insect plasma throughout infection. A medium supplemented with haematopoietic organ extracts induced the PmdtA-gfp fusion ex vivo, suggesting that site-specific mdtABC expression resulted from insect signals from the haematopoietic organ. Finally, we showed that protease inhibitors abolished ex vivo activity of the PmdtA-gfp fusion in the presence of haematopoietic organ extracts, suggesting that proteolysis by-products play a key role in upregulating the putative MdtABC efflux pump during insect infection with P. luminescens.

RevDate: 2019-02-14

Kuzmin MD, Pashkova TM, Kartashova OL, et al (2018)

[Biological properties of microorganisms isolated from the urine of patients with urolithiasis].

Urologiia (Moscow, Russia : 1999).

AIM: To define persistent properties and antibiotic resistance of microorganisms isolated from the urine of adult patient undergoing surgery for urolithiasis.

MATERIALS AND METHODS: Urine specimens were obtained from the renal pelvis and urinary bladder during percutaneous nephrolithotripsy. Microorganisms that were isolated from the urine were examined for their persistent properties (anti-lysozyme activity, the ability of biofilm formation) and antibiotic resistance using photometric and bacteriological methods.

RESULTS: Strains of microorganisms isolated from the urine of patients with urolithiasis have high anti-lysozyme activity and the ability of biofilm formation, and variable antibiotic resistance. These properties should be taken into account when selecting an empirical antibiotic therapy for preventing infectious-inflammatory complications after percutaneous nephrolithotripsy.

CONCLUSION: The high level of resistance of microorganisms isolated from the urine of patients with urolithiasis to the studied antibiotics, their ability to inactivate lysozyme and form biofilms may be the cause of the development of postoperative complications.

RevDate: 2019-02-14

Pushpakumara BLDU, D Gunawardana (2018)

Preliminary data on the presence of an alternate vanadium nitrogenase in a culturable cyanobiont of Azolla pinnata R. Brown: Implications on Chronic Kidney Disease of an unknown etiology (CKDu).

Data in brief, 21:2590-2597 pii:S2352-3409(18)31466-5.

In a recent paper titled "How a taxonomically-ambiguous cyanobiont and vanadate assist in the phytoremediation of cadmium by Azolla pinnata: implications for CKDu" (Atugoda et al., 2018) [1] it was shown by us, that plant health and phytoremediation capacities, of Azolla pinnata R. Brown, were elevated in the presence of vanadate, a vanadium containing ion. This highlighted a possibility, that either the major or minor cyanobionts of Azolla pinnata, could possess a vanadium dependent nitrogenase enzyme, as an alternate nitrogenase, in addition to the molybdenum counterpart. In this data article, we report the isolation of a minor cyanobiont which we name as Fischerella uthpalarensis. We grew Fischerella uthpalarensis, exclusively in N-free media, with only molybdenum (Mo+ V-), with only vanadium (V+ Mo-) and with neither (negative control), to find out the growth patterns in the relevant media. While F. uthpalarensis grew as green colored consistencies, increasing gradually in turbidity, for 4 weeks in culture, both, in the presence of molybdenum (Mo+ V-), as well as vanadium (V+ Mo-), the negative control, showed no, or very little growth. This alludes to the presence of dual nitrogenases in Fischerella uthpalarensis. An attempt was also made by us to unravel the vnf genes, responsible for the V-nitrogenase. However, it was not possible to PCR amplify the vnf genes, from both, the unculturable major (using total DNA from the Azolla-Nostoc azollae symbiosis) and minor (DNA directly from the cultured F. uthpalarensis) cyanobionts. This is the first time, to our knowledge, that an endosymbiotic cyanobacterium inside a plant compartment, has been shown to contain two possible nitrogenase systems.

RevDate: 2019-02-14

Karimi E, Keller-Costa T, Slaby BM, et al (2019)

Genomic blueprints of sponge-prokaryote symbiosis are shared by low abundant and cultivatable Alphaproteobacteria.

Scientific reports, 9(1):1999 pii:10.1038/s41598-019-38737-x.

Marine sponges are early-branching, filter-feeding metazoans that usually host complex microbiomes comprised of several, currently uncultivatable symbiotic lineages. Here, we use a low-carbon based strategy to cultivate low-abundance bacteria from Spongia officinalis. This approach favoured the growth of Alphaproteobacteria strains in the genera Anderseniella, Erythrobacter, Labrenzia, Loktanella, Ruegeria, Sphingorhabdus, Tateyamaria and Pseudovibrio, besides two likely new genera in the Rhodobacteraceae family. Mapping of complete genomes against the metagenomes of S. officinalis, seawater, and sediments confirmed the rare status of all the above-mentioned lineages in the marine realm. Remarkably, this community of low-abundance Alphaproteobacteria possesses several genomic attributes common to dominant, presently uncultivatable sponge symbionts, potentially contributing to host fitness through detoxification mechanisms (e.g. heavy metal and metabolic waste removal, degradation of aromatic compounds), provision of essential vitamins (e.g. B6 and B12 biosynthesis), nutritional exchange (especially regarding the processing of organic sulphur and nitrogen) and chemical defence (e.g. polyketide and terpenoid biosynthesis). None of the studied taxa displayed signs of genome reduction, indicative of obligate mutualism. Instead, versatile nutrient metabolisms along with motility, chemotaxis, and tight-adherence capacities - also known to confer environmental hardiness - were inferred, underlying dual host-associated and free-living life strategies adopted by these diverse sponge-associated Alphaproteobacteria.

RevDate: 2019-02-14

Liu J, Liu J, Liu J, et al (2019)

The potassium transporter SlHAK10 is involved in mycorrhizal potassium uptake.

Plant physiology pii:pp.18.01533 [Epub ahead of print].

Most terrestrial plants form a root symbiosis with arbuscular mycorrhizal (AM) fungi, which receive fixed carbon from the plant and enhance the plant's uptake of mineral nutrients. AM symbiosis improves the phosphorous and nitrogen nutrition of host plants; however, little is known about the role of AM symbiosis in potassium (K+) nutrition. Here, we report that inoculation with the AM fungus Rhizophagus irregularis improved tomato (Solanum lycopersicum) plant growth and K+ acquisition, and K+ deficiency has a negative effect on root growth and AM colonization. Based on its homology to a Lotus japonicus AM-induced K+ transporter, we identified a mycorrhiza-specific tomato K+ transporter, SlHAK10 (Solanum lycopersicum High-affinity Potassium Transporter 10), that was exclusively expressed in arbuscule-containing cells. SlHAK10 could restore a yeast K+ uptake-defective mutant in the low-affinity concentration range. Loss of function of SlHAK10 led to a significant decrease in mycorrhizal K+ uptake and AM colonization rate under low K+ conditions, but did not affect arbuscule development. Overexpressing SlHAK10 from the constitutive CaMV35S promoter or the AM-specific pSmPT4 promoter (Solanum melongena Phosphate Transporter 4) not only improved plant growth and K+ uptake, but also increased AM colonization efficiency and soluble sugar content in roots supplied with low K+. Our results indicate that tomato plants have a SlHAK10-mediated mycorrhizal K+ uptake pathway and that improved plant K+ nutrition could increase carbohydrate accumulation in roots, which facilitates AM fungal colonization.

RevDate: 2019-02-14

Jia T, Wang J, Chang W, et al (2019)

Proteomics Analysis of E. angustifolia Seedlings Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress.

International journal of molecular sciences, 20(3): pii:ijms20030788.

To reveal the mechanism of salinity stress alleviation by arbuscular mycorrhizal fungi (AMF), we investigated the growth parameter, soluble sugar, soluble protein, and protein abundance pattern of E. angustifolia seedlings that were cultured under salinity stress (300 mmol/L NaCl) and inoculated by Rhizophagus irregularis (RI). Furthermore, a label-free quantitative proteomics approach was used to reveal the stress-responsive proteins in the leaves of E. angustifolia. The result indicates that the abundance of 75 proteins in the leaves was significantly influenced when E. angustifolia was inoculated with AMF, which were mainly involved in the metabolism, signal transduction, and reactive oxygen species (ROS) scavenging. Furthermore, we identified chorismate mutase, elongation factor mitochondrial, peptidyl-prolyl cis-trans isomerase, calcium-dependent kinase, glutathione S-transferase, glutathione peroxidase, NADH dehydrogenase, alkaline neutral invertase, peroxidase, and other proteins closely related to the salt tolerance process. The proteomic results indicated that E. angustifolia seedlings inoculated with AMF increased the secondary metabolism level of phenylpropane metabolism, enhanced the signal transduction of Ca2+ and ROS scavenging ability, promoted the biosynthesis of protein, accelerated the protein folding, and inhibited the degradation of protein under salt stress. Moreover, AMF enhanced the synthesis of ATP and provided sufficient energy for plant cell activity. This study implied that symbiosis of halophytes and AMF has potential as an application for the improvement of saline-alkali soils.

RevDate: 2019-02-14

Crespo-Rivas JC, Navarro-Gómez P, Alias-Villegas C, et al (2019)

Sinorhizobium fredii HH103 RirA Is Required for Oxidative Stress Resistance and Efficient Symbiosis with Soybean.

International journal of molecular sciences, 20(3): pii:ijms20030787.

Members of Rhizobiaceae contain a homologue of the iron-responsive regulatory protein RirA. In different bacteria, RirA acts as a repressor of iron uptake systems under iron-replete conditions and contributes to ameliorate cell damage during oxidative stress. In Rhizobium leguminosarum and Sinorhizobium meliloti, mutations in rirA do not impair symbiotic nitrogen fixation. In this study, a rirA mutant of broad host range S. fredii HH103 has been constructed (SVQ780) and its free-living and symbiotic phenotypes evaluated. No production of siderophores could be detected in either the wild-type or SVQ780. The rirA mutant exhibited a growth advantage under iron-deficient conditions and hypersensitivity to hydrogen peroxide in iron-rich medium. Transcription of rirA in HH103 is subject to autoregulation and inactivation of the gene upregulates fbpA, a gene putatively involved in iron transport. The S. fredii rirA mutant was able to nodulate soybean plants, but symbiotic nitrogen fixation was impaired. Nodules induced by the mutant were poorly infected compared to those induced by the wild-type. Genetic complementation reversed the mutant's hypersensitivity to H₂O₂, expression of fbpA, and symbiotic deficiency in soybean plants. This is the first report that demonstrates a role for RirA in the Rhizobium-legume symbiosis.

RevDate: 2019-02-13

Abdurashytov SF, VV Volkohon (2016)


Mikrobiolohichnyi zhurnal (Kiev, Ukraine : 1993), 78(1):63-70.

The primary selection ofarbuscular mycorrhizal (AM)fungifrom soils of Crimean Steppe was conducted The most effective associations P3, P5, S1, S3, S8 and S9 were identified using morphological characteristics of Sorgum sudanense roots colonization and spores surface appearance. It was shown that AMfitngiform Arum-type symbiosis contain well- established spores' kinds specific to individual associations. The molecular identification was performed in addition to the morphological data. AMfungi associations P3, P5, S1, S3, S8 and S9 were identified as Rhizophagus genus while SI association as Funneliformis genus.

RevDate: 2019-02-14

Abdelkrim S, Jebara SH, Saadani O, et al (2019)

Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria.

Archives of microbiology, 201(1):107-121.

In this study, two populations of leguminous plants Lathyrus sativus were grown in four soils that were collected from sites differently contaminated by heavy metals. Evaluations included basic soil properties, concentrations of major nutrients and four metals (copper, zinc, lead and cadmium) in these soils. Investigation of Lathyrus sativus response to contamination showed that the increase of heavy metal concentration in soils affected biomass of plant, number of nodules and plant metal uptake. Heavy metal tolerance of 46 isolated bacteria from the root nodules was evaluated and demonstrated that the maximum concentration of Cd, Pb, Cu and Zn tolerated by strains were 0.8, 2.5, 0.2, and 0.5 mM, respectively. Twenty-two isolates were tested for their effects on plant biomass production and nodule formation and showed that only R. leguminosarum nodulated Lathyrus sativus, while some bacteria improved the shoot and root dry biomass. Sequences of their 16S rDNA gene fragments were also obtained and evaluated for tentative identification of the isolates which revealed different bacterial genera represented by Rhizobium sp, Rhizobium leguminosarum, Sinorhizobium meliloti, Pseudomonas sp, Pseudomonas fluorescens, Luteibacter sp, Variovorax sp, Bacillus simplex and Bacillus megaterium. The existence of Pb- and Cd-resistant genes (PbrA and CadA) in these bacteria was determined by PCR, and it showed high homology with PbrA and CadA genes from other bacteria. The tested resistant population was able to accumulate high concentrations of Pb and Cd in all plant parts and, therefore, can be classified as a strong metal accumulator with suitable potential for phytoremediation of Pb and Cd polluted sites. Heavy metal resistant and efficient bacteria isolated from root nodules were chosen with Lathyrus sativus to form symbiotic associations for eventual bioremediation program, which could be tested to remove pollutants from contaminated sites.

RevDate: 2019-02-13

Hassing B, Winter D, Becker Y, et al (2019)

Analysis of Epichloë festucae small secreted proteins in the interaction with Lolium perenne.

PloS one, 14(2):e0209463 pii:PONE-D-18-34444.

Epichloë festucae is an endophyte of the agriculturally important perennial ryegrass. This species systemically colonises the aerial tissues of this host where its growth is tightly regulated thereby maintaining a mutualistic symbiotic interaction. Recent studies have suggested that small secreted proteins, termed effectors, play a vital role in the suppression of host defence responses. To date only a few effectors with important roles in mutualistic interactions have been described. Here we make use of the fully assembled E. festucae genome and EffectorP to generate a suite of 141 effector candidates. These were analysed with respect to their genome location and expression profiles in planta and in several symbiosis-defective mutants. We found an association between effector candidates and a class of transposable elements known as MITEs, but no correlation with other dynamic features of the E. festucae genome, such as transposable element-rich regions. Three effector candidates and a small GPI-anchored protein were chosen for functional analysis based on their high expression in planta compared to in culture and their differential regulation in symbiosis defective E. festucae mutants. All three candidate effector proteins were shown to possess a functional signal peptide and two could be detected in the extracellular medium by western blotting. Localization of the effector candidates in planta suggests that they are not translocated into the plant cell, but rather, are localized in the apoplastic space or are attached to the cell wall. Deletion and overexpression of the effector candidates, as well as the putative GPI-anchored protein, did not affect the plant growth phenotype or restrict growth of E. festucae mutants in planta. These results indicate that these proteins are either not required for the interaction at the observed life stages or that there is redundancy between effectors expressed by E. festucae.

RevDate: 2019-02-12

Schwencke J, Bureau JM, Crosnier MT, et al (1998)

Cytometric determination of genome size and base composition of tree species of three genera of Casuarinaceae.

Plant cell reports, 18(3-4):346-349.

The genome size and base composition of diploid plant species from three genera of the Casuarinaceae family were determined by flow cytometry. Casuarina glauca Sieb. ex Spring. and Gymnostoma deplancheana (Miq.) L. Johnson showed a small genome with 2C = 0.70 pg, 58.6% AT, 40.5% GC for the first species and 2C = 0.75 pg, 58.7% AT, 40.5% GC for the second. Allocasuarina verticillata (Lam.) L. Johnson had a larger genome: 2C = 1.90 pg, 59.3% AT, 41.1% GC. One haploid genome of C. glauca is therefore about 340×106 base pairs. In leaves, roots or bark of these three species, polysomaty was virtually absent: a maximum frequency of 4C nuclei of only 0.08 was found in bark of C. glauca. The genome sizes of C. glauca and G. deplancheana are among the smallest described for higher plants. Small genome size, diploidy and the absence of polysomaty are advantageous traits for facilitating molecular approaches to improvement of these actinorhizal plants and developing the study of their symbiotic interactions with Frankia.

RevDate: 2019-02-13

Ellegaard KM, P Engel (2019)

Genomic diversity landscape of the honey bee gut microbiota.

Nature communications, 10(1):446 pii:10.1038/s41467-019-08303-0.

The structure and distribution of genomic diversity in natural microbial communities is largely unexplored. Here, we used shotgun metagenomics to assess the diversity of the honey bee gut microbiota, a community consisting of few bacterial phylotypes. Our results show that most phylotypes are composed of sequence-discrete populations, which co-exist in individual bees and show age-specific abundance profiles. In contrast, strains present within these sequence-discrete populations were found to segregate into individual bees. Consequently, despite a conserved phylotype composition, each honey bee harbors a distinct community at the functional level. While ecological differentiation seems to facilitate coexistence at higher taxonomic levels, our findings suggest that, at the level of strains, priority effects during community assembly result in individualized profiles, despite the social lifestyle of the host. Our study underscores the need to move beyond phylotype-level characterizations to understand the function of this community, and illustrates its potential for strain-level analysis.

RevDate: 2019-02-13

Woodruff GC, PC Phillips (2018)

Field studies reveal a close relative of C. elegans thrives in the fresh figs of Ficus septica and disperses on its Ceratosolen pollinating wasps.

BMC ecology, 18(1):26.

BACKGROUND: Biotic interactions are ubiquitous and require information from ecology, evolutionary biology, and functional genetics in order to be understood. However, study systems that are amenable to investigations across such disparate fields are rare. Figs and fig wasps are a classic system for ecology and evolutionary biology with poor functional genetics; Caenorhabditis elegans is a classic system for functional genetics with poor ecology. In order to help bridge these disciplines, here we describe the natural history of a close relative of C. elegans, Caenorhabditis inopinata, that is associated with the fig Ficus septica and its pollinating Ceratosolen wasps.

RESULTS: To understand the natural context of fig-associated Caenorhabditis, fresh F. septica figs from four Okinawan islands were sampled, dissected, and observed under microscopy. C. inopinata was found in all islands where F. septica figs were found. C.i nopinata was routinely found in the fig interior and almost never observed on the outside surface. C. inopinata was only found in pollinated figs, and C. inopinata was more likely to be observed in figs with more foundress pollinating wasps. Actively reproducing C. inopinata dominated early phase figs, whereas late phase figs with emerging wasp progeny harbored C. inopinata dauer larvae. Additionally, C. inopinata was observed dismounting from Ceratosolen pollinating wasps that were placed on agar plates. C. inopinata was not found on non-pollinating, parasitic Philotrypesis wasps. Finally, C. inopinata was only observed in F. septica figs among five Okinawan Ficus species sampled.

CONCLUSION: These are the first detailed field observations of C. inopinata, and they suggest a natural history where this species proliferates in early phase F. septica figs and disperses from late phase figs on Ceratosolen pollinating fig wasps. While consistent with other examples of nematode diversification in the fig microcosm, the fig and wasp host specificity of C. inopinata is highly divergent from the life histories of its close relatives and frames hypotheses for future investigations. This natural co-occurrence of the fig/fig wasp and C. inopinata study systems sets the stage for an integrated research program that can help to explain the evolution of interspecific interactions.

RevDate: 2019-02-12

Gautrat P, Mortier V, Laffont C, et al (2019)

Unraveling new molecular players involved in the autoregulation of nodulation in Medicago truncatula.

Journal of experimental botany pii:5310119 [Epub ahead of print].

The number of legume root nodules resulting from a symbiosis with rhizobia is tightly controlled by the plant. Certain members of the CLAVATA3/Embryo Surrounding Region (CLE) peptide family, specifically MtCLE12 and MtCLE13 in Medicago truncatula, act in the systemic autoregulation of nodulation (AON) pathway that negatively regulates the number of nodules. Little is known about the molecular pathways that operate downstream of the AON-related CLE peptides. Here, by means of a transcriptome analysis, we show that roots ectopically expressing MtCLE13 deregulate only a limited number of genes, including three down-regulated genes encoding lysin motif receptor-like kinases (LysM-RLKs), among which are the nodulation factor (NF) receptor NF Perception gene (NFP) and two up-regulated genes, MtTML1 and MtTML2, encoding Too Much Love (TML)-related Kelch-repeat containing F-box proteins. The observed deregulation was specific for the ectopic expression of nodulation-related MtCLE genes and depended on the Super Numeric Nodules (SUNN) AON RLK. Moreover, overexpression and silencing of these two MtTML genes demonstrated that they play a role in the negative regulation of nodule numbers. Hence, the identified MtTML genes are the functional counterpart of the Lotus japonicus TML gene shown to be central in the AON pathway. Additionally, we propose that the down-regulation of a subset of LysM-RLK-encoding genes, among which is NFP, might contribute to the restriction of further nodulation once the first nodules have been formed.

RevDate: 2019-02-12

Plouznikoff K, Asins MJ, de Boulois HD, et al (2019)

Genetic analysis of tomato root colonization by arbuscular mycorrhizal fungi.

Annals of botany pii:5312893 [Epub ahead of print].

Background and Aims: Arbuscular mycorrhizal fungi (AMF) play an important role in plant nutrition and protection against pests and diseases, as well as in soil structuration, nutrient cycling and, generally speaking, in sustainable agriculture, particularly under drought, salinity and low input or organic agriculture. However, little is known about the genetics of the AMF-plant association in tomato. The aim of this study was the genetic analysis of root AMF colonization in tomato via the detection of the quantitative trait loci (QTLs) involved.

Methods: A population of 130 recombinant inbred lines derived from the wild species Solanum pimpinellifolium, genotyped for 1899 segregating, non-redundant single nucleotide polymorphisms (SNPs) from the SolCAP tomato panel, was characterized for intensity, frequency and arbuscular abundance of AMF colonization to detect the QTLs involved and to analyse the genes within their peaks (2-2.6 Mbp).

Key Results: The three AMF colonization parameters were highly correlated (0.78-0.97) and the best one, with the highest heritability (0.23), corresponded to colonization intensity. A total of eight QTLs in chromosomes 1, 3, 4, 5, 6, 8, 9 and 10 were detected. Seven of them simultaneously affected intensity and arbuscule abundance. The allele increasing the expression of the trait usually came from the wild parent in accordance with the parental means, and several epistatic interactions were found relevant for breeding purposes. SlCCaMK and SlLYK13 were found among the candidate genes. Carbohydrate transmembrane transporter activity, lipid metabolism and transport, metabolic processes related to nitrogen and phosphate-containing compounds, regulation of carbohydrates, and other biological processes involved in the plant defence were found to be over-represented within the QTL peaks.

Conclusions: Intensity is genetically the best morphological measure of tomato root AMF colonization. Wild alleles can improve AMF colonization, and the gene contents of AMF colonization QTLs might be important for explaining the establishment and functioning of the AMF-plant symbiosis.

RevDate: 2019-02-12

Trinh CS, Jeong CY, Lee WJ, et al (2018)

Paenibacillus pabuli strain P7S promotes plant growth and induces anthocyanin accumulation in Arabidopsis thaliana.

Plant physiology and biochemistry : PPB, 129:264-272.

In this study, a novel plant growth-promoting rhizobacteria (PGPR), the bacterial strain Paenibacillus pabuli P7S (PP7S), showed promising plant growth-promoting effects. Furthermore, it induced anthocyanin accumulation in Arabidopsis. When co-cultivated with PP7S, there was a significant increase in anthocyanin content and biomass of Arabidopsis seedlings compared with those of the control. The quantitative reverse transcription-polymerase chain reaction analysis revealed higher expression of many key genes regulating anthocyanin and flavonoid biosynthesis pathways in PP7S-treated seedlings when compared with that of the control. Furthermore, higher expression of pathogen-related genes and microbe-associated molecular pattern genes was also observed in response to PP7S, indicating that the PGPR triggered the induced systemic response (ISR) in A. thaliana. These results suggest that PP7S promotes plant growth in A. thaliana and increases anthocyanin biosynthesis by triggering specific ISRs in plant.

RevDate: 2019-02-12

Pentimone I, Lebrón R, Hackenberg M, et al (2018)

Identification of tomato miRNAs responsive to root colonization by endophytic Pochonia chlamydosporia.

Applied microbiology and biotechnology, 102(2):907-919.

The molecular mechanisms active during the endophytic phase of the fungus Pochonia chlamydosporia are still poorly understood. In particular, few data are available on the links between the endophyte and the root response, as modulated by noncoding small RNAs. In this study, we describe the microRNAs (miRNAs) that are differentially expressed (DE) in the roots of tomato, colonized by P. chlamydosporia. A genome-wide NGS expression profiling of small RNAs in roots, either colonized or not by the fungus, showed 26 miRNAs upregulated in inoculated roots. Their predicted target genes are involved in the plant information processing system, which recognizes, percepts, and transmits signals, with higher representations in processes such as apoptosis and plant defense regulation. RNAseq data showed that predicted miRNA target genes were downregulated in tomato roots after 4, 7, 10, and 21 days post P. chlamydosporia inoculation. The differential expression of four miRNAs was further validated using qPCR analysis. The P. chlamydosporia endophytic lifestyle in tomato roots included an intricate network of miRNAs and targets. Data provide a first platform of DE tomato miRNAs after P. chlamydosporia colonization. They indicated that several miRNAs are involved in the host response to the fungus, playing important roles for its recognition as a symbiotic microorganism, allowing endophytism by modulating the host defense reaction. Data also indicated that endophytism affects tRNA fragmentation. This is the first study on miRNAs induced by P. chlamydosporia endophytism and related development regulation effects in Solanum lycopersicum.

RevDate: 2019-02-11

Ohbayashi T, Futahashi R, Terashima M, et al (2019)

Comparative cytology, physiology and transcriptomics of Burkholderia insecticola in symbiosis with the bean bug Riptortus pedestris and in culture.

The ISME journal pii:10.1038/s41396-019-0361-8 [Epub ahead of print].

In the symbiosis of the bean bug Riptortus pedestris with Burkholderia insecticola, the bacteria occupy an exclusive niche in the insect midgut and favor insect development and reproduction. In order to understand how the symbiotic bacteria stably colonize the midgut crypts and which services they provide to the host, we compared the cytology, physiology, and transcriptomics of free-living and midgut-colonizing B. insecticola. The analyses revealed that midgut-colonizing bacteria were smaller in size and had lower DNA content, they had increased stress sensitivity, lost motility, and an altered cell surface. Transcriptomics revealed what kinds of nutrients are provided by the bean bug to the Burkholderia symbiont. Transporters and metabolic pathways of diverse sugars such as rhamnose and ribose, and sulfur compounds like sulfate and taurine were upregulated in the midgut-colonizing symbionts. Moreover, pathways enabling the assimilation of insect nitrogen wastes, i.e. allantoin and urea, were also upregulated. The data further suggested that the midgut-colonizing symbionts produced all essential amino acids and B vitamins, some of which are scarce in the soybean food of the host insect. Together, these findings suggest that the Burkholderia symbiont is fed with specific nutrients and also recycles host metabolic wastes in the insect gut, and in return, the bacterial symbiont provides the host with essential nutrients limited in the insect food, contributing to the rapid growth and enhanced reproduction of the bean bug host.

RevDate: 2019-02-11

Wang Y, Li N, Chen T, et al (2018)

Generation and characterization of expressed sequence tags (ESTs) from coralloid root cDNA library of Cycas debaoensis.

Plant diversity, 40(5):245-252 pii:S2468-2659(18)30046-5.

A normalized full-length cDNA library was constructed from the coralloid roots of Cycas debaoensis by the DSN (duplex-specific nuclease) normalization method combined with the SMART (Switching Mechanism At 5' end of the RNA Transcript) technique. The titer of the original cDNA library was about 1.5 × 106 cfu·mL-1 and the average insertion size was about 1 kb with a high recombination rate (97%). The 5011 high-quality expressed sequence tags (ESTs) were obtained from 5393 randomly picked cDNA clones. Clustering and assembly of ESTs resulted in 2984 unique sequences, consisting of 618 contigs and 2366 singlets. EST sequence annotation revealed that 2333 and 1901 unigenes were functionally annotated in the NCBI non-redundant database and Swiss-Prot protein database, respectively. Functional analysis demonstrated that 1495 (50.1%) unigenes were associated with 4082 Gene Ontology (GO) terms. A total of 847 unigenes were grouped into 22 Cluster of Orthologous Groups (COG) functional categories. Based on the EST dataset, 22 ESTs that encoded putative receptor-like protein kinase (RLK) genes were screened. Furthermore, a total of 94 simple sequence repeats (SSRs) were discovered, of which 20 loci were successfully amplified in C. debaoensis. This study is the first EST analysis for the coralloid roots of C. debaoensis and provides a valuable genomic resource for novel gene discovery, gene expression and comparative genomics, conservation and management studies as well as applications in C. debaoensis and related cycad species.

RevDate: 2019-02-11

Nogales A, Santos ES, Abreu MM, et al (2018)

Mycorrhizal Inoculation Differentially Affects Grapevine's Performance in Copper Contaminated and Non-contaminated Soils.

Frontiers in plant science, 9:1906.

Plant inoculation with arbuscular mycorrhizal fungi (AMF) is increasingly employed to enhance productivity and sustainability in agricultural ecosystems. In the present study, the potential benefits of AMF inoculation on young grapevines replanted in pots containing vineyard soil with high Cu concentration were evaluated. For this purpose, one-year-old cv. Touriga Nacional grapevines grafted onto 1103P rootstocks were further inoculated with Rhizoglomus irregulare or Funneliformis mosseae, or left non-inoculated, and maintained in a sterilized substrate under greenhouse conditions for three months. After this time, half of the plants were transplanted to containers filled with an Arenosol from a vineyard which had been artificially contaminated or not with 300 mg kg-1 of Cu. At the end of the growing season, soil nutrient concentration, soil dehydrogenase activity and mycorrhizal colonization rate were analyzed. Grapevine performance was assessed by measuring several vegetative growth and physiological parameters as well as nutrient concentrations in leaves and roots. In the non-contaminated soil, R. irregulare- and F. mosseae-inoculated plants had significantly greater root biomass than the non-inoculated ones. However, the opposite effect was observed in the Cu-contaminated soil, where non-inoculated plants performed better regarding shoot and root development. Concerning nutrient levels, an increase in Cu, Mg and Mn concentrations was observed in the roots of plants growing in the contaminated soil, although only Mn was translocated to leaves. This led to a large increase in leaf Mn concentrations, which was significantly higher in non-inoculated and F. mosseae- inoculated plants than in the R. irregulare- inoculated ones. Copper contamination induced a general decrease in leaf N, P and Fe concentrations as well as chlorosis symptoms. The largest decrease in N and P was observed in F. mosseae- inoculated plants, with 73 and 31.2%, respectively. However, these plants were the ones with the least decrease in Fe concentration (10% vs. almost 30% in the other two inoculation treatments). In conclusion, this study indicates that soil Cu levels can modify the outcome of AMF inoculations in young grapevines, disclosing new AMF-plant associations potentially relevant in vineyards with a tradition of Cu-based fungicide application.

RevDate: 2019-02-11

Chouvenc T, Elliott ML, Šobotník J, et al (2018)

The Termite Fecal Nest: A Framework for the Opportunistic Acquisition of Beneficial Soil Streptomyces (Actinomycetales: Streptomycetaceae).

Environmental entomology, 47(6):1431-1439.

Mutualistic associations between insects and microorganisms must imply gains for both partners, and the emphasis has mostly focused on coevolved host-symbiont systems. However, some insect hosts may have evolved traits that allow for various means of association with opportunistic microbial communities, especially when the microbes are omnipresent in their environment. It was previously shown that colonies of the subterranean termite Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae) build nests out of fecal material that host a community of Streptomyces Waksman and Henrici (Actinomycetales: Streptomycetaceae). These Actinobacteria produce an array of bioactive metabolites that provides a level of protection for termites against certain entomopathogenic fungi. How C. formosanus acquires and maintains this association remains unknown. This study shows that the majority of Streptomyces isolates found in field termite fecal nest materials are identical to Streptomyces isolates from soils surrounding the nests and are not vertically inherited. A survey of Streptomyces communities from C. formosanus fecal nest materials sampled at 20 locations around the world revealed that all nests are reliably associated with a diverse Streptomyces community. The C. formosanus fecal nest material therefore provides a nutritional framework that can recruit beneficial Streptomyces from the soil environment, in the absence of long-term coevolutionary processes. A diverse Streptomyces community is reliably present in soils, and subterranean termite colonies can acquire such facultative symbionts each social cycle into their fecal nest. This association probably emerged as an exaptation from the existing termite nest structure and benefits both the termite and the opportunistic colonizing bacteria.

RevDate: 2019-02-11

Morel F, Jacquier H, Desroches M, et al (2018)

Use of Andromas and Bruker MALDI-TOF MS in the identification of Neisseria.

European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 37(12):2273-2277.

Through the past decade, MALDI-TOF MS has been recognized as a fast and robust tool for identification of most bacteria in clinical microbiology. However, the accuracy of this method to identify Neisseria species is still debated, and few data are available about commensal Neisseria species identification. In this study, we assessed two MALDI-TOF MS systems (Bruker Biotyper and Andromas) for the identification of 88, 18, and 29 isolates of Neisseria gonorrhoeae, Neisseria meningitidis, and commensal Neisseria species, respectively. All 88 isolates of N. gonorrhoeae were correctly identified using both systems, and most N. meningitidis and commensal Neisseria species were well identified: only 1/18 isolates of N. meningitidis was misidentified using Bruker Biotyper, and 1 isolate of Neisseria polysaccharea was misidentified as N. meningitidis using both systems. These results strengthen the possibility to use MALDI-TOF MS as a single method for Neisseria identification in routine, with excellent performance for N. gonorrhoeae identification. However, results should be interpreted prudently for N. meningitdis and commensal Neisseria species when isolated from genital and oropharyngeal samples where these both species can coexist.

RevDate: 2019-02-11

Anonymous (2018)


Nihon saikingaku zasshi. Japanese journal of bacteriology, 73(1):6-20.

RevDate: 2019-02-11

Anonymous (2018)

[Luncheon Seminar].

Nihon saikingaku zasshi. Japanese journal of bacteriology, 73(1):154-155.

RevDate: 2019-02-11

Zhu YX, Song YL, Zhang YK, et al (2018)

Incidence of Facultative Bacterial Endosymbionts in Spider Mites Associated with Local Environments and Host Plants.

Applied and environmental microbiology, 84(6):.

Spider mites are frequently associated with multiple endosymbionts whose infection patterns often exhibit spatial and temporal variation. However, the association between endosymbiont prevalence and environmental factors remains unclear. Here, we surveyed endosymbionts in natural populations of the spider mite, Tetranychus truncatus, in China, screening 935 spider mites from 21 localities and 12 host plant species. Three facultative endosymbiont lineages, Wolbachia, Cardinium, and Spiroplasma, were detected at different infection frequencies (52.5%, 26.3%, and 8.6%, respectively). Multiple endosymbiont infections were observed in most local populations, and the incidence of individuals with the Wolbachia-Spiroplasma coinfection was higher than expected from the frequency of each infection within a population. Endosymbiont infection frequencies exhibited associations with environmental factors: Wolbachia infection rates increased at localities with higher annual mean temperatures, while Cardinium and Spiroplasma infection rates increased at localities from higher altitudes. Wolbachia was more common in mites from Lycopersicon esculentum and Glycine max compared to those from Zea mays This study highlights that host-endosymbiont interactions may be associated with environmental factors, including climate and other geographically linked factors, as well as the host's food plant.IMPORTANCE The aim of this study was to examine the incidence of endosymbiont distribution and the infection patterns in spider mites. The main findings are that multiple endosymbiont infections were more common than expected and that endosymbiont infection frequencies were associated with environmental factors. This work highlights that host-endosymbiont interactions need to be studied within an environmental and geographic context.

RevDate: 2019-02-11

Martín-Vivaldi M, Soler JJ, Martínez-García Á, et al (2018)

Acquisition of Uropygial Gland Microbiome by Hoopoe Nestlings.

Microbial ecology, 76(1):285-297.

Mutualistic symbioses between animals and bacteria depend on acquisition of appropriate symbionts while avoiding exploitation by non-beneficial microbes. The mode of acquisition of symbionts would determine, not only the probability of encountering but also evolutionary outcomes of mutualistic counterparts. The microbiome inhabiting the uropygial gland of the European hoopoe (Upupa epops) includes a variety of bacterial strains, some of them providing antimicrobial benefits. Here, the mode of acquisition and stability of this microbiome is analyzed by means of Automated rRNA Intergenic Spacer Analysis and two different experiments. The first experiment impeded mothers' access to their glands, thus avoiding direct transmission of microorganisms from female to offspring secretions. The second experiment explored the stability of the microbiomes by inoculating glands with secretions from alien nests. The first experiment provoked a reduction in similarity of microbiomes of mother and nestlings. Interestingly, some bacterial strains were more often detected when females had not access to their glands, suggesting antagonistic effects among bacteria from different sources. The second experiment caused an increase in richness of the microbiome of receivers in terms of prevalence of Operational Taxonomic Units (OTUs) that reduced differences in microbiomes of donors and receivers. That occurred because OTUs that were present in donors but not in receivers incorporated to the microbiome of the latter, which provoked that cross-inoculated nestlings got similar final microbiomes that included the most prevalent OTUs. The results are therefore consistent with a central role of vertical transmission in bacterial acquisition by nestling hoopoes and support the idea that the typical composition of the hoopoe gland microbiome is reached by the incorporation of some bacteria during the nestling period. This scenario suggests the existence of a coevolved core microbiome composed by a mix of specialized vertically transmitted strains and facultative symbionts able to coexist with them. The implications of this mixed mode of transmission for the evolution of the mutualism are discussed.

RevDate: 2019-02-11

Gutierrez AC, Tornesello-Galván J, Manfrino RG, et al (2017)

[Organization and preservation of the collection of pathogenic and fungal symbionts of insects and other arthropods from CEPAVE (CONICET-UNLP), La Plata, Argentina].

Revista Argentina de microbiologia, 49(2):183-188.

The collection of fungal pathogens and symbionts of insects and other arthropods of the Centro de Estudios Parasitológicos y de Vectores, La Plata, Argentina, is unique because it preserves in vivo and in vitro cultures of fungal pathogens. This culture collection is open for research, teaching, consulting services, and strain deposit. It contains 421 strains belonging to 23 genera (16 Ascomycota, 4 Entomophthoromycotina, 2 Glomeromycota and 1 Oomycota), and the cultures are preserved by different methods such as cryopreservation in freezer at -20°C and -70°C, paper, distilled water and lyophilization. Fungi were isolated from insects, other arthropods, and soil (by using insect baits and selective media). Species were identified by morphological features and in a few strains by molecular taxonomy (PCR of rDNA). This collection is a reference center for species identification/certifications, research and teaching purposes, strain deposit, transference and consultancy services, and its overall goal is to preserve the fungal germplasm and ex situ diversity. Most of the strains are native of Argentina. The collection was originated in 1988 and is registered in the Latin American Federation for Culture Collections and in the World Federation of Culture Collections.

RevDate: 2019-02-09

Ivanov S, Austin J, Berg RH, et al (2019)

Extensive membrane systems at the host-arbuscular mycorrhizal fungus interface.

Nature plants, 5(2):194-203.

During arbuscular mycorrhizal (AM) symbiosis, cells within the root cortex develop a matrix-filled apoplastic compartment in which differentiated AM fungal hyphae called arbuscules reside. Development of the compartment occurs rapidly, coincident with intracellular penetration and rapid branching of the fungal hypha, and it requires much of the plant cell's secretory machinery to generate the periarbuscular membrane that delimits the compartment. Despite recent advances, our understanding of the development of the periarbuscular membrane and the transfer of molecules across the symbiotic interface is limited. Here, using electron microscopy and tomography, we reveal that the periarbuscular matrix contains two types of membrane-bound compartments. We propose that one of these arises as a consequence of biogenesis of the periarbuscular membrane and may facilitate movement of molecules between symbiotic partners. Additionally, we show that the arbuscule contains massive arrays of membrane tubules located between the protoplast and the cell wall. We speculate that these tubules may provide the absorptive capacity needed for nutrient assimilation and possibly water absorption to enable rapid hyphal expansion.

RevDate: 2019-02-09

Limpens E (2019)

Extracellular membranes in symbiosis.

Nature plants, 5(2):131-132.

RevDate: 2019-02-08

Abreu I, Mihelj P, D Raimunda (2019)

Transition metal transporters in rhizobia: tuning the inorganic micronutrient requirements to different living styles.

Metallomics : integrated biometal science [Epub ahead of print].

A group of bacteria known as rhizobia are key players in symbiotic nitrogen fixation (SNF) in partnership with legumes. After a molecular exchange, the bacteria end surrounded by a plant membrane forming symbiosomes, organelle-like structures, where they differentiate to bacteroids and fix nitrogen. This symbiotic process is highly dependent on dynamic nutrient exchanges between the partners. Among these are transition metals (TM) participating as inorganic and organic cofactors of fundamental enzymes. While the understanding of how plant transporters facilitate TMs to the very near environment of the bacteroid is expanding, our knowledge on how bacteroid transporters integrate to TM homeostasis mechanisms in the plant host is still limited. This is significantly relevant considering the low solubility and scarcity of TMs in soils, and the in crescendo gradient of TM bioavailability rhizobia faces during the infection and bacteroid differentiation processes. In the present work, we review the main metal transporter families found in rhizobia, their role in free-living conditions and, when known, in symbiosis. We focus on discussing those transporters which could play a significant role in TM-dependent biochemical and physiological processes in the bacteroid, thus paving the way towards an optimized SNF.

RevDate: 2019-02-08

Satyanarayana SDV, Krishna MSR, Pavan Kumar P, et al (2018)

In silico structural homology modeling of nif A protein of rhizobial strains in selective legume plants.

Journal, genetic engineering & biotechnology, 16(2):731-737.

Symbiosis is a complex genetic regulatory biological evolution which is highly specific pertaining to plant species and microbial strains. Biological nitrogen fixation in legumes is a functional combination of nodulation by nod genes and regulation by nif, fix genes. Three rhizobial strains (Rhizobium leguminosarum, Bradyrhizobium japonicum, and Mesorhizobium ciceri) that we considered for in silico analysis of nif A are proved to be the best isolates with respect to N2 fixing for ground nut, chick pea and soya bean (in vitro) out of 47 forest soil samples. An attempt has been made to understand the structural characteristics and variations of nif genes that may reveal the factors influencing the nitrogen fixation. The primary, secondary and tertiary structure of nif A protein was analyzed by using multiple bioinformatics tools such as chou-Fasman, GOR, ExPasy ProtParam tools, Prosa -web. Literature shows that the homology modeling of nif A protein have not been explored yet which insisted the immediate development for better understanding of nif A structure and its influence on biological nitrogen fixation. In the present predicted 3D structure, the nif A protein was analyzed by three different software tools (Phyre2, Swiss model, Modeller) and validated accordingly which can be considered as an acceptable model. However further in silico studies are suggested to determine the specific factors responsible for nitrogen fixing in the present three rhizobial strains.

RevDate: 2019-02-07

Eskalen A, Gonzalez A, Wang DH, et al (2012)

First Report of a Fusarium sp. and Its Vector Tea Shot Hole Borer (Euwallacea fornicatus) Causing Fusarium Dieback on Avocado in California.

Plant disease, 96(7):1070.

Per capita consumption of avocado in the United States has nearly doubled between 2000 and 2010. The California avocado industry supplies almost 40% of U.S. demand and the remaining 60% is supplied by imports from Latin America and New Zealand. The Tea Shot Hole Borer (TSHB) is an ambrosia beetle from Asia that forms a symbiosis with a new, yet undescribed Fusarium sp. and is a serious problem for the Israeli avocado industry (3). The beetle also causes severe damage on the branches of tea (Camelia sinensis) in Sri Lanka and India (1). In California, TSHB was first reported on black locust (Robinia pseudoacacia) in 2003, but there are no records of fungal damage (4). In 2012, nine backyard avocado trees (cvs. Hass, Bacon, Fuerte, and Nabal) exhibiting branch dieback were observed throughout the residential neighborhoods of South Gate, Downey, and Pico Rivera in Los Angeles County. Upon inspection, symptoms of white powdery exudate, either dry or surrounded by wet discoloration of the outer bark in association with a single beetle exit hole, were found on the trunk and main branches of the tree. Examination of the cortex and wood under the exit hole revealed brown discolored necrosis. The TSHB was also found within galleries that were 1 to 4 cm long going against the grain. Symptomatic cortex and sapwood tissues were plated onto potato dextrose agar amended with 0.01% tetracycline (PDA-tet). The TSHB was dissected and plated onto PDA-tet after surface disinfestation following methods described by Kajimura and Hijii (2). After 5 days of incubation at room temperature, regular fungal colonies with aerial mycelia and reddish brown margins were produced. Single spore isolations were used to establish pure culture of the fungus. Fifty conidia were hyaline, clavate with a rounded apex, and initially aseptate (4.1 to 12.0 × 2.4 to 4.1 μm) becoming one- to three-septate (7.6 to 15.1 × 2.8 to 4.5 μm, 9.2 to 17.2 × 3.4 to 4.8 μm, and 13.5 to 17.6 × 4.3 to 4.7 μm, respectively). Identity of the fungal isolates was determined by amplification of the rDNA genes with primers ITS4/5 and EF1/2, respectively. Sequences were deposited into GenBank under Accession Nos. JQ723753, JQ723760, JQ723756, and JQ723763. A BLASTn search revealed 100% similarity to Fusarium sp. (Accession Nos. JQ038020 and JQ038013). Detached green shoots of healthy 1-year-old avocado were wounded to a depth of 1 to 2 mm and 5-mm mycelial plugs from 5-day-old cultures (UCR 1781 and UCR 1837) were placed mycelial side down onto the freshly wounded surfaces and then wrapped with Parafilm. Control shoots were inoculated with sterile agar plugs and five replicates per treatment were used. Shoots were incubated at 25 ± 1°C in moist chambers for 3 weeks. Lesions were observed on all inoculated shoots except for the control. Mean lesion lengths were 10.7 and 12.8 cm for UCR1781 and UCR1837, respectively, and were significantly different (P ≤ 0.05) from the control. Both isolates were reisolated from 100% of symptomatic tissues of inoculated shoots to complete Koch's postulates. This experiment was conducted twice and similar results were obtained. To our knowledge, this is the first report of Fusarium sp. and its vector E. fornicatus causing Fusarium dieback on Avocado in California. References: (1) W. Danthanarayana. Tea Quarterly 39:61, 1968. (2) H. Kajimura and N. Hijii. Ecol. Res. 7:107, 1992; (3) Mendel et al., Phytoparasitica, DOI 10.1007/s12600-012-0223-7, 2012. (4) R. J. Rabaglia. Annals Entomol. Soc. Amer. 99:1034, 2006.

RevDate: 2019-02-07

Chujo T, Lukito Y, Eaton CJ, et al (2019)

Complex epigenetic regulation of alkaloid biosynthesis and host interaction by heterochromatin protein I in a fungal endophyte-plant symbiosis.

Fungal genetics and biology : FG & B pii:S1087-1845(19)30047-7 [Epub ahead of print].

Epichloë festucae forms mutualistic symbiotic interactions with grasses of the Lolium and Festuca genera. Protection from insect and mammalian herbivory are the best-documented host benefits of these associations. The two main classes of anti-mammalian alkaloids synthesized by E. festucae are the ergot alkaloids and indole diterpenes, of which ergovaline and lolitrems are the principal terminal products. Synthesis of both metabolites require multiple gene products encoded by clusters of 11 genes located at the subtelomeric regions of chromosomes I and III respectively. These loci are essentially unexpressed in axenic culture but among the most highly expressed genes in planta. We show here that heterochromatin 1 protein (HepA) is an important component of the regulatory machinery that maintains these loci in a silent state in culture. Deletion of this gene led to derepression of eas and ltm gene expression under non-symbiotic culture conditions. Although there was no obvious culture phenotype, RNAseq analysis revealed that around 1000 genes were differentially expressed in the ΔhepA mutant compared to wild type with just one-third upregulated. Inoculation of the ΔhepA mutants into seedlings of Lolium perenne led to a severe host interaction phenotype characterized by a reduction in tiller length but an increase in tiller number. Hyphae within the leaves of these associations were much more abundant in the intercellular spaces of the leaves and aberrantly colonized the vascular bundles. This physiological change was accompanied by a dramatic change in the transcriptome with around 900 genes differentially expressed, with two thirds of these upregulated. This major physiological change was accompanied by a decrease in ltm gene expression and loss of the ability to synthesize lolitrems. These results show that HepA has an important role in controlling the chromatin state of these sub-telomeric secondary metabolite genes, including their symbiosis-specific regulation.

RevDate: 2019-02-07

Li C, Zhou J, Wang X, et al (2019)

A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during AM symbiosis in soybean.

Plant, cell & environment [Epub ahead of print].

Arbuscules are the central structures of the symbiotic association between terrestrial plants and arbuscular mycorrhizal (AM) fungi. However, arbuscules are also ephemeral structures, and following development, these structures are soon digested and ultimately disappear. Currently, little is known regarding the mechanism underlying the digestion of senescent arbuscules. Here, biochemical and functional analyses were integrated to test the hypothesis that a purple acid phosphatase, GmPAP33, controls the hydrolysis of phospholipids during arbuscule degeneration. The expression of GmPAP33 was enhanced by AM fungal inoculation independent of the P conditions in soybean roots. Promoter-GUS reporter assays revealed that the expression of GmPAP33 was mainly localized to arbuscule-containing cells during symbiosis. The recombinant GmPAP33 exhibited high hydrolytic activity toward phospholipids, phosphatidylcholine and phosphatidic acid. Furthermore, soybean plants overexpressing GmPAP33 exhibited increased percentages of large arbuscules and improved yield and P content compared to wild-type plants when inoculated with AM fungi. Mycorrhizal RNAi plants had high phospholipid levels and a large percentage of small arbuscules. These results in combination with the subcellular localization of GmPAP33 at the plasma membrane indicate that GmPAP33 participates in arbuscule degeneration during AM symbiosis via involvement in phospholipid hydrolysis.

RevDate: 2019-02-07

Anonymous (2019)

Kalliope Papadopoulou.

The New phytologist, 221(4):1701-1702.

RevDate: 2019-02-07

Détrée C, Haddad I, Demey-Thomas E, et al (2019)

Global host molecular perturbations upon in situ loss of bacterial endosymbionts in the deep-sea mussel Bathymodiolus azoricus assessed using proteomics and transcriptomics.

BMC genomics, 20(1):109 pii:10.1186/s12864-019-5456-0.

BACKGROUND: Colonization of deep-sea hydrothermal vents by most invertebrates was made efficient through their adaptation to a symbiotic lifestyle with chemosynthetic bacteria, the primary producers in these ecosystems. Anatomical adaptations such as the establishment of specialized cells or organs have been evidenced in numerous deep-sea invertebrates. However, very few studies detailed global inter-dependencies between host and symbionts in these ecosystems. In this study, we proposed to describe, using a proteo-transcriptomic approach, the effects of symbionts loss on the deep-sea mussel Bathymodiolus azoricus' molecular biology. We induced an in situ depletion of symbionts and compared the proteo-transcriptome of the gills of mussels in three conditions: symbiotic mussels (natural population), symbiont-depleted mussels and aposymbiotic mussels.

RESULTS: Global proteomic and transcriptomic results evidenced a global disruption of host machinery in aposymbiotic organisms. We observed that the total number of proteins identified decreased from 1118 in symbiotic mussels to 790 in partially depleted mussels and 761 in aposymbiotic mussels. Using microarrays we identified 4300 transcripts differentially expressed between symbiont-depleted and symbiotic mussels. Among these transcripts, 799 were found differentially expressed in aposymbiotic mussels and almost twice as many in symbiont-depleted mussels as compared to symbiotic mussels. Regarding apoptotic and immune system processes - known to be largely involved in symbiotic interactions - an overall up-regulation of associated proteins and transcripts was observed in symbiont-depleted mussels.

CONCLUSION: Overall, our study showed a global impairment of host machinery and an activation of both the immune and apoptotic system following symbiont-depletion. One of the main assumptions is the involvement of symbiotic bacteria in the inhibition and regulation of immune and apoptotic systems. As such, symbiotic bacteria may increase their lifespan in gill cells while managing the defense of the holobiont against putative pathogens.

RevDate: 2019-02-06

Eskalen A, Stouthamer R, Lynch SC, et al (2013)

Host Range of Fusarium Dieback and Its Ambrosia Beetle (Coleoptera: Scolytinae) Vector in Southern California.

Plant disease, 97(7):938-951.

The polyphagous shot hole borer (PSHB) is an invasive ambrosia beetle that forms a symbiosis with a new, as-yet-undescribed Fusarium sp., together causing Fusarium dieback on avocado and other host plants in California and Israel. In California, PSHB was first reported on black locust in 2003 but there were no records of fungal damage until 2012, when a Fusarium sp. was recovered from the tissues of several backyard avocado trees infested with PSHB in Los Angeles County. The aim of this study was to determine the plant host range of the beetle-fungus complex in two heavily infested botanical gardens in Los Angeles County. Of the 335 tree species observed, 207 (62%), representing 58 plant families, showed signs and symptoms consistent with attack by PSHB. The Fusarium sp. was recovered from 54% of the plant species attacked by PSHB, indicated by the presence of the Fusarium sp. at least at the site of the entry hole. Trees attacked by PSHB included 11 species of California natives, 13 agriculturally important species, and many common street trees. Survey results also revealed 19 tree species that function as reproductive hosts for PSHB. Additionally, approximately a quarter of all tree individuals planted along the streets of southern California belong to a species classified as a reproductive host. These data suggest the beetle-disease complex potentially may establish in a variety of plant communities locally and worldwide.

RevDate: 2019-02-07

Soto W, Travisano M, Tolleson AR, et al (2019)

Symbiont evolution during the free-living phase can improve host colonization.

Microbiology (Reading, England), 165(2):174-187.

For micro-organisms cycling between free-living and host-associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether evolution during the free-living stage can be positively pleiotropic to microbial fitness in a host environment. To address this topic, the squid host Euprymna tasmanica and the marine bioluminescent bacterium Vibrio fischeri were utilized. Microbial ecological diversification in static liquid microcosms was used to simulate symbiont evolution during the free-living stage. Thirteen genetically distinct V. fischeri strains from a broad diversity of ecological sources (e.g. squid light organs, fish light organs and seawater) were examined to see if the results were reproducible in many different genetic settings. Genetic backgrounds that are closely related can be predisposed to considerable differences in how they respond to similar selection pressures. For all strains examined, new mutations with striking and facilitating effects on host colonization arose quickly during microbial evolution in the free-living stage, regardless of the ecological context under consideration for a strain's genetic background. Microbial evolution outside a host environment promoted host range expansion, improved host colonization for a micro-organism, and diminished the negative correlation between biofilm formation and motility.

RevDate: 2019-02-07

Ueki T, Fujie M, Romaidi , et al (2019)

Symbiotic bacteria associated with ascidian vanadium accumulation identified by 16S rRNA amplicon sequencing.

Marine genomics, 43:33-42.

Ascidians belonging to Phlebobranchia accumulate vanadium to an extraordinary degree (≤ 350 mM). Vanadium levels are strictly regulated and vary among ascidian species; thus, they represent well-suited models for studies on vanadium accumulation. No comprehensive study on metal accumulation and reduction in marine organisms in relation to their symbiotic bacterial communities has been published. Therefore, we performed comparative 16S rRNA amplicon sequence analyses on samples from three tissues (branchial sac, intestine, and intestinal lumen) involved in vanadium absorption, isolated from two vanadium-rich (Ascidia ahodori and Ascidia sydneiensis samea) and one vanadium-poor species (Styela plicata). For each sample, the abundance of every bacteria and an abundance value normalized to their abundance in seawater were calculated and compared. Two bacterial genera, Pseudomonas and Ralstonia, were extremely abundant in the branchial sacs of vanadium-rich ascidians. Two bacterial genera, Treponema and Borrelia, were abundant and enriched in the intestinal content of vanadium-rich ascidians. The results suggest that specific selective forces maintain the bacterial population in the three ascidian tissues examined, which contribute to successful vanadium accumulation. This study furthers the understanding of the relationship between bacterial communities and metal accumulation in marine life.

RevDate: 2019-02-08

Rolig AS, Sweeney EG, Kaye LE, et al (2018)

A bacterial immunomodulatory protein with lipocalin-like domains facilitates host-bacteria mutualism in larval zebrafish.

eLife, 7:.

Stable mutualism between a host and its resident bacteria requires a moderated immune response to control bacterial population size without eliciting excessive inflammation that could harm both partners. Little is known about the specific molecular mechanisms utilized by bacterial mutualists to temper their hosts' responses and protect themselves from aggressive immune attack. Using a gnotobiotic larval zebrafish model, we identified an Aeromonas secreted immunomodulatory protein, AimA. AimA is required during colonization to prevent intestinal inflammation that simultaneously compromises both bacterial and host survival. Administration of exogenous AimA prevents excessive intestinal neutrophil accumulation and protects against septic shock in models of both bacterially and chemically induced intestinal inflammation. We determined the molecular structure of AimA, which revealed two related calycin-like domains with structural similarity to the mammalian immune modulatory protein, lipocalin-2. As a secreted bacterial protein required by both partners for optimal fitness, AimA is an exemplar bacterial mutualism factor.

RevDate: 2019-02-07

Bredon M, Dittmer J, Noël C, et al (2018)

Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate.

Microbiome, 6(1):162.

BACKGROUND: Woodlice are recognized as keystone species in terrestrial ecosystems due to their role in the decomposition of organic matter. Thus, they contribute to lignocellulose degradation and nutrient cycling in the environment together with other macroarthropods. Lignocellulose is the main component of plants and is composed of cellulose, lignin and hemicellulose. Its digestion requires the action of multiple Carbohydrate-Active enZymes (called CAZymes), typically acting together as a cocktail with complementary, synergistic activities and modes of action. Some invertebrates express a few endogenous lignocellulose-degrading enzymes but in most species, an efficient degradation and digestion of lignocellulose can only be achieved through mutualistic associations with endosymbionts. Similar to termites, it has been suspected that several bacterial symbionts may be involved in lignocellulose degradation in terrestrial isopods, by completing the CAZyme repertoire of their hosts.

RESULTS: To test this hypothesis, host transcriptomic and microbiome shotgun metagenomic datasets were obtained and investigated from the pill bug Armadillidium vulgare. Many genes of bacterial and archaeal origin coding for CAZymes were identified in the metagenomes of several host tissues and the gut content of specimens from both laboratory lineages and a natural population of A. vulgare. Some of them may be involved in the degradation of cellulose, hemicellulose, and lignin. Reconstructing a lignocellulose-degrading microbial community based on the prokaryotic taxa contributing relevant CAZymes revealed two taxonomically distinct but functionally redundant microbial communities depending on host origin. In parallel, endogenous CAZymes were identified from the transcriptome of the host and their expression in digestive tissues was demonstrated by RT-qPCR, demonstrating a complementary enzyme repertoire for lignocellulose degradation from both the host and the microbiome in A. vulgare.

CONCLUSIONS: Our results provide new insights into the role of the microbiome in the evolution of terrestrial isopods and their adaptive radiation in terrestrial habitats.

RevDate: 2019-02-07

Sitaraman R (2018)

Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities.

Microbiome, 6(1):163.

The ubiquity of horizontal gene transfer in the living world, especially among prokaryotes, raises interesting and important scientific questions regarding its effects on the human holobiont i.e., the human and its resident bacterial communities considered together as a unit of selection. Specifically, it would be interesting to determine how particular gene transfer events have influenced holobiont phenotypes in particular ecological niches and, conversely, how specific holobiont phenotypes have influenced gene transfer events. In this synthetic review, we list some notable and recent discoveries of horizontal gene transfer among the prokaryotic component of the human microbiota, and analyze their potential impact on the holobiont from an ecological-evolutionary viewpoint. Finally, the human-Helicobacter pylori association is presented as an illustration of these considerations, followed by a delineation of unresolved questions and avenues for future research.

RevDate: 2019-02-07

Diplock N, Johnston K, Mellon A, et al (2018)

Large mammal declines and the incipient loss of mammal-bird mutualisms in an African savanna ecosystem.

PloS one, 13(8):e0202536.

Over the past half-century, large mammal populations have declined substantially throughout East Africa, mainly due to habitat loss and unsustainable direct exploitation. While it has been acknowledged that the loss of large mammals can have direct and cascading effects on community composition and ecosystem characteristics, limited quantitative work has been done on how declines of large herbivore populations impacts the abundance of mutualistic symbionts. Using a space-for-time observational approach, we quantified the large mammal community alongside the densities, host preferences and behaviors of mutualistic red-billed oxpeckers (Buphagus erythrorhynchus), and yellow-billed oxpeckers (Buphagus africanus) in northern Tanzania. At the landscape scale, mammal community composition was substantially less diverse in highly human-dominated areas when compared with more protected areas, with an observed complete loss of large wild mammal species in two study areas. Mirroring this trend, oxpecker densities were lowest in the least protected areas, and highest in fully protected areas. Using resource selection functions implemented via generalized linear models at different scales, we found that oxpeckers (1) were predominantly (67% of red-billed oxpeckers; 70% of yellow-billed oxpeckers) feeding on larger (between 500kg and 1500kg) ungulate host species within the mammal community, (2) usually preferred feeding on larger individuals (adults and males) within a specific host species population, and (3) preferred hosts that were more tolerant of their presence. In particular, cattle were especially intolerant of oxpecker presence and were relatively effective in displacing oxpeckers. We found little evidence that oxpecker feeding was parasitic across all host species; wound feeding was only observed on giraffe, comprising 6% and 4% of feeding behavior in red-billed and yellow-billed oxpeckers respectively. Thus, a loss of large-bodied and oxpecker tolerant host species is a likely explanation for declines of oxpecker populations in human dominated landscapes, which may have further cascading effects.

RevDate: 2019-02-07

Janashia I, Choiset Y, Jozefiak D, et al (2018)

Beneficial Protective Role of Endogenous Lactic Acid Bacteria Against Mycotic Contamination of Honeybee Beebread.

Probiotics and antimicrobial proteins, 10(4):638-646.

The purpose of this article is to reveal the role of the lactic acid bacteria (LAB) in the beebread transformation/preservation, biochemical properties of 25 honeybee endogenous LAB strains, particularly: antifungal, proteolytic, and amylolytic activities putatively expressed in the beebread environment have been studied. Seventeen fungal strains isolated from beebread samples were identified and checked for their ability to grow on simulated beebread substrate (SBS) and then used to study mycotic propagation in the presence of LAB. Fungal strains identified as Aspergillus niger (Po1), Candida sp. (BB01), and Z. rouxii (BB02) were able to grow on SBS. Their growth was partly inhibited when co-cultured with the endogenous honeybee LAB strains studied. No proteolytic or amylolytic activities of the studied LAB were detected using pollen, casein starch based media as substrates. These findings suggest that some honeybee LAB symbionts are involved in maintaining a safe microbiological state in the host honeybee colonies by inhibiting beebread mycotic contaminations, starch, and protein predigestion in beebread by LAB is less probable. Honeybee endogenous LAB use pollen as a growth substrate and in the same time restricts fungal propagation, thus showing host beneficial action preserving larval food. This study also can have an impact on development of novel methods of pollen preservation and its processing as a food ingredient.

RevDate: 2019-02-07

Schwartz WJ (2017)

Embodied Clocks.

Journal of biological rhythms, 32(6):503-504.

RevDate: 2019-02-08

Porter SS, Faber-Hammond JJ, ML Friesen (2018)

Co-invading symbiotic mutualists of Medicago polymorpha retain high ancestral diversity and contain diverse accessory genomes.

FEMS microbiology ecology, 94(1):.

Exotic, invasive plants and animals can wreak havoc on ecosystems by displacing natives and altering environmental conditions. However, much less is known about the identities or evolutionary dynamics of the symbiotic microbes that accompany invasive species. Most leguminous plants rely upon symbiotic rhizobium bacteria to fix nitrogen and are incapable of colonizing areas devoid of compatible rhizobia. We compare the genomes of symbiotic rhizobia in a portion of the legume's invaded range with those of the rhizobium symbionts from across the legume's native range. We show that in an area of California the legume Medicago polymorpha has invaded, its Ensifer medicae symbionts: (i) exhibit genome-wide patterns of relatedness that together with historical evidence support host-symbiont co-invasion from Europe into California, (ii) exhibit population genomic patterns consistent with the introduction of the majority of deep diversity from the native range, rather than a genetic bottleneck during colonization of California and (iii) harbor a large set of accessory genes uniquely enriched in binding functions, which could play a role in habitat invasion. Examining microbial symbiont genome dynamics during biological invasions is critical for assessing host-symbiont co-invasions whereby microbial symbiont range expansion underlies plant and animal invasions.

RevDate: 2019-02-07

Bidartondo MI, M Hijri (2018)

The Ninth International Conference on Mycorrhiza in Prague: across mycorrhizal symbioses from molecules to global scales.

Mycorrhiza, 28(2):203-205.

RevDate: 2019-02-06

Matsuoka JI, Ishizuna F, Ogawa T, et al (2019)

Localization of the reb operon expression is inconsistent with that of the R-body production in the stem nodules formed by Azorhizobium caulinodans mutants having a deletion of praR.

The Journal of general and applied microbiology [Epub ahead of print].

Azorhizobium caulinodans, a kind of rhizobia, has a reb operon encoding pathogenic R-body components, whose expression is usually repressed by a transcription factor PraR. Mutation on praR induced a high expression of reb operon and the formation of aberrant nodules, in which both morphologically normal and shrunken host cells were observed. Histochemical GUS analyses of praR mutant expressing reb operon-uidA fusion revealed that the bacterial cells within the normal host cells highly expressed the reb operon, but rarely produced R-bodies. On the other hand, the bacterial cells within the shrunken host cells frequently produced R-bodies but rarely expressed the reb operon. This suggests that R-body production is not only regulated at the transcriptional level, but by other regulatory mechanisms as well.

RevDate: 2019-02-06

Hashami SZ, Nakamura H, Ohkama-Ohtsu N, et al (2019)

Evaluation of Immune Responses Induced by Simultaneous Inoculations of Soybean (Glycine max [L.] Merr.) with Soil Bacteria and Rhizobia.

Microbes and environments [Epub ahead of print].

Legumes form root nodules and fix atmospheric nitrogen by establishing symbiosis with rhizobia. However, excessive root nodules are harmful to plants because of the resulting overconsumption of energy from photosynthates. The delay of an inoculation of the soybean super-nodulation mutant NOD1-3 with Bradyrhizobium diazoefficiens USDA110T by 5 d after an inoculation with several soil bacteria confirmed that one bacterial group significantly decreased root nodules throughout the study period. Moreover, no significant changes were observed in nitrogen fixation by root nodules between an inoculation with USDA 110T only and co-inoculation treatments. To clarify the potential involvement of PR proteins in the restriction of nodule formation in the plants tested, the relative expression levels of PR-1, PR-2, PR-5, and PDF1.2 in NOD1-3 roots were measured using real-time PCR. One group of soil bacteria (Gr.3), which markedly reduced nodule numbers, significantly induced the expression of PR-1, PR-5 and PDF1.2 genes by day 5 after the inoculation. By days 7, 10, and 20 after the inoculation, the expression levels of PR-2 and PR-5 were lower than those with the uninoculated treatment. Inoculations with this group of soil bacteria resulted in lower root nodule numbers than with other tested soil bacteria exerting weak inhibitory effects on nodulation, and were accompanied by the induction of plant defense-related genes. Thus, PR genes appear to play important roles in the mechanisms that suppresses nodule formation on soybean roots.

RevDate: 2019-02-06

Cohen IR, S Efroni (2019)

The Immune System Computes the State of the Body: Crowd Wisdom, Machine Learning, and Immune Cell Reference Repertoires Help Manage Inflammation.

Frontiers in immunology, 10:10.

Here, we outline an overview of the mammalian immune system that updates and extends the classical clonal selection paradigm. Rather than focusing on strict self-not-self discrimination, we propose that the system orchestrates variable inflammatory responses that maintain the body and its symbiosis with the microbiome while eliminating the threat from pathogenic infectious agents and from tumors. The paper makes four points: The immune system classifies healthy and pathologic states of the body-including both self and foreign elements-by deploying individual lymphocytes as cellular computing machines; immune cells transform input signals from the body into an output of specific immune reactions.Rather than independent clonal responses, groups of individually activated immune-system cells co-react in lymphoid organs to make collective decisions through a type of self-organizing swarm intelligence or crowd wisdom.Collective choices by swarms of immune cells, like those of schools of fish, are modified by relatively small numbers of individual regulators responding to shifting conditions-such collective inflammatory responses are dynamically responsive.Self-reactive autoantibody and T-cell receptor (TCR) repertoires shared by healthy individuals function in a biological version of experience-based supervised machine learning. Immune system decisions are primed by formative experience with training sets of self-antigens encountered during lymphocyte development; these initially trained T cell and B cell repertoires form a Wellness Profile that then guides immune responses to test sets of antigens encountered later. This experience-based machine learning strategy is analogous to that deployed by supervised machine-learning algorithms. We propose experiments to test these ideas. This overview of the immune system bears clinical implications for monitoring wellness and for treating autoimmune disease, cancer, and allograft reactions.

RevDate: 2019-02-06

Farias CP, Carvalho RC, Resende FML, et al (2018)

Consortium of five fungal isolates conditioning root growth and arbuscular mycorrhiza in soybean, corn, and sugarcane.

Anais da Academia Brasileira de Ciencias, 90(4):3649-3660.

Plant growth and arbuscular mycorrhizal colonization were studied in sugarcane, corn and soybean by applying five plant growth promoting fungi: Beauveria bassiana, Metarhizium anisopliae, Pochonia chlamydosporia, Purpureocillium lilacinum, and Trichoderma asperella. Sugarcane, corn and soybean were grown in pots under two treatments: (1) inoculation with the fungal consortium and (2) control without inoculation. In the inoculated treatment, fungal spore suspension were applied to the seeds and shoots were sprayed every 28 days. Means were analyzed by analysis of variance and Tukey's test at 5% probability level. The experiment was arranged in a completely randomized design, with six replications. Fungi consortium mediate root growth in soybean and corn, and arbuscular mycorrhizal colonization in soybean and sugarcane. These findings are probably caused by the fungi producing phytohormones and inducing the plants to synthesize phytohormones: auxins for root growth; and jasmonic, abscisic, and salicylic acids with a role in the regulation of mycorrhizal colonization. These effects are important when seeking conservation strategies in agriculture and livestock production, since Fungi consortium can better mediate soil resource acquisition, promoting greater absorption of nutrients and water.

RevDate: 2019-02-06

St John E, Liu Y, Podar M, et al (2019)

A new symbiotic nanoarchaeote (Candidatus Nanoclepta minutus) and its host (Zestosphaera tikiterensis gen. nov., sp. nov.) from a New Zealand hot spring.

Systematic and applied microbiology, 42(1):94-106.

Three thermophilic Nanoarchaeota-Crenarchaeota symbiotic systems have been described. We obtained another stable anaerobic enrichment culture at 80°C, pH 6.0 from a New Zealand hot spring. The nanoarchaeote (Ncl-1) and its host (NZ3T) were isolated in co-culture and their genomes assembled. The small (∼200nm) flagellated cocci were often attached to larger cocci. Based on 16S rRNA gene similarity (88.4%) and average amino acid identity (52%), Ncl-1 is closely related to Candidatus Nanopusillus acidilobi. Their genomes both encode for archaeal flagella and partial glycolysis and gluconeogenesis pathways, but lack ATP synthase genes. Like Nanoarchaeum equitans, Ncl-1 has a CRISPR-Cas system. Ncl-1 also relies on its crenarchaeotal host for most of its biosynthetic needs. The host NZ3T was isolated and grows on proteinaceous substrates but not on sugars, alcohols, or fatty acids. NZ3T requires thiosulfate and grows best at 82°C, pH 6.0. NZ3T is most closely related to the Desulfurococcaceae, Ignisphaera aggregans (∼92% 16S rRNA gene sequence similarity, 45% AAI). Based on phylogenetic, physiological and genomic data, Ncl-1 and NZ3T represent novel genera in the Nanoarchaeota and the Desulfurococcaceae, respectively, with the proposed names Candidatus Nanoclepta minutus and Zestosphaera tikiterensis gen. nov., sp. nov., type strain NZ3T (=DSMZ 107634T=OCM 1213T).

RevDate: 2019-02-06

Gefen T, N Geva-Zatorsky (2018)

What Came First: The Microbiota or the Tr(egg) Cells?.

Immunity, 48(6):1072-1074.

Studies have shown that gut commensals facilitate the differentiation of peripheral regulatory T cells (pTregs) via their metabolic products. In this issue of Immunity, Campbell et al. (2018) demonstrate a reciprocal effect of pTregs on the metabolic functions of specific gut commensals that affects their overall energy harvest capacity.

RevDate: 2019-02-06

Correia M, Heleno R, Vargas P, et al (2018)

Should I stay or should I go? Mycorrhizal plants are more likely to invest in long-distance seed dispersal than non-mycorrhizal plants.

Ecology letters, 21(5):683-691.

Seed dispersal and mycorrhizal associations are key mutualisms for the functioning and regeneration of plant communities; however, these processes have seldom been explored together. We hypothesised that obligatory mycorrhizal plants will be less likely to have long-distance dispersal (LDD) syndromes since the probability of finding suitable mycorrhizal partners is likely to decrease with distance to the mother plant. We contrasted the mycorrhizal status and LDD syndromes for 1960 European plant species, using phylogenetically corrected log-linear models. Contrary to our expectation, having specialised structures for LDD is more frequent in obligate mycorrhizal plants than in non-mycorrhizal plants, revealing that lack of compatible mutualists does not constrain investment in LDD structures in the European Flora. Ectomycorrhizal plants associated with wind-dispersing fungi are also more likely to have specialised structures for wind dispersal. Habitat specificity and narrower niche of non-mycorrhizal plants might explain the smaller investment in specialised structures for seed dispersal.

RevDate: 2019-02-06

Zug R, P Hammerstein (2018)

Evolution of reproductive parasites with direct fitness benefits.

Heredity, 120(3):266-281.

Maternally inherited symbionts such as Wolbachia have long been seen mainly as reproductive parasites, with deleterious effects on host fitness. It is becoming clear, however, that, frequently, these symbionts also have beneficial effects on host fitness, either along with reproductive parasitism or not. Using the examples of cytoplasmic incompatibility (CI) and male-killing (MK), we here analyze the effect of direct fitness benefits on the evolution of reproductive parasites. By means of a simple theoretical framework, we synthesize and extend earlier modeling approaches for CI and MK, which usually ignore fitness benefits. Moreover, our framework is not restricted to a particular mechanism underlying the fitness benefit (e.g., protection against pathogens). We derive invasion conditions and equilibrium frequencies for the different infection scenarios. Our results demonstrate the importance of a symbiont's "effective fecundity" (i.e., the product of the relative fecundity of an infected female and her transmission efficiency) for a symbiont's invasion success. In particular, we adopt the concept of effective fecundity to scenarios where CI and MK co-occur in one host population. We confirm that direct fitness benefits substantially facilitate the invasion and spread of infections (for example, by lowering or removing the invasion threshold) or even make invasion possible in the first place (for example, if reproductive parasitism is weak or absent). Finally, we discuss the role of direct fitness benefits in long-term evolutionary dynamics of reproductive phenotypes and highlight their potential to resolve genetic conflicts between maternally inherited symbionts and their hosts.

RevDate: 2019-02-06

Tsao HF, Scheikl U, Volland JM, et al (2017)

'Candidatus Cochliophilus cryoturris' (Coxiellaceae), a symbiont of the testate amoeba Cochliopodium minus.

Scientific reports, 7(1):3394.

Free-living amoebae are well known for their role in controlling microbial community composition through grazing, but some groups, namely Acanthamoeba species, also frequently serve as hosts for bacterial symbionts. Here we report the first identification of a bacterial symbiont in the testate amoeba Cochliopodium. The amoeba was isolated from a cooling tower water sample and identified as C. minus. Fluorescence in situ hybridization and transmission electron microscopy revealed intracellular symbionts located in vacuoles. 16S rRNA-based phylogenetic analysis identified the endosymbiont as member of a monophyletic group within the family Coxiellaceae (Gammaprotebacteria; Legionellales), only moderately related to known amoeba symbionts. We propose to tentatively classify these bacteria as 'Candidatus Cochliophilus cryoturris'. Our findings add both, a novel group of amoeba and a novel group of symbionts, to the growing list of bacteria-amoeba relationships.

RevDate: 2019-02-05

Jenkins B, TA Richards (2019)

Symbiosis: Wolf Lichens Harbour a Choir of Fungi.

Current biology : CB, 29(3):R88-R90.

Identification of the fungus Tremella as a consistent fourth component of wolf lichens further challenges the conventional view of lichen symbiosis as a mutualistic interaction between two players.

RevDate: 2019-02-05

King KC (2019)

Defensive symbionts.

Current biology : CB, 29(3):R78-R80.

Interactions in nature vary from competitive to neutral to symbiotic. An interesting case of symbiosis is seen when one organism provides protection to the other-a relationship termed 'defensive symbiosis'. Kayla King highlights this interesting type of relationship, which can be found throughout the tree of life.

RevDate: 2019-02-05

Cornejo Ulloa P, van der Veen MH, BP Krom (2019)

Review: modulation of the oral microbiome by the host to promote ecological balance.

Odontology pii:10.1007/s10266-019-00413-x [Epub ahead of print].

The indivisible relationship between the human host and its oral microbiome has been shaped throughout the millennia, by facing various changes that have forced the adaptation of oral microorganisms to new environmental conditions. In this constant crosstalk between the human host and its microbiome, a bidirectional relationship has been established. The microorganisms provide the host with functions it cannot perform on its own and at the same time the host provides its microbes with a suitable environment for their growth and development. These host factors can positively affect the microbiome, promoting diversity and balance between different species, resulting in a state of symbiosis and absence of pathology. In contrast, other host factors can negatively influence the composition of the oral microbiome and drive the interaction towards a dysbiotic state, where the balance tilts towards a harmful relationship between the host and its microbiome. The aim of this review is to describe the role host factors play in cultivating and maintaining a healthy oral ecology and discuss mechanisms that can prevent its drift towards dysbiosis.

RevDate: 2019-02-04

Piquet B, Shillito B, Lallier FH, et al (2019)

High rates of apoptosis visualized in the symbiont-bearing gills of deep-sea Bathymodiolus mussels.

PloS one, 14(2):e0211499 pii:PONE-D-18-27785.

Symbiosis between Bathymodiolus and Gammaproteobacteria allows these deep-sea mussels to live in toxic environments such as hydrothermal vents and cold seeps. The quantity of endosymbionts within the gill-bacteriocytes appears to vary according to the hosts environment; however, the mechanisms of endosymbiont population size regulation remain obscure. We investigated the possibility of a control of endosymbiont density by apoptosis, a programmed cell death, in three mussel species. Fluorometric TUNEL and active Caspase-3-targeting antibodies were used to visualize and quantify apoptotic cells in mussel gills. To control for potential artefacts due to depressurization upon specimen recovery from the deep-sea, the apoptotic rates between mussels recovered unpressurised, versus mussels recovered in a pressure-maintaining device, were compared in two species from hydrothermal vents on the Mid-Atlantic Ridge: Bathymodiolus azoricus and B. puteoserpentis. Results show that pressurized recovery had no significant effect on the apoptotic rate in the gill filaments. Apoptotic levels were highest in the ciliated zone and in the circulating hemocytes, compared to the bacteriocyte zone. Apoptotic gill-cells in B. aff. boomerang from cold seeps off the Gulf of Guinea show similar distribution patterns. Deep-sea symbiotic mussels have much higher rates of apoptosis in their gills than the coastal mussel Mytilus edulis, which lacks chemolithoautotrophic symbionts. We discuss how apoptosis might be one of the mechanisms that contribute to the adaptation of deep-sea mussels to toxic environments and/or to symbiosis.

RevDate: 2019-02-04

Schoenherr AP, Rizzo E, Jackson N, et al (2019)

Mycorrhiza-Induced Resistance in Potato Involves Priming of Defense Responses Against Cabbage Looper (Noctuidae: Lepidoptera).

Environmental entomology pii:5304879 [Epub ahead of print].

Most plants form mutualistic associations with arbuscular mycorrhizal (AM) fungi that are ubiquitous in soils. Through this symbiosis, plants can withstand abiotic and biotic stresses. The underlying molecular mechanisms involved in mediating mycorrhiza-induced resistance against insects needs further research, and this is particularly true for potato (Solanum tuberosum L. (Solanales: Solanaceae)), which is the fourth most important crop worldwide. In this study, the tripartite interaction between potato, the AM fungus Rhizophagus irregularis (Glomerales: Glomeraceae), and cabbage looper (Trichoplusia ni Hübner) (Lepidoptera: Noctuidae) was examined to determine whether potato exhibits mycorrhiza-induced resistance against this insect. Plant growth, insect fitness, AM fungal colonization of roots, and transcript levels of defense-related genes were measured in shoots and roots after 5 and 8 d of herbivory on mycorrhizal and nonmycorrhizal plants. AM fungal colonization of roots did not have an effect on potato growth, but root colonization levels increased by herbivory. Larval weight gain was reduced after 8 d of feeding on mycorrhizal plants compared with nonmycorrhizal plants. Systemic upregulation of Allene Oxide Synthase 1 (AOS1), 12-Oxo-Phytodienoate Reductase 3 (OPR3) (jasmonic acid pathway), Protease Inhibitor Type I (PI-I) (anti-herbivore defense), and Phenylalanine Ammonia Lyase (PAL) transcripts (phenylpropanoid pathway) was found during the tripartite interaction. Together, these findings suggest that potato may exhibit mycorrhiza-induced resistance to cabbage looper by priming anti-herbivore defenses aboveground. This study illustrates how mycorrhizal potato responds to herbivory by a generalist-chewing insect and serves as the basis for future studies involving tripartite interactions with other pests.

RevDate: 2019-02-04

Kobayashi T, Voisin B, Kim DY, et al (2019)

Homeostatic Control of Sebaceous Glands by Innate Lymphoid Cells Regulates Commensal Bacteria Equilibrium.

Cell pii:S0092-8674(18)31645-3 [Epub ahead of print].

Immune cells and epithelium form sophisticated barrier systems in symbiotic relationships with microbiota. Evidence suggests that immune cells can sense microbes through intact barriers, but regulation of microbial commensalism remain largely unexplored. Here, we uncovered spatial compartmentalization of skin-resident innate lymphoid cells (ILCs) and modulation of sebaceous glands by a subset of RORγt+ ILCs residing within hair follicles in close proximity to sebaceous glands. Their persistence in skin required IL-7 and thymic stromal lymphopoietin, and localization was dependent on the chemokine receptor CCR6. ILC subsets expressed TNF receptor ligands, which limited sebocyte growth by repressing Notch signaling pathway. Consequently, loss of ILCs resulted in sebaceous hyperplasia with increased production of antimicrobial lipids and restricted commensalism of Gram-positive bacterial communities. Thus, epithelia-derived signals maintain skin-resident ILCs that regulate microbial commensalism through sebaceous gland-mediated tuning of the barrier surface, highlighting an immune-epithelia circuitry that facilitates host-microbe symbiosis.

RevDate: 2019-02-05

Pacheco AR, Moel M, D Segrè (2019)

Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems.

Nature communications, 10(1):103 pii:10.1038/s41467-018-07946-9.

Metabolic exchange mediates interactions among microbes, helping explain diversity in microbial communities. As these interactions often involve a fitness cost, it is unclear how stable cooperation can emerge. Here we use genome-scale metabolic models to investigate whether the release of "costless" metabolites (i.e. those that cause no fitness cost to the producer), can be a prominent driver of intermicrobial interactions. By performing over 2 million pairwise growth simulations of 24 species in a combinatorial assortment of environments, we identify a large space of metabolites that can be secreted without cost, thus generating ample cross-feeding opportunities. In addition to providing an atlas of putative interactions, we show that anoxic conditions can promote mutualisms by providing more opportunities for exchange of costless metabolites, resulting in an overrepresentation of stable ecological network motifs. These results may help identify interaction patterns in natural communities and inform the design of synthetic microbial consortia.

RevDate: 2019-02-04

Wu Q, Sun J, Chen J, et al (2018)

Terpenoids from Marine Soft Coral of the Genus Lemnalia: Chemistry and Biological Activities.

Marine drugs, 16(9):.

Lemnalia is one of the most widely-distributed marine soft coral in tropical oceans and is known to produce novel terpenoids with a broad spectrum of biological activities. This review provides the first comprehensive overview of terpenoids produced by soft coral Lemnalia since their first discovery in 1974.

RevDate: 2019-02-04

Krapivin VA, Bagrov SV, MA Varfolomeeva (2018)

Effect of tidal level on abundance of symbionts in the White Sea blue mussel.

Diseases of aquatic organisms, 130(2):131-144.

In the White Sea, the blue mussel Mytilus edulis occupies a wide range of biotopes and is associated with numerous symbiotic organisms. At some sites, mussel cover spreads continuously from the intertidal to the subtidal zone. We checked whether the patterns of infection by different associated organisms differed among the upper subtidal, zero-depth and lower intertidal zones at 3 sites in the Kandalaksha Gulf and the Onega Bay of the White Sea. Organisms belonging to 13 taxa were found in mantle cavities and tissues of blue mussels. Parasitic green algae, a sporocyst and metacercariae of 5 species of digenean trematodes occupied mussel tissues; commensal ciliates, rhabdocoelans and some free-living invertebrates were found in mantle cavities. Quantitative composition of symbiotic communities of mussels was not the same at different tidal levels: Urastoma cyprinae (commensal rhabdocoelans) were more abundant in the subtidal and zero-depth zones, while encysted metacercariae of Renicola roscovita and Himasthla sp. were more abundant at the zero-depth and intertidal zones. We suggested several hypotheses to explain this heterogeneity.

RevDate: 2019-02-04

Gemperlein K, Zaburannyi N, Garcia R, et al (2018)

Metabolic and Biosynthetic Diversity in Marine Myxobacteria.

Marine drugs, 16(9):.

Prior to 2005, the vast majority of characterized myxobacteria were obtained from terrestrial habitats. Since then, several species of halotolerant and even obligate marine myxobacteria have been described. Chemical analyses of extracts from these organisms have confirmed their ability to produce secondary metabolites with unique chemical scaffolds. Indeed, new genera of marine-derived myxobacteria, particularly Enhygromyxa, have been shown to produce novel chemical scaffolds that differ from those observed in soil myxobacteria. Further studies have shown that marine sponges and terrestrial myxobacteria are capable of producing similar or even identical secondary metabolites, suggesting that myxobacterial symbionts may have been the true producers. Recent in silico analysis of the genome sequences available from six marine myxobacteria disclosed a remarkably versatile biosynthetic potential. With access to ever-advancing tools for small molecule and genetic evaluation, these studies suggest a bright future for expeditions into this yet untapped resource for secondary metabolites.

RevDate: 2019-02-04

Moir ML, Renton M, Hoffmann BD, et al (2018)

Development and testing of a standardized method to estimate honeydew production.

PloS one, 13(8):e0201845.

Honeydew production by Hemiptera is an ecologically important process that facilitates mutualisms and increases nutrient cycling. Accurate estimates of the amount of honeydew available in a system are essential for quantifying food web dynamics, energy flow, and the potential growth of sooty mould that inhibits plant growth. Despite the importance of honeydew, there is no standardized method to estimate its production when intensive laboratory testing is not feasible. We developed two new models to predict honeydew production, one based on insect body mass and taxonomic family, and one based on body mass and life stage. We tested the accuracy of both models' predictions for a diverse range of honeydew-producing hemipteran families (Aphididae, Pseudococcidae, Coccidae, Psyllidae, Aleyrodidae, Delphacidae, Cicadellidae). The method based on body mass and family provided more accurate estimates of honeydew production, due to large variation in honeydew production among families. We apply our methodology to a case study, the recalculation of honeydew available to invasive red imported fire ant (Solenopsis invicta) in the United States. We find that the amount of honeydew may be an order of magnitude lower than that previously estimated (2.16 versus 21.6 grams of honeydew per day) and discuss possible reasons for the difference. We anticipate that being able to estimate honeydew production based on minimal biological information will have applications to agriculture, invasion biology, forestry, and carbon farming.

RevDate: 2019-02-04

Manzano-Marín A, Coeur d'acier A, Clamens AL, et al (2018)

A Freeloader? The Highly Eroded Yet Large Genome of the Serratia symbiotica Symbiont of Cinara strobi.

Genome biology and evolution, 10(9):2178-2189.

Genome reduction is pervasive among maternally inherited bacterial endosymbionts. This genome reduction can eventually lead to serious deterioration of essential metabolic pathways, thus rendering an obligate endosymbiont unable to provide essential nutrients to its host. This loss of essential pathways can lead to either symbiont complementation (sharing of the nutrient production with a novel co-obligate symbiont) or symbiont replacement (complete takeover of nutrient production by the novel symbiont). However, the process by which these two evolutionary events happen remains somewhat enigmatic by the lack of examples of intermediate stages of this process. Cinara aphids (Hemiptera: Aphididae) typically harbor two obligate bacterial symbionts: Buchnera and Serratia symbiotica. However, the latter has been replaced by different bacterial taxa in specific lineages, and thus species within this aphid lineage could provide important clues into the process of symbiont replacement. In the present study, using 16S rRNA high-throughput amplicon sequencing, we determined that the aphid Cinara strobi harbors not two, but three fixed bacterial symbionts: Buchnera aphidicola, a Sodalis sp., and S. symbiotica. Through genome assembly and genome-based metabolic inference, we have found that only the first two symbionts (Buchnera and Sodalis) actually contribute to the hosts' supply of essential nutrients while S. symbiotica has become unable to contribute towards this task. We found that S. symbiotica has a rather large and highly eroded genome which codes only for a few proteins and displays extensive pseudogenization. Thus, we propose an ongoing symbiont replacement within C. strobi, in which a once "competent" S. symbiotica does no longer contribute towards the beneficial association. These results suggest that in dual symbiotic systems, when a substitute cosymbiont is available, genome deterioration can precede genome reduction and a symbiont can be maintained despite the apparent lack of benefit to its host.

RevDate: 2019-02-04

Mowbray CA, Niranji SS, Cadwell K, et al (2018)

Gene expression of AvBD6-10 in broiler chickens is independent of AvBD6, 9, and 10 peptide potency.

Veterinary immunology and immunopathology, 202:31-40.

The Avian β-defensin (AvBD) gene cluster contains fourteen genes; within this, two groups (AvBD6/7 and AvBD8 -10) encode charged peptides of >+5 (AvBD6/7), indicative of potent microbial killing activities, and ≤+4 (AvBD8-10), suggestive of reduced antimicrobial activities. Chicken broiler gut tissues are constantly exposed to microbes in the form of commensal bacteria. This study examined whether tissue expression patterns of AvBD6-10 reflected microbial exposure and the encoded peptides a functional antimicrobial hierarchy. Gut AvBD6-10 gene expression was observed in hatch to day 21 birds, although the AvBD8-10 profiles were eclipsed by those detected in the liver and kidney tissues. In vitro challenges of chicken CHCC-OU2 cells using the gut commensal Lactobacillus johnsonii (104 CFU) did not significantly affect AvBD8-10 gene expression patterns, although upregulation (P < 0.05) of IL-Iβ gene expression was observed. Similarly, in response to Bacteriodes doreii, IL-Iβ and IL-6 gene upregulation were detected (P < 0.05), but AvBD10 gene expression remained unaffected. These data suggested that AvBD8-10 gene expression was not induced by commensal gut bacteria. Bacterial time-kill assays employing recombinant (r)AvBD6, 9 and 10 peptides (0.5μM - 12μM), indicated an antimicrobial hierarchy, linked to charge, of AvBD6 > AvBD9 > AvBD10 against Escherichia coli, but AvBD10 > AvBD9 > AvBD6 using Enterococcus faecalis. rAvBD10, selected due to its reduced cationic charge was, using CHCC-OU2 cells, investigated for cell proliferation and wound healing properties, but none were observed. These data suggest that in healthy broiler chicken tissues AvBD6/7 and AvBD8-10 gene expression profiles are independent of the in vitro antimicrobial hierarchies of the encoded AvBD6, 9 and 10 peptides.

RevDate: 2019-02-04

Río Bártulos C, Rogers MB, Williams TA, et al (2018)

Mitochondrial Glycolysis in a Major Lineage of Eukaryotes.

Genome biology and evolution, 10(9):2310-2325.

The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.

RevDate: 2019-02-05

Che R, Deng Y, Wang F, et al (2018)

Autotrophic and symbiotic diazotrophs dominate nitrogen-fixing communities in Tibetan grassland soils.

The Science of the total environment, 639:997-1006.

Biological nitrogen fixation, conducted by soil diazotrophs, is the primary nitrogen source for natural grasslands. However, the diazotrophs in grassland soils are still far from fully investigated. Particularly, their regional-scale distribution patterns have never been systematically examined. Here, soils (0-5 cm) were sampled from 54 grasslands on the Tibetan Plateau to examine the diazotroph abundance, diversity, and community composition, as well as their distribution patterns and driving factors. The diazotroph abundance was expressed as nifH gene copies, measured using real-time PCR. The diversity and community composition of diazotrophs were analyzed through MiSeq sequencing of nifH genes. The results showed that Cyanobacteria (47.94%) and Proteobacteria (45.20%) dominated the soil diazotroph communities. Most Cyanobacteria were classified as Nostocales which are main components of biological crusts. Rhizobiales, most of which were identified as potential symbiotic diazotrophs, were also abundant in approximately half of the soil samples. The soil diazotroph abundance, diversity, and community composition followed the distribution patterns in line with mean annual precipitation. Moreover, they also showed significant correlations with prokaryotic abundance, plant biomass, vegetation cover, soil pH values, and soil nutrient contents. Among these environmental factors, the soil moisture, organic carbon, available phosphorus, and inorganic nitrogen contents could be the main drivers of diazotroph distribution due to their strong correlations with diazotroph indices. These findings suggest that autotrophic and symbiotic diazotrophs are the predominant nitrogen fixers in Tibetan grassland soils, and highlight the key roles of water and nutrient availability in determining the soil diazotroph distribution on the Tibetan Plateau.

RevDate: 2019-02-04

Woodhams DC, LaBumbard BC, Barnhart KL, et al (2018)

Prodigiosin, Violacein, and Volatile Organic Compounds Produced by Widespread Cutaneous Bacteria of Amphibians Can Inhibit Two Batrachochytrium Fungal Pathogens.

Microbial ecology, 75(4):1049-1062.

Symbiotic bacteria can produce secondary metabolites and volatile compounds that contribute to amphibian skin defense. Some of these symbionts have been used as probiotics to treat or prevent the emerging disease chytridiomycosis. We examined 20 amphibian cutaneous bacteria for the production of prodigiosin or violacein, brightly colored defense compounds that pigment the bacteria and have characteristic spectroscopic properties making them readily detectable, and evaluated the antifungal activity of these compounds. We detected violacein from all six isolates of Janthinobacterium lividum on frogs from the USA, Switzerland, and on captive frogs originally from Panama. We detected prodigiosin from five isolates of Serratia plymuthica or S. marcescens, but not from four isolates of S. fonticola or S. liquefaciens. All J. lividum isolates produced violacein when visibly purple, while prodigiosin was only detected on visibly red Serratia isolates. When applied to cultures of chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), prodigiosin caused significant growth inhibition, with minimal inhibitory concentrations (MIC) of 10 and 50 μM, respectively. Violacein showed a MIC of 15 μM against both fungi and was slightly more active against Bsal than Bd at lower concentrations. Although neither violacein nor prodigiosin showed aerosol activity and is not considered a volatile organic compound (VOC), J. lividum and several Serratia isolates did produce antifungal VOCs. White Serratia isolates with undetectable prodigiosin levels could still inhibit Bd growth indicating additional antifungal compounds in their chemical arsenals. Similarly, J. lividum can produce antifungal compounds such as indole-3-carboxaldehyde in addition to violacein, and isolates are not always purple, or turn purple under certain growth conditions. When Serratia isolates were grown in the presence of cell-free supernatant (CFS) from the fungi, CFS from Bd inhibited growth of the prodigiosin-producing isolates, perhaps indicative of an evolutionary arms race; Bsal CFS did not inhibit bacterial growth. In contrast, growth of one J. lividum isolate was facilitated by CFS from both fungi. Isolates that grow and continue to produce antifungal compounds in the presence of pathogens may represent promising probiotics for amphibians infected or at risk of chytridiomycosis. In a global analysis, 89% of tested Serratia isolates and 82% of J. lividum isolates were capable of inhibiting Bd and these have been reported from anurans and caudates from five continents, indicating their widespread distribution and potential for host benefit.

RevDate: 2019-02-04

Grigorescu AS, Renoz F, Sabri A, et al (2018)

Accessing the Hidden Microbial Diversity of Aphids: an Illustration of How Culture-Dependent Methods Can Be Used to Decipher the Insect Microbiota.

Microbial ecology, 75(4):1035-1048.

Microorganism communities that live inside insects can play critical roles in host development, nutrition, immunity, physiology, and behavior. Over the past decade, high-throughput sequencing reveals the extraordinary microbial diversity associated with various insect species and provides information independent of our ability to culture these microbes. However, their cultivation in the laboratory remains crucial for a deep understanding of their physiology and the roles they play in host insects. Aphids are insects that received specific attention because of their ability to form symbiotic associations with a wide range of endosymbionts that are considered as the core microbiome of these sap-feeding insects. But, if the functional diversity of obligate and facultative endosymbionts has been extensively studied in aphids, the diversity of gut symbionts and other associated microorganisms received limited consideration. Herein, we present a culture-dependent method that allowed us to successfully isolate microorganisms from several aphid species. The isolated microorganisms were assigned to 24 bacterial genera from the Actinobacteria, Firmicutes, and Proteobacteria phyla and three fungal genera from the Ascomycota and Basidiomycota phyla. In our study, we succeeded in isolating already described bacteria found associated to aphids (e.g., the facultative symbiont Serratia symbiotica), as well as microorganisms that have never been described in aphids before. By unraveling a microbial community that so far has been ignored, our study expands our current knowledge on the microbial diversity associated with aphids and illustrates how fast and simple culture-dependent approaches can be applied to insects in order to capture their diverse microbiota members.

RevDate: 2019-02-04

DeLong JP, Al-Ameeli Z, Lyon S, et al (2018)

Size-dependent Catalysis of Chlorovirus Population Growth by A Messy Feeding Predator.

Microbial ecology, 75(4):847-853.

Many chloroviruses replicate in endosymbiotic zoochlorellae that are protected from infection by their symbiotic host. To reach the high virus concentrations that often occur in natural systems, a mechanism is needed to release zoochlorellae from their hosts. We demonstrate that the ciliate predator Didinium nasutum foraging on zoochlorellae-bearing Paramecium bursaria can release live zoochlorellae from the ruptured prey cell that can then be infected by chloroviruses. The catalysis process is very effective, yielding roughly 95% of the theoretical infectious virus yield as determined by sonication of P. bursaria. Chlorovirus activation is more effective with smaller Didinia, as larger Didinia typically consume entire P. bursaria cells without rupturing them, precluding the release of zoochlorellae. We also show that the timing of Chlorovirus growth is tightly linked to the predator-prey cycle between Didinium and Paramecium, with the most rapid increase in chloroviruses temporally linked to the peak foraging rate of Didinium, supporting the idea that predator-prey cycles can drive cycles of Chlorovirus abundance.

RevDate: 2019-02-04

Li J, Chen D, Yu B, et al (2018)

Fungi in Gastrointestinal Tracts of Human and Mice: from Community to Functions.

Microbial ecology, 75(4):821-829.

Fungi are often ignored in studies on gut microbes because of their low level of presence (making up only 0.1% of the total microorganisms) in the gastrointestinal tract (GIT) of monogastric animals. Recent studies using novel technologies such as next generation sequencing have expanded our understanding on the importance of intestinal fungi in humans and animals. Here, we provide a comprehensive review on the fungal community, the so-called mycobiome, and their functions from recent studies in humans and mice. In the GIT of humans, fungi belonging to the phyla Ascomycota, Basidiomycota and Chytridiomycota are predominant. The murine intestines harbor a more diverse assemblage of fungi. Diet is one of the major factors influencing colonization of fungi in the GIT. Presence of the genus Candida is positively associated with dietary carbohydrates, but are negatively correlated with dietary amino acids, proteins, and fatty acids. However, the relationship between diet and the fungal community (and functions), as well as the underlying mechanisms remains unclear. Dysbiosis of intestinal fungi can cause invasive infections and inflammatory bowel diseases (IBD). However, it is not clear whether dysbiosis of the mycobiome is a cause, or a result of IBD. Compared to non-inflamed intestinal mucosa, the abundance and diversity of fungi is significantly increased in the inflamed mucosa. The commonly observed commensal fungal species Candida albicans might contribute to occurrence and development of IBD. Limited studies show that Candida albicans might interact with immune cells of the host intestines through the pathways associated with Dectin-1, Toll-like receptor 2 (TLR2), and TLR4. This review is expected to provide new thoughts for future studies on intestinal fungi and for new therapies to fungal infections in the GIT of human and animals.

RevDate: 2019-02-04

Theron-De Bruin N, Dreyer LL, Ueckermann EA, et al (2018)

Birds Mediate a Fungus-Mite Mutualism.

Microbial ecology, 75(4):863-874.

Mutualisms between ophiostomatoid fungi and arthropods have been well documented. These fungi commonly aid arthropod nutrition and, in turn, are transported to new niches by these arthropods. The inflorescences of Protea trees provide a niche for a unique assemblage of ophiostomatoid fungi. Here, mites feed on Sporothrix fungi and vector the spores to new niches. Protea-pollinating beetles transport the spore-carrying mites between Protea trees. However, many Protea species are primarily pollinated by birds that potentially play a central role in the Protea-Sporothrix-mite system. To investigate the role of birds in the movement of mites and/or fungal spores, mites were collected from Protea inflorescences and cape sugarbirds, screened for Sporothrix fungal spores and tested for their ability to feed and reproduce on the fungal associates. Two mite species where abundant in both Protea inflorescences and on cape sugarbirds and regularly carried Sporothrix fungal spores. One of these mite species readily fed and reproduced on its transported fungal partner. For dispersal, this mite (a Glycyphagus sp.) attached to a larger mite species (Proctolaelaps vandenbergi) which, in turn, were carried by the birds to new inflorescences. The results of this study provide compelling evidence for a new mite-fungus mutualism, new mite-mite commensalisms and the first evidence of birds transporting mites with Sporothrix fungal spores to colonise new Protea trees.

RevDate: 2019-02-04

de León-Martínez JA, Yañez-Ocampo G, A Wong-Villarreal (2017)

Burkholderia species associated with legumes of Chiapas, Mexico, exhibit stress tolerance and growth in aromatic compounds.

Revista Argentina de microbiologia, 49(4):394-401.

Leguminous plants have received special interest for the diversity of β-proteobacteria in their nodules and are promising candidates for biotechnological applications. In this study, 15 bacterial strains were isolated from the nodules of the following legumes: Indigofera thibaudiana, Mimosa diplotricha, Mimosa albida, Mimosa pigra, and Mimosa pudica, collected in 9 areas of Chiapas, Mexico. The strains were grouped into four profiles of genomic fingerprints through BOX-PCR and identified based on their morphology, API 20NE biochemical tests, sequencing of the 16S rRNA, nifH and nodC genes as bacteria of the Burkholderia genus, genetically related to Burkholderia phenoliruptrix, Burkholderia phymatum, Burkholderia sabiae, and Burkholderia tuberum. The Burkholderia strains were grown under stress conditions with 4% NaCl, 45°C, and benzene presence at 0.1% as the sole carbon source. This is the first report on the isolation of these nodulating species of the Burkholderia genus in legumes in Mexico.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
21454 NE 143rd Street
Woodinville, WA 98077

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )