Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Fecal Transplantation

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 20 Oct 2018 at 01:36 Created: 

Fecal Transplantation

Fecal Transplantion is a procedure in which fecal matter is collected from a tested donor, mixed with a saline or other solution, strained, and placed in a patient, by colonoscopy, endoscopy, sigmoidoscopy, or enema. The theory behind the procedure is that a normal gut microbial ecosystem is required for good health and that sometimes a benefucuial ecosystem can be destroyed, perhaps by antibiotics, allowing other bacteria, specifically Clostridium difficile to over-populate the colon, causing debilitating, sometimes fatal diarrhea. C. diff. is on the rise throughout the world. The CDC reports that approximately 347,000 people in the U.S. alone were diagnosed with this infection in 2012. Of those, at least 14,000 died. Fecal transplant has also had promising results with many other digestive or auto-immune diseases, including Irritable Bowel Syndrome, Crohn's Disease, and Ulcerative Colitis. It has also been used around the world to treat other conditions, although more research in other areas is needed. Fecal transplant was first documented in 4th century China, where the treatment was known as yellow soup.

Created with PubMed® Query: "(fecal OR faecal) (transplant OR transplantation)" OR "fecal microbiota transplant" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2018-10-19

Elkrief A, Derosa L, Zitvogel L, et al (2018)

The intimate relationship between gut microbiota and cancer immunotherapy.

Gut microbes [Epub ahead of print].

Immunotherapy is widely used to treat a large variety of malignancies and has revolutionized the therapeutic approach to cancer. Major efforts are ongoing to identify biomarkers that predict response to immunotherapy as well as new strategies to improve ICI efficacy and clinical outcomes. Studies have shown that the gut microbiome determines the extent to which ICIs may invigorate the anticancer immune response. Here, the authors review recent studies that have described the effects of the gut microbiota on the efficacy of CTLA-4 and PD-1 inhibitors and outline potential future clinical directions of these findings.

RevDate: 2018-10-19

Chen X, S Devaraj (2018)

Gut Microbiome in Obesity, Metabolic Syndrome, and Diabetes.

Current diabetes reports, 18(12):129 pii:10.1007/s11892-018-1104-3.

PURPOSE OF REVIEW: Obesity and diabetes are worldwide epidemics. There is also a growing body of evidence relating the gut microbiome composition to insulin resistance. The purpose of this review is to delineate the studies linking gut microbiota to obesity, metabolic syndrome, and diabetes.

RECENT FINDINGS: Animal studies as well as proof of concept studies using fecal transplantation demonstrate the pivotal role of the gut microbiota in regulating insulin resistance states and inflammation. While we still need to standardize methodologies to study the microbiome, there is an abundance of evidence pointing to the link between gut microbiome, inflammation, and insulin resistance, and future studies should be aimed at identifying unifying mechanisms.

RevDate: 2018-10-19

Pesce M, Borrelli O, Saliakellis E, et al (2018)

Gastrointestinal Neuropathies: New Insights and Emerging Therapies.

Gastroenterology clinics of North America, 47(4):877-894.

The bewildering complexity of the enteric nervous system makes it susceptible to develop a wide array of motility disorders, collectively called enteric neuropathies. These gastrointestinal conditions are among the most challenging to manage, mainly given poor characterization of their etiopathophysiology and outcomes. Not surprisingly, therefore, targeted or curative therapies for enteric neuropathies are lacking and management is largely symptomatic. Nonetheless, recent advances in neurogastroenterology have witnessed improvements in established strategies, such as intestinal transplantation and the emergence of new treatments including novel drugs, electrical pacing, and manipulation of fecal microbiota, as well as stem cell and gene therapy.

RevDate: 2018-10-17

Lee P, Yacyshyn BR, MB Yacyshyn (2018)

Gut microbiota and obesity: An opportunity to alter obesity through Fecal Microbiota Transplant (FMT).

Diabetes, obesity & metabolism [Epub ahead of print].

Obesity is a global pandemic with immense health consequences for individuals and societies. Multiple factors including environmental influences and genetic predispositions are known to influence the development of obesity. Despite an increasing understanding of the factors driving the obesity episdemic, therapeutic interventions to prevent or reverse obesity are limited in their impact. Manipulation of the human gut microbiome provides a new potential therapeutic approach in the fight against obesity. Specific gut bacteria and their metabolites are known to affect host metabolism and feeding behavior, and dysbiosis of this biosystem may lead to metabolic syndrome. Potential therapies to alter the gut microbiota to treat obesity include dietary changes, supplementation of the diet with probiotic organisms and prebiotic compounds that influence bacterial growth, and the use of fecal microbiota transplant, in which gut microbiota from healthy indiviudals are introduced into the gut. In this review, we will examine the growing scientific evidence supporting the mechanisms by which the human gut microbiota may influence carbohydrate metabolism and obesity and the various possible therapies that may utilize the gut microbiota to help correct metabolic dysfunction. This article is protected by copyright. All rights reserved.

RevDate: 2018-10-17

Wang H, Cui B, Li Q, et al (2018)

The Safety of Fecal Microbiota Transplantation for Crohn's Disease: Findings from A Long-Term Study.

Advances in therapy pii:10.1007/s12325-018-0800-3 [Epub ahead of print].

INTRODUCTION: Fecal microbiota transplantation (FMT) has been used as a potential treatment option for Crohn's disease (CD). However, there is still lack of safety and efficacy evidence based on large samples of CD undergoing FMT. This study aimed to evaluate the risk factors of adverse event (AE) in the long term and the efficacy of FMT in the short term for patients with CD.

METHODS: FMT via mid-gut for mild to severe CD in a single center trial (NCT01793831) was performed from October 2012 to December 2016. The possible factors with AE and efficacy after FMT were prospectively recorded.

RESULTS: A total of 184 frequencies of FMT were performed for 139 patients who received FMT. During 1 month after FMT, 13.6% of mild AEs occurred, including increased frequency of defecation, fever, abdominal pain, flatulence, hematochezia, vomiturition, bloating and herpes zoster. No AE beyond 1 month was observed. Therefore, a 1 month cut-off could be suggested to define short-term and long-term AEs of FMT. Among the possible risk factors, only fecal microbiota purification methods were closely associated with the occurrence of AEs. The rate of AEs in patients undergoing manual methods for the preparation of fecal microbiota was 21.7%, which was significantly higher than the 8.7% in those experiencing an automatic method. The manual or automatic purification of fecal microbiota had no correlation with the efficacy of FMT.

CONCLUSION: This cohort study based on the largest size of cases demonstrated that improved fecal microbiota preparation reduced the rates of AEs, but did not affect the clinical efficacy in patients with CD.

RevDate: 2018-10-16

Li J, Cui H, Cai Y, et al (2018)

Tong-Xie-Yao-Fang Regulates 5-HT Level in Diarrhea Predominant Irritable Bowel Syndrome Through Gut Microbiota Modulation.

Frontiers in pharmacology, 9:1110.

Tong-Xie-Yao-Fang (TXYF) has been widely used for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D) in traditional Chinese medicine. However, its mechanism of action in the treatment of IBS-D remains to be fully understood. Recent reports have shown that Clostridium species in the gut can induce 5-HT production in the colon, which then contributes to IBS-D. Due to the wide use of TXYF in the clinical treatment of IBS-D and the close relationship between gut microbiota and IBS-D, we hypothesize that TXYF treats IBS-D by modulating gut microbiota and regulating colonic 5-HT levels. In this study, variation analysis of 16S rRNA was conducted to evaluate changes in the distribution of gut microbiota in IBS-D model rats after TXYF treatment. Moreover, we investigated whether TXYF could affect colonic 5-HT levels in IBS-D model rats. We then performed fecal transplantation experiments to confirm the effects of TXYF on gut microbiota and 5-HT levels. We found that TXYF treatment can ameliorate IBS-D and regulate 5-HT levels in colon tissue homogenates. TXYF treatment also affected the diversity of gut microbiota and altered the relative abundance of Akkermansia and Clostridium sensu stricto 1 in gut flora populations. Finally, we showed that fecal transplantation from TXYF-treated rats could relieve IBS-D and regulate 5-HT levels in colon tissue homogenates. In conclusion, the present study demonstrates that TXYF treatment diminishes colonic 5-HT levels and alleviates the symptoms of IBS-D by favorably affecting microbiota levels in gut flora communities.

RevDate: 2018-10-15

Cho S, Spencer E, Hirten R, et al (2018)

Fecal Microbiota Transplant for Recurrent Clostridium Difficile Infection in Pediatric Inflammatory Bowel Disease.

Journal of pediatric gastroenterology and nutrition [Epub ahead of print].

OBJECTIVES: Recurrent Clostridium difficile infection (RCDI) increases morbidity and mortality in patients with inflammatory bowel disease (IBD). Fecal microbiota transplant (FMT) is known to be very effective for RCDI in non-IBD patients with cure rates up to 91%. The same success rates of FMT have not been reported in IBD patients with RCDI, and the data in pediatrics is limited. We aimed to determine the effectiveness of FMT for RCDI in established pediatric IBD patients.

METHODS: We performed a retrospective chart review of pediatric patients with IBD and RCDI (≥3 episodes) who underwent FMT via colonoscopy at a tertiary care IBD center. The primary outcome was the rate of RCDI within 60 days post-FMT. The secondary outcomes were recurrence rate by 6 months, rate of colectomy, and time to recurrence.

RESULTS: Of the 8 eligible patients, 6 had ulcerative colitis, 1 had IBD-unspecified, and 1 had Crohn's disease. Median [interquartile range] age was 13 [11-14] years. All patients were on vancomycin at FMT. Two patients (25%) had RCDI by 60 days post-FMT and another 3 patients had RCDI between 60 days and 6 months. The median time to recurrence was 101 [40-139] days. Two patients (25%) who developed recurrence went to colectomy after FMT.

CONCLUSIONS: With a cure rate of 75% at 60 days, FMT administered for the treatment of RCDI may be an effective treatment option in pediatric IBD. However, there appears to be a significant rate of late recurrence of CDI after 60 days in these patients.

RevDate: 2018-10-15

Cheng S, Ma X, Geng S, et al (2018)

Fecal Microbiota Transplantation Beneficially Regulates Intestinal Mucosal Autophagy and Alleviates Gut Barrier Injury.

mSystems, 3(5): pii:mSystems00137-18.

Fecal microbiota transplantation (FMT) is one of the most effective ways to regulate the gut microbiota. Here, we investigated the effect of exogenous fecal microbiota on gut function from the perspective of analysis of the mucosal proteomes in a piglet model. A total of 289 differentially expressed proteins were annotated with 4,068 gene ontology (GO) function entries in the intestinal mucosa, and the levels of autophagy-related proteins in the forkhead box O (FoxO) signaling pathway were increased whereas the levels of proteins related to inflammation response were decreased in the recipient. Then, to assess the alleviation of epithelial injury in the Escherichia coli K88-infected piglets following FMT, intestinal microbiome-metabolome responses were determined. 16S rRNA gene sequencing showed that the abundances of beneficial bacteria, such as Lactobacillus and Succinivibrio, were increased whereas those of Enterobacteriaceae and Proteobacteria bacteria were decreased in the infected piglets following FMT. Metabolomic analysis revealed that levels of 58 metabolites, such as lactic acid and succinic acid, were enhanced in the intestinal lumen and that seven metabolic pathways, such as branched-chain amino acid metabolism pathways, were upregulated in the infected piglets following FMT. In concordance with the metabolome data, results of metagenomics prediction analysis also demonstrated that FMT modulated the metabolic functions of gut microbiota associated with linoleic acid metabolism. In addition, intestinal morphology was improved, a result that coincided with the decrease of intestinal permeability and the enhancement of mucins and mucosal expression of tight junction proteins in the recipient. Taken together, the results showed that FMT triggered intestinal mucosal protective autophagy and alleviated gut barrier injury through alteration of the gut microbial structure. IMPORTANCE The gut microbiota plays a crucial role in human and animal health, and its disorder causes multiple diseases. Over the past decade, FMT has gained increasing attention due to the success in treating Clostridium difficile infection (CDI) and inflammatory bowel disease (IBD). Although FMT appears to be effective, how FMT functions in the recipient remains unknown. Whether FMT exerts this beneficial effect through a series of changes in the host organism caused by alteration of gut microbial structure is also not known. In the present study, newborn piglets and E. coli K88-infected piglets were selected as models to explore the interplay between host and gut microbiota following FMT. Our results showed that FMT triggered intestinal mucosal autophagy and alleviated gut barrier injury caused by E. coli K88. This report provides a theoretical basis for the use of FMT as a viable therapeutic method for gut microbial regulation.

RevDate: 2018-10-15

Qi X, Li X, Zhao Y, et al (2018)

Treating Steroid Refractory Intestinal Acute Graft-vs.-Host Disease With Fecal Microbiota Transplantation: A Pilot Study.

Frontiers in immunology, 9:2195.

Patients with steroid refractory gastrointestinal (GI) tract graft- vs.-host disease (GvHD) face a poor prognosis and limited therapeutic options. To accurately assess the efficacy and safety of fecal microbiota transplantation (FMT) in treating steroid refractory GI tract GvHD, we conducted a pilot study involving eight patients. Having received FMTs, all patients' clinical symptoms relieved, bacteria enriched, and microbiota composition reconstructed. Compared to those who did not receive FMT, these eight patients achieved a higher progression-free survival. FMT can serve as a therapeutic option for GI tract aGVHD, but its effectiveness and safety need further evaluations. Clinical Trial Registration: NCT03148743.

RevDate: 2018-10-15

Zuo T, SC Ng (2018)

The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease.

Frontiers in microbiology, 9:2247.

In the twenty first century, the changing epidemiology of inflammatory bowel disease (IBD) globally with increasing disease incidence across many countries relates to the altered gut microbiota, due to a combinatorial effect of environmental factors, human immune responses and genetics. IBD is a gastrointestinal disease associated with a gut microbial dysbiosis, including an expansion of facultative anaerobic bacteria of the family Enterobacteriaceae. Advances in high-throughput sequencing enable us to entangle the gut microbiota in human health and IBD beyond the gut bacterial microbiota, expanding insights into the mycobiota, virobiota and helminthes. Caudovirales (viruses) and Basidiomycota, Ascomycota, and Candida albicans (fungi) are revealed to be increased in IBD. The deconvolution of the gut microbiota in IBD lays the basis for unveiling the roles of these various gut microbiota components in IBD pathogenesis and being conductive to instructing on future IBD diagnosis and therapeutics. Here we comprehensively elucidate the alterations in the gut microbiota in IBD, discuss the effect of diets in the gut microbiota in relation to IBD, and illustrate the potential of manipulation of gut microbiota for IBD therapeutics. The therapeutic strategy of antibiotics, prebiotics, probiotics and fecal microbiota transplantation will benefit the effective application of precision microbiome manipulation in IBD.

RevDate: 2018-10-15
CmpDate: 2018-10-15

Mahieu R, Cassisa V, Sanderink D, et al (2017)

Iterative Fecal Microbiota Transplantations for Eradicating Digestive Colonization With Carbapenemase-Producing Enterobacteriaceae: Is It Worth It?.

Infection control and hospital epidemiology, 38(10):1265-1266.

RevDate: 2018-10-12

Camara-Lemarroy CR, Metz LM, VW Yong (2018)

Focus on the gut-brain axis: Multiple sclerosis, the intestinal barrier and the microbiome.

World journal of gastroenterology, 24(37):4217-4223.

The brain-gut axis serves as the bidirectional connection between the gut microbiome, the intestinal barrier and the immune system that might be relevant for the pathophysiology of inflammatory demyelinating diseases. People with multiple sclerosis have been shown to have an altered microbiome, increased intestinal permeability and changes in bile acid metabolism. Experimental evidence suggests that these changes can lead to profound alterations of peripheral and central nervous system immune regulation. Besides being of pathophysiological interest, the brain-gut axis could also open new avenues of therapeutic targets. Modification of the microbiome, the use of probiotics, fecal microbiota transplantation, supplementation with bile acids and intestinal barrier enhancers are all promising candidates. Hopefully, pre-clinical studies and clinical trials will soon yield significant results.

RevDate: 2018-10-10

Fang H, Fu L, J Wang (2018)

Protocol for Fecal Microbiota Transplantation in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis.

BioMed research international, 2018:8941340.

Background: Fecal microbiota transplantation (FMT) is an emerging treatment approach for inflammatory bowel disease (IBD). The donor selection, the separation of fecal bacteria, the frequency of FMT, the way of infusion, the long-term safety, and efficacy are still uncertain.

Aim: To further study the efficacy and safety and protocol of FMT for IBD.

Methods: A systematic review and meta-analysis were conducted until February, 2018. Clinical remission was established as the primary outcome.

Results: A total of 596 paediatric and adult IBD patients were enrolled, and 459 patients received FMT therapy. 28.8% (132/459) patients achieved clinical remission during follow-up. 53% (241/459) patients achieved clinical response. The pooled estimated clinical remission for ulcerative colitis (UC) was 21% (95% CI: 8%-37%) and 30% (95% CI: 11%-52%) for Crohn's disease (CD), both with a risk of heterogeneity; 10% (95% CI: 0%-43%) for paediatric UC; 26% (95% CI: 10%-48%) for adult UC; 45% for paediatric CD (95% CI: 24%-66%); 22% (95% CI: 3%-52%) for adult CD. Meta-analysis of cohort studies showed that moderate-severe IBD patients could achieve more significant remission from FMT than mild-moderate patients (P=0.037). Delivery route has no impact on the efficacy of FMT in UC and CD. Based on current available evidence, a trend was observed towards higher clinical remission rate of frozen stool FMT than that of fresh stool for UC, while there was no significant difference between fresh and frozen FMT for CD. The optimal donor stool for FMT is still uncertain. Meta-analysis of RCTs showed that FMT treatment achieved significantly higher clinical remission rate than placebo for UC (28% versus 9%, P=0.0003).

Conclusion: FMT is an effective and safe therapy for both paediatric and adult IBD; fresh or frozen donor stool, delivery route, and antibiotic pretreatment or not have no impact on the efficacy of FMT in IBD. FMT might be a potential rescue therapy and even an initial standardized therapy for IBD. However, few data exist on long-term safety and efficacy and further validation is needed.

RevDate: 2018-10-10

Paule A, Frezza D, M Edeas (2018)

Microbiota and Phage Therapy: Future Challenges in Medicine.

Medical sciences (Basel, Switzerland), 6(4): pii:medsci6040086.

An imbalance of bacterial quantity and quality of gut microbiota has been linked to several pathologies. New strategies of microbiota manipulation have been developed such as fecal microbiota transplantation (FMT); the use of pre/probiotics; an appropriate diet; and phage therapy. The presence of bacteriophages has been largely underestimated and their presence is a relevant component for the microbiome equilibrium. As a promising treatment, phage therapy has been extensively used in Eastern Europe to reduce pathogenic bacteria and has arisen as a new method to modulate microbiota diversity. Phages have been selected and "trained" to infect a wide spectrum of bacteria or tailored to infect specific antibiotic resistant bacteria present in patients. The new development of genetically modified phages may be an efficient tool to treat the gut microbiota dysbiosis associated with different pathologies and increased production of bacterial metabolites and subsequently decrease systemic low-grade chronic inflammation associated with chronic diseases. Microbiota quality and mitochondria dynamics can be remodulated and manipulated by phages to restore the equilibrium and homeostasis of the system. Our aim is to highlight the great interest for phages not only to eliminate and control pathogenic bacterial infection but also in the near future to modulate the microbiota by adding new functions to selected bacteria species and rebalance the dynamic among phages and bacteria. The challenge for the medicine of tomorrow is to re-think and redesign strategies differently and far from our traditional thinking.

RevDate: 2018-10-10
CmpDate: 2018-10-10

Bhutiani N, Schucht JE, Miller KR, et al (2018)

Technical Aspects of Fecal Microbial Transplantation (FMT).

Current gastroenterology reports, 20(7):30 pii:10.1007/s11894-018-0636-7.

PURPOSE OF REVIEW: Fecal microbial transplantation (FMT) has become established as an effective therapeutic modality in the treatment of antibiotic-refractory recurrent Clostridium difficile colitis. A number of formulations and methods of delivery of FMT are currently available, each with distinct advantages. This review aims to review donor and patient selection for FMT as well as procedural aspects of FMT to help guide clinical practice.

RECENT FINDINGS: FMT can be obtained in fresh, frozen, lyophilized, and capsule-based formulations for delivery by oral ingestion, nasoenteric tube, colonoscopy, or enema (depending on the formulation used). Choosing the optimal method relies heavily on patient-related factors, including underlying pathology and severity of illness. As potential applications for FMT expand, careful donor screening and patient selection are critical to minimizing risk to patients and physicians. FMT represents an excellent therapeutic option for treatment of recurrent Clostridium difficile colitis and holds promise as a possible treatment modality in a variety of other conditions. The wide array of delivery methods allows for its application in various disease states in both the inpatient and outpatient setting.

RevDate: 2018-10-09

Paknikar R, J Pekow (2018)

Fecal Microbiota Transplantation for the Management of Clostridium difficile Infection.

Surgical infections [Epub ahead of print].

The clinical burden of Clostridium difficile infection (CDI) continues to grow. Despite the multitude of treatment options that have been developed and tested to combat the morbidity and death associated with CDI, recurrence remains common. As such, treatment modalities such as fecal microbiota transplantation (FMT) have become studied increasingly; FMT serves to transplant stool from carefully selected healthy subjects into C. difficile positive patients through a variety of delivery routes. In doing so, FMT is hypothesized to correct dysbiosis of the recipient gut microbiome addressing the root cause of the pathogenesis of C. difficile infection. A growing body of evidence shows FMT to be efficacious in this setting, and the study of FMT accordingly continues to evolve to identify novel indications for its utilization.

RevDate: 2018-10-09
CmpDate: 2018-10-09

Goyal H, Perisetti A, Rehman MR, et al (2018)

New and emerging therapies in treatment of Clostridium difficile infection.

European journal of gastroenterology & hepatology, 30(6):589-597.

Clostridium difficile infection (CDI) represents one of the most serious nosocomial infections that have grown dramatically over the past decade. Vancomycin and metronidazole are currently used as a standard therapy for CDI. Metronidazole is recommended as a first-line therapy for mild-to-moderate infections and vancomycin is mainly used for severe and/or refractory cases. However, studies have demonstrated that there are quite high CDI relapse rates with both of these medications, which represents a challenge for clinicians. Over the last decade, a number of newer and novel therapeutic options have emerged as promising alternatives to these standard CDI therapies. The following review provides the updated summaries of these newer therapeutic agents and their status in the treatment of CDI.

RevDate: 2018-10-09
CmpDate: 2018-10-08

McClain C, S Barve (2017)

A tale of two institutions.

Journal of hepatology, 66(4):682-684.

RevDate: 2018-10-06

Wen W, Zhang H, Shen J, et al (2018)

Fecal microbiota transplantation for patients with irritable bowel syndrome: A meta-analysis protocol.

Medicine, 97(40):e12661.

Irritable bowel syndrome (IBS) is a common functional bowel disease characterized by chronic or recurrent abdominal pain, bloating, constipation, and diarrhea. Many patients with IBS have a poor quality of life due to abdominal discomfort, diarrhea, constipation, and the presence of other diseases. At present, intestinal motility inhibitors, adsorbents, astringents, intestinal mucosal protective agents, and antidepressants have been combined to treat IBS, but the treatment process is long, which results in a large economic burden to patients. Fecal microbiota transplantation (FMT) is a treatment involving the transplantation of functional bacteria from healthy human feces into the gastrointestinal tract of patients; thus, replacing the intestinal flora and modulating intestinal and extra-intestinal diseases. In recent years, the efficacy and economic benefits of FMT in the treatment of IBS have received increasing attention from researchers.A search for randomized controlled trials (RCTs) on treating IBS with FMT will be performed using 9 databases, including PubMed, the Cochrane Library, Embase, ClinicalTrails, China National Knowledge Infrastructure, Sino Med, ScienceDirect, VIP, and Wanfang Data. Two reviewers will independently screen data extraction studies and assess study quality and risk of bias. The risk of bias for each RCT will be assessed against the Cochrane Handbook standards to assess methodological quality. RevMan V.5.3 software will be used to calculate data synthesis when meta-analysis is allowed.This study will provide a high-quality synthesis of existing evidence on the effectiveness and safety of FMT in the treatment of IBS.This study will determine if FMT is an effective and safe intervention for IBS.PROSPERO registration number is PROSPERO CRD42018108080.

RevDate: 2018-10-04

Warner BB (2018)

The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders.

Pediatric research pii:10.1038/s41390-018-0191-9 [Epub ahead of print].

Bidirectional communication between the gut and brain is well recognized, with data now accruing for a specific role of the gut microbiota in that link, referred to as the microbiome-gut-brain axis. This review will discuss the emerging role of the gut microbiota in brain development and behavior. Animal studies have clearly demonstrated effects of the gut microbiota on gene expression and neurochemical metabolism impacting behavior and performance. Based on these changes, a modulating role of the gut microbiota has been demonstrated for a variety of neuropsychiatric disorders, including depression, anxiety, and movement including Parkinson's, and importantly for the pediatric population autism. Critical developmental windows that influence early behavioral outcomes have been identified that include both the prenatal environment and early postnatal colonization periods. The clearest data regarding the role of the gut microbiota on neurodevelopment and psychiatric disorders is from animal studies; however, human data have begun to emerge, including an association between early colonization patterns and cognition. The importance of understanding the contribution of the gut microbiota to the development and functioning of the nervous system lies in the potential to intervene using novel microbial-based approaches to treating neurologic conditions. While pathways of communication between the gut and brain are well established, the gut microbiome is a new component of this axis. The way in which organisms that live in the gut influence the central nervous system (CNS) and host behavior is likely to be multifactorial in origin. This includes immunologic, endocrine, and metabolic mechanisms, all of which are pathways used for other microbial-host interactions. Germ-free (GF) mice are an important model system for understanding the impact of gut microbes on development and function of the nervous system. Alternative animal model systems have further clarified the role of the gut microbiota, including antibiotic treatment, fecal transplantation, and selective gut colonization with specific microbial organisms. Recently, researchers have started to examine the human host as well. This review will examine the components of the CNS potentially influenced by the gut microbiota, and the mechanisms mediating these effects. Links between gut microbial colonization patterns and host behavior relevant to a pediatric population will be examined, highlighting important developmental windows in utero or early in development.

RevDate: 2018-10-04

Bromberg JS, Hittle L, Xiong Y, et al (2018)

Gut microbiota-dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes.

JCI insight, 3(19): pii:121045 [Epub ahead of print].

We hypothesized that the gut microbiota influences survival of murine cardiac allografts through modulation of immunity. Antibiotic pretreated mice received vascularized cardiac allografts and fecal microbiota transfer (FMT), along with tacrolimus immunosuppression. FMT source samples were from normal, pregnant (immune suppressed), or spontaneously colitic (inflammation) mice. Bifidobacterium pseudolongum (B. pseudolongum) in pregnant FMT recipients was associated with prolonged allograft survival and lower inflammation and fibrosis, while normal or colitic FMT resulted in inferior survival and worse histology. Transfer of B. pseudolongum alone resulted in reduced inflammation and fibrosis. Stimulation of DC and macrophage lines with B. pseudolongum induced the antiinflammatory cytokine IL-10 and homeostatic chemokine CCL19 but induced lesser amounts of the proinflammatory cytokines TNFα and IL-6. In contrast, LPS and Desulfovibrio desulfuricans (D. desulfuricans), more abundant in colitic FMT, induced a more inflammatory cytokine response. Analysis of mesenteric and peripheral lymph node structure showed that B. pseudolongum gavage resulted in a higher laminin α4/α5 ratio in the lymph node cortical ridge, indicative of a suppressive environment, while D. desulfuricans resulted in a lower laminin α4/α5 ratio, supportive of inflammation. Discrete gut bacterial species alter immunity and may predict graft outcomes through stimulation of myeloid cells and shifts in lymph node structure and permissiveness.

RevDate: 2018-10-03

Li X, Li Z, Chang Y, et al (2018)

Successful transplantation of guinea pig gut microbiota in mice and its effect on pneumonic plague sensitivity.

PeerJ, 6:e5637 pii:5637.

Microbiota-driven variations in the inflammatory response are predicted to regulate host responses to infection. Increasing evidence indicates that the gastrointestinal and respiratory tracts have an intimate relationship with each other. Gut microbiota can influence lung immunity whereby gut-derived injurious factors can reach the lungs and systemic circulation via the intestinal lymphatics. The intestinal microbiota's ability to resist colonization can be extended to systemic infections or to pathogens infecting distant sites such as the lungs. Unlike the situation with large mammals, the microtus Yersinia pestis 201 strain exhibits strong virulence in mice, but nearly no virulence to large mammals (such as guinea pigs). Hence, to assess whether the intestinal microbiota from guinea pigs was able to affect the sensitivity of mice to challenge infection with the Y. pestis 201 strain, we fed mice with guinea pig diets for two months, after which they were administered 0.5 ml of guinea pig fecal suspension for 30 days by oral gavage. The stools from each mouse were collected on days 0, 15, and 30, DNA was extracted from them, and 16S rRNA sequencing was performed to assess the diversity and composition of the gut microbiota. We found that the intestinal microbiota transplants from the guinea pigs were able to colonize the mouse intestines. The mice were then infected with Yersinia pestis 201 by lung invasion, but no statistical difference was found in the survival rates of the mice that were colonized with the guinea pig's gut microbiota and the control mice. This indicates that the intestinal microbiota transplantation from the guinea pigs did not affect the sensitivity of the mice to pneumonic plague.

RevDate: 2018-10-01

Liang S, Wu X, F Jin (2018)

Gut-Brain Psychology: Rethinking Psychology From the Microbiota-Gut-Brain Axis.

Frontiers in integrative neuroscience, 12:33.

Mental disorders and neurological diseases are becoming a rapidly increasing medical burden. Although extensive studies have been conducted, the progress in developing effective therapies for these diseases has still been slow. The current dilemma reminds us that the human being is a superorganism. Only when we take the human self and its partner microbiota into consideration at the same time, can we better understand these diseases. Over the last few centuries, the partner microbiota has experienced tremendous change, much more than human genes, because of the modern transformations in diet, lifestyle, medical care, and so on, parallel to the modern epidemiological transition. Existing research indicates that gut microbiota plays an important role in this transition. According to gut-brain psychology, the gut microbiota is a crucial part of the gut-brain network, and it communicates with the brain via the microbiota-gut-brain axis. The gut microbiota almost develops synchronously with the gut-brain, brain, and mind. The gut microbiota influences various normal mental processes and mental phenomena, and is involved in the pathophysiology of numerous mental and neurological diseases. Targeting the microbiota in therapy for these diseases is a promising approach that is supported by three theories: the gut microbiota hypothesis, the "old friend" hypothesis, and the leaky gut theory. The effects of gut microbiota on the brain and behavior are fulfilled by the microbiota-gut-brain axis, which is mainly composed of the nervous pathway, endocrine pathway, and immune pathway. Undoubtedly, gut-brain psychology will bring great enhancement to psychology, neuroscience, and psychiatry. Various microbiota-improving methods including fecal microbiota transplantation, probiotics, prebiotics, a healthy diet, and healthy lifestyle have shown the capability to promote the function of the gut-brain, microbiota-gut-brain axis, and brain. It will be possible to harness the gut microbiota to improve brain and mental health and prevent and treat related diseases in the future.

RevDate: 2018-10-01
CmpDate: 2018-09-28

Allen JM, Mailing LJ, Cohrs J, et al (2018)

Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice.

Gut microbes, 9(2):115-130.

Exercise reduces the risk of inflammatory disease by modulating a variety of tissue and cell types, including those within the gastrointestinal tract. Recent data indicates that exercise can also alter the gut microbiota, but little is known as to whether these changes affect host function. Here, we use a germ-free (GF) animal model to test whether exercise-induced modifications in the gut microbiota can directly affect host responses to microbiota colonization and chemically-induced colitis. Donor mice (n = 19) received access to a running wheel (n = 10) or remained without access (n = 9) for a period of six weeks. After euthanasia, cecal contents were pooled by activity treatment and transplanted into two separate cohorts of GF mice. Two experiments were then conducted. First, mice were euthanized five weeks after the microbiota transplant and tissues were collected for analysis. A second cohort of GF mice were colonized by donor microbiotas for four weeks before dextran-sodium-sulfate was administered to induce acute colitis, after which mice were euthanized for tissue analysis. We observed that microbial transplants from donor (exercised or control) mice led to differences in microbiota β-diversity, metabolite profiles, colon inflammation, and body mass in recipient mice five weeks after colonization. We also demonstrate that colonization of mice with a gut microbiota from exercise-trained mice led to an attenuated response to chemical colitis, evidenced by reduced colon shortening, attenuated mucus depletion and augmented expression of cytokines involved in tissue regeneration. Exercise-induced modifications in the gut microbiota can mediate host-microbial interactions with potentially beneficial outcomes for the host.

RevDate: 2018-09-30

Krajicek E, Fischer M, Allegretti JR, et al (2018)

Nuts and Bolts of Fecal Microbiota Transplantation.

Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association pii:S1542-3565(18)31020-6 [Epub ahead of print].

RevDate: 2018-09-28

Martinez C, Edwards J, A Hassoun (2018)

Commercialized fecal microbiota transplantation provides efficacious treatment of Clostridium difficile infection.

Infectious diseases (London, England) [Epub ahead of print].

RevDate: 2018-09-27

Taur Y, Coyte K, Schluter J, et al (2018)

Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant.

Science translational medicine, 10(460):.

Antibiotic treatment can deplete the commensal bacteria of a patient's gut microbiota and, paradoxically, increase their risk of subsequent infections. In allogeneic hematopoietic stem cell transplantation (allo-HSCT), antibiotic administration is essential for optimal clinical outcomes but significantly disrupts intestinal microbiota diversity, leading to loss of many beneficial microbes. Although gut microbiota diversity loss during allo-HSCT is associated with increased mortality, approaches to reestablish depleted commensal bacteria have yet to be developed. We have initiated a randomized, controlled clinical trial of autologous fecal microbiota transplantation (auto-FMT) versus no intervention and have analyzed the intestinal microbiota profiles of 25 allo-HSCT patients (14 who received auto-FMT treatment and 11 control patients who did not). Changes in gut microbiota diversity and composition revealed that the auto-FMT intervention boosted microbial diversity and reestablished the intestinal microbiota composition that the patient had before antibiotic treatment and allo-HSCT. These results demonstrate the potential for fecal sample banking and posttreatment remediation of a patient's gut microbiota after microbiota-depleting antibiotic treatment during allo-HSCT.

RevDate: 2018-09-27
CmpDate: 2018-09-27

Salzberger B, Lehnert H, J Mössner (2017)

[The human microbiome].

Der Internist, 58(5):427-428.

RevDate: 2018-09-25

Hughes HK, Rose D, P Ashwood (2018)

The Gut Microbiota and Dysbiosis in Autism Spectrum Disorders.

Current neurology and neuroscience reports, 18(11):81 pii:10.1007/s11910-018-0887-6.

PURPOSE OF REVIEW: There is a growing body of evidence indicating the gut microbiota influence neurodevelopment and behavior. The purposes of this review are to provide an overview of studies analyzing the microbiota and their metabolites in autism spectrum disorders (ASD) and to discuss the possible mechanisms of action involved in microbial influence on the brain and behavior.

RECENT FINDINGS: The microbiota-gut-brain (MGB) axis has been extensively studied in animal models, and it is clear that alterations in the composition of microbiota alter neurological and behavioral outcomes. However, findings in human studies are less abundant. Although there are several studies so far showing altered microbiota (dysbiosis) in ASD, the results are heterogeneous and often contradictory. Intervention studies such as fecal microbiota transplant therapies show promise and lend credence to the involvement of the microbiota in ASD. A role for the microbiota in ASD is likely; however, further studies elucidating microbial or metabolomic signatures and mechanisms of action are needed. Future research should focus on intervention studies that can identify specific metabolites and immune mediators that improve with treatment to help identify etiologies and pathological mechanisms of ASD.

RevDate: 2018-09-25

Haak BW, Prescott HC, WJ Wiersinga (2018)

Therapeutic Potential of the Gut Microbiota in the Prevention and Treatment of Sepsis.

Frontiers in immunology, 9:2042.

Alongside advances in understanding the pathophysiology of sepsis, there have been tremendous strides in understanding the pervasive role of the gut microbiota in systemic host resistance. In pre-clinical models, a diverse and balanced gut microbiota enhances host immunity to both enteric and systemic pathogens. Disturbance of this balance increases susceptibility to sepsis and sepsis-related organ dysfunction, while restoration of the gut microbiome is protective. Patients with sepsis have a profoundly distorted composition of the intestinal microbiota, but the impact and therapeutic potential of the microbiome is not well-established in human sepsis. Modulation of the microbiota consists of either resupplying the pool of beneficial microbes by administration of probiotics, improving the intestinal microenvironment to enhance the growth of beneficial species by dietary interventions and prebiotics, or by totally recolonizing the gut with a fecal microbiota transplantation (FMT). We propose that there are three potential opportunities to utilize these treatment modalities over the course of sepsis: to decrease sepsis incidence, to improve sepsis outcome, and to decrease late mortality after sepsis. Exploring these three avenues will provide insight into how disturbances of the microbiota can predispose to, or even perpetuate the dysregulated immune response associated with this syndrome, which in turn could be associated with improved sepsis management.

RevDate: 2018-09-25

Plantamura E, Dzutsev A, Chamaillard M, et al (2018)

MAVS deficiency induces gut dysbiotic microbiota conferring a proallergic phenotype.

Proceedings of the National Academy of Sciences of the United States of America pii:1722372115 [Epub ahead of print].

RevDate: 2018-09-26
CmpDate: 2018-09-26

Gupta A, Cifu AS, S Khanna (2018)

Diagnosis and Treatment of Clostridium difficile Infection.

JAMA, 320(10):1031-1032.

RevDate: 2018-09-26
CmpDate: 2018-09-26

The Lancet (2018)

A new approach to treating infection.

Lancet (London, England), 391(10122):714.

RevDate: 2018-09-26
CmpDate: 2018-09-26

Radovanovic-Dinic B, Tesic-Rajkovic S, Grgov S, et al (2018)

Irritable bowel syndrome - from etiopathogenesis to therapy.

Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 162(1):1-9.

Irritable bowel syndrome (IBS) is a chronic and relapsing functional gastrointestinal disorder that affects 9-23% of the population across the world. Patients with IBS are often referred to gastroenterology, undergo various investigations, take various medicines, take time off work and have a poor quality of life. The pathophysiology of IBS is not yet completely understood and seems to be multifactorial. Many pathogenetic factors, in various combinations, and not all necessarily present in each patient, can play an important role. Discomfort or abdominal pain relieived by defacation, asociated with a change in stool form, is a typical clinical manifestation of IBS. Many factors, such as emotional stress and eating, may exacerbate the symptoms. A timely diagnosis of IBS is important so that treatment which will provide adequate symptomatic relief (diarrhoea, constipation, pain and boaring) can be introduced. The diagnosis of IBS is not confirmed by a specific test or structural abnormality. It is made using criteria based on clinical symptoms such as Rome criteria, unless the symptoms are thought to be atypical. Today the Rome Criteria IV is the current gold-standard for the diagnoses of IBS. Treatment of patients with IBS requires a multidisciplinary approach. Some patients respond well to non-pharmacological treatment, while others also require pharmacological treatment. This review will provide a summary of pathophysiology, diagnostic criteria and therapies for IBS.

RevDate: 2018-09-25
CmpDate: 2018-09-25

Johnsen PH, Hilpüsch F, Cavanagh JP, et al (2018)

Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial.

The lancet. Gastroenterology & hepatology, 3(1):17-24.

BACKGROUND: Irritable bowel syndrome (IBS) is a common condition characterised by abdominal pain, bloating, and poor quality of life. IBS might be caused by a gut dysbiosis. We aimed to compare faecal microbiota transplantation (FMT) with placebo in patients with IBS.

METHODS: In this double-blind, randomised, placebo-controlled, parallel-group, single-centre study, we enrolled patients with IBS with diarrhoea or with diarrhoea and constipation (excluding dominating constipation) defined by the ROME III criteria, scored as moderate to severe according to the IBS severity scoring system (IBS-SSS; a score of ≥175). Eligible participants were aged 18-75 years and were recruited locally by general practitioners in northern Norway. We randomly assigned participants (2:1) in blocks of six to active or placebo FMT. Personnel not involved in the clinical performance of the trial generated the randomisation sequence using a randomisation website. Non-study personnel performed the final allocation and standardised the active and placebo transplants to make them identical in appearance and temperature. The faeces were freshly processed, and were used the same day (fresh transplant) or were stored in a freezer for later use (frozen transplant); participants' own faeces served as placebo. A dose of 8 mg loperamide was administered orally 2 h before endoscopy to retain the transplant. The transplant (50-80 g of faeces mixed with 200 mL of isotonic saline and 50 mL of 85% glycerol) was administered by a colonoscope to the caecum. The primary endpoint was symptom relief of more than 75 points assessed by IBS-SSS, 3 months after FMT. The primary analysis was done in the modified intention-to-treat population, excluding participants who did not undergo treatment or who were diagnosed with any other disease by pinch biopsies obtained during the treatment procedure. For the safety analysis, only participants who did not undergo treatment were excluded. The study is registered with ClinicalTrials.gov, number NCT02154867. The trial has been extended with an open-labelled study treating the placebo group with frozen FMT for further exploratory studies.

FINDINGS: Between Jan 1, and Oct 30, 2015, we recruited 90 participants and randomly assigned them to active treatment (n=60) or placebo (n=30). Three participants did not undergo FMT and four were excluded after diagnosis of microscopic colitis, leaving 83 for final modified intention-to-treat analysis (55 in the active treatment group and 28 in the placebo group). 36 (65%) of 55 participants receiving active treatment versus 12 (43%) of 28 receiving the placebo showed response at 3 months (p=0·049). One participant had transient nausea and vertigo (active group) and was observed at the hospital for a few hours after the procedure. Two participants had soiling of transplant on their way home from treatment (one in each group) and three experienced self-limiting intermittent abdominal pain (one in the active group and two in the placebo group). No serious adverse events could be attributed to FMT.

INTERPRETATION: FMT induced significant symptom relief in patients with IBS. However, larger multicentre studies are needed to confirm the results.

FUNDING: HelseNord and the Norwegian Centre of Rural Medicine, University of Tromsø.

RevDate: 2018-09-24

Shogbesan O, Poudel DR, Victor S, et al (2018)

A Systematic Review of the Efficacy and Safety of Fecal Microbiota Transplant for Clostridium difficile Infection in Immunocompromised Patients.

Canadian journal of gastroenterology & hepatology, 2018:1394379.

Background: Fecal microbiota transplantation (FMT) has been shown to be effective in recurrent Clostridium difficile (CD) infection, with resolution in 80% to 90% of patients. However, immunosuppressed patients were often excluded from FMT trials, so safety and efficacy in this population are unknown.

Methods: We searched MEDLINE and EMBASE for English language articles published on FMT for treatment of CD infection in immunocompromised patients (including patients on immunosuppressant medications, patients with human immunodeficiency virus (HIV), inherited or primary immunodeficiency syndromes, cancer undergoing chemotherapy, or organ transplant, including-bone marrow transplant) of all ages. We excluded inflammatory bowel disease patients that were not on immunosuppressant medications. Resolution and adverse event rates (including secondary infection, rehospitalization, and death) were calculated.

Results: Forty-four studies were included, none of which were randomized designs. A total of 303 immunocompromised patients were studied. Mean patient age was 57.3 years. Immunosuppressant medication use was the reason for the immunocompromised state in the majority (77.2%), and 19.2% had greater than one immunocompromising condition. Seventy-six percent were given FMT via colonoscopy. Of the 234 patients with reported follow-up outcomes, 207/234 (87%) reported resolution after first treatment, with 93% noting success after multiple treatments. There were 2 reported deaths, 2 colectomies, 5 treatment-related infections, and 10 subsequent hospitalizations.

Conclusion: We found evidence that supports the use of FMT for treatment of CD infection in immunocompromised patients, with similar rates of serious adverse events to immunocompetent patients.

RevDate: 2018-09-24
CmpDate: 2018-09-24

Kang Y, Y Cai (2018)

Future prospect of faecal microbiota transplantation as a potential therapy in asthma.

Allergologia et immunopathologia, 46(3):307-309.

There is convincing evidence from both human and animal studies suggesting that the gut microbiota plays an important role in regulating immune responses associated with the development of asthma. Certain intestinal microbial strains have been demonstrated to suppress or impair immune responsiveness in asthma experimental models, suggesting that specific species among gut commensal microbiota may play either a morbific or phylactic role in the progression of asthma. Evidence to date suggests that the intestinal microbiota represent fertile targets for prevention or management of asthma. The faecal microbiota transplantation (FMT) is a rather straightforward therapy that manipulates the human gastrointestinal (GI) microbiota, by which a healthy donor microbiota is transferred into an existing but disturbed microbial ecosystem. The FMT may therefore represent a therapeutic approach for asthma treatment in the foreseeable future. At present, FMT therapy for asthma is very limited and should be actively studied. Considerable efforts are needed to increase our knowledge in the field of FMT therapy for asthma. In this review, we aimed to provide several insights into the development of FMT therapy for asthma.

RevDate: 2018-09-21
CmpDate: 2018-09-21

Dunwoody R, Steel A, Landy J, et al (2018)

Clostridium difficile and cystic fibrosis: management strategies and the role of faecal transplantation.

Paediatric respiratory reviews, 26:16-18.

Clostridium difficile is a bacterial infection that colonises the gut in susceptible hosts. It is associated with exposure to healthcare settings and antibiotic use. It could be assumed that cystic fibrosis (CF) patients are a high-risk group for C.difficile. However, despite high carriage rates, CF patients have low rates of active disease. There are guidelines for the treatment of C.difficile, however little is published specific to treating C.difficile in CF. This article provides an overview of the current management strategies for C.difficile in CF, including a description of the first faecal transplantation in this patient population.

RevDate: 2018-09-21
CmpDate: 2018-09-21

Van Laethem Y (2016)

.

Revue medicale de Bruxelles, 37(3):133-134.

RevDate: 2018-09-20

Fortier LC (2018)

Bacteriophages Contribute to Shaping Clostridioides (Clostridium) difficile Species.

Frontiers in microbiology, 9:2033.

Bacteriophages (phages) are bacterial viruses that parasitize bacteria. They are highly prevalent in nature, with an estimated 1031 viral particles in the whole biosphere, and they outnumber bacteria by at least 10-fold. Hence, phages represent important drivers of bacterial evolution, although our knowledge of the role played by phages in the mammalian gut is still embryonic. Several pathogens owe their virulence to the integrated phages (prophages) they harbor, which encode diverse virulence factors such as toxins. Clostridioides (Clostridium) difficile is an important opportunistic pathogen and several phages infecting this species have been described over the last decade. However, their exact contribution to the biology and virulence of this pathogen remains elusive. Current data have shown that C. difficile phages can alter virulence-associated phenotypes, in particular toxin production, by interfering with bacterial regulatory circuits through crosstalk with phage proteins for example. One phage has also been found to encode a complete binary toxin locus. Multiple regulatory genes have also been identified in phage genomes, suggesting that their impact on the host can be complex and often subtle. In this minireview, the current state of knowledge, major findings, and pending questions regarding C. difficile phages will be presented. In addition, with the apparent role played by phages in the success of fecal microbiota transplantation and the perspective of phage therapy for treatment of recurrent C. difficile infection, it has become even more crucial to understand what C. difficile phages do in the gut, how they impact their host, and how they influence the epidemiology and evolution of this clinically important pathogen.

RevDate: 2018-09-20

Lu M, Z Wang (2018)

Microbiota and Aging.

Advances in experimental medicine and biology, 1086:141-156.

The human gut microbiota is a huge ecosystem that provides lots of functions for host development, immune system, and metabolism. Gut microbiota is linked to lots of diseases, including human metabolic diseases such as obesity, type 2 diabetes (T2D), irritable bowel syndrome, and cardiovascular disease (CVD). Few studies, however, have noted the relationship between aging and microbiota; the connection between aging and microbiota remains largely to be researched. In this review, recent research findings are summarized on the role of gut microbiota in aging processes with emphasis on therapeutic potential of microbiome-targeted interventions in antiaging medicine.

RevDate: 2018-09-20
CmpDate: 2018-09-20

Diamond C, T McNeilly (2017)

Faecal Microbiota Transplantation for Clostridium Difficile - a local perspective.

The Ulster medical journal, 86(2):108-110.

Clostridium Difficile represents one of the major challenges of the antimicrobial era with associated significant morbidity. Treatment options are limited to a number of specific antibiotics with significant failure rates. Faecal Microbiota Transplantation has been recognised as a possible treatment option when standard therapy fails. We report a local case of Clostridium Difficile Infection ultimately requiring Faecal Microbiota Transplantation with good success. While no formal service providing the treatment is available within Northern Ireland it is a feasible treatment option for Clostridium Difficile Infection.

RevDate: 2018-09-20
CmpDate: 2018-09-20

Nishimura N, Tanabe H, Komori E, et al (2018)

Transplantation of High Hydrogen-Producing Microbiota Leads to Generation of Large Amounts of Colonic Hydrogen in Recipient Rats Fed High Amylose Maize Starch.

Nutrients, 10(2): pii:nu10020144.

The hydrogen molecule (H₂), which has low redox potential, is produced by colonic fermentation. We examined whether increased hydrogen (H₂) concentration in the portal vein in rats fed high amylose maize starch (HAS) helped alleviate oxidative stress, and whether the transplantation of rat colonic microbiota with high H₂ production can shift low H₂-generating rats (LG) to high H₂-generating rats (HG). Rats were fed a 20% HAS diet for 10 days and 13 days in experiments 1 and 2, respectively. After 10 days (experiment 1), rats underwent a hepatic ischemia-reperfusion (IR) operation. Rats were then categorized into quintiles of portal H₂ concentration. Plasma alanine aminotransferase activity and hepatic oxidized glutathione concentration were significantly lower as portal H₂ concentration increased. In experiment 2, microbiota derived from HG (the transplantation group) or saline (the control group) were orally inoculated into LG on days 3 and 4. On day 13, portal H₂ concentration in the transplantation group was significantly higher compared with the control group, and positively correlated with genera Bifidobacterium, Allobaculum, and Parabacteroides, and negatively correlated with genera Bacteroides, Ruminococcus, and Escherichia. In conclusion, the transplantation of microbiota derived from HG leads to stable, high H₂ production in LG, with the resultant high production of H₂ contributing to the alleviation of oxidative stress.

RevDate: 2018-09-19

Staley C, Kaiser T, Vaughn BP, et al (2018)

Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation.

Microbiome, 6(1):166 pii:10.1186/s40168-018-0549-6.

BACKGROUND: Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection (rCDI). The use of freeze-dried, encapsulated donor material for FMT (cap-FMT) allows for an easy route of administration and remains clinically effective in the majority of rCDI patients. We hypothesized that specific shifts in the microbiota in response to cap-FMT could predict clinical outcome. We further evaluated the degree of donor microbiota engraftment to determine the extent that donor transfer contributed to recovery.

RESULTS: In total, 89 patients were treated with 100 separate cap-FMTs, with a success rate (no rCDI 60 days post cap-FMT) of 80%. Among responders, the lower alpha diversity (ANOVA P < 0.05) observed among patient's pre-FMT samples was restored following cap-FMT. At 1 week post-FMT, community composition varied by clinical outcome (ANOSIM P < 0.001), with similar abundances among families (Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae) in responder and donor samples. Families that showed differential abundances by outcome (response vs. recurrence) from samples collected 7 days following cap-FMT were used to construct a regression tree-based model to predict recurrence. Results showed a training accuracy of 100% to predict recurrence and the model was 97% accurate against a test data set of samples collected 8-20 days following cap-FMT. Evaluation of the extent of engraftment using the Bayesian algorithm SourceTracker revealed that approximately 50% of the post-FMT communities of responders were attributable to donor microbiota, while an additional 20-30% of the communities were similar to a composite healthy microbiota consisting of all donor samples.

CONCLUSIONS: Regression tree-based analyses of microbial communities identified taxa significantly related to clinical response after 7 days, which can be targeted to improve microbial therapeutics. Furthermore, reinstatement of a healthy assemblage following cap-FMT was only partially attributable to explicit donor engraftment and continued to develop towards an overall healthy assemblage, independent of donor.

RevDate: 2018-09-18

Tariq R, Weatherly RM, Kammer PP, et al (2017)

Experience and Outcomes at a Specialized Clostridium difficile Clinical Practice.

Mayo Clinic proceedings. Innovations, quality & outcomes, 1(1):49-56 pii:S2542-4548(17)30012-7.

Objective: To report our experience with and outcomes among patients referred to a specialized Clostridium difficile clinical practice.

Patients and Methods: We retrospectively identified consecutive patients referred for Clostridium difficile infection (CDI) management from January 1, 2013, through May 30, 2015. Data were collected for demographic characteristics, CDI history, final diagnoses, and management.

Results: Overall, 211 patients (median age, 65 years; 66.4% women) were included. The most common indications for referral were recurrent CDI in 199 patients (94.3%), first CDI episode in 5 patients (2.4%), and chronic diarrhea in 7 patients (3.3%). After evaluation, the diagnoses were recurrent CDI in 127 patients (60.2%), resolved CDI in 36 patients (17.1%), first-episode CDI in 5 patients (2.4%), and non-CDI in 43 patients (20.4%). The most common non-CDI diagnoses were postinfection irritable bowel syndrome (PI-IBS) in 32 patients (15.2% overall), inflammatory bowel disease (n=3), small intestinal bacterial overgrowth (n=2), microscopic colitis (n=1), and asymptomatic C difficile colonization (n=2). Two patients had diabetic gastroparesis and food intolerances, and 1 had chronic constipation with overflow diarrhea. Of 127 patients with recurrent CDI, 30 (23.6%) received antibiotics; of these 30, 12 had antibiotic treatment failure and received fecal microbiota transplantation (FMT) for recurrent CDI. Among 97 patients (76.4%) who underwent FMT, 85 (87.6%) were cured after the first FMT, 5 were cured after the second FMT, and 7 were treated with antibiotics for FMT failure, with resolution of symptoms.

Conclusion: A substantial proportion of patients referred for CDI subsequently received alternative diagnoses; PI-IBS was the most common. Patients being referred for recurrent CDI should be evaluated carefully for alternative diagnoses.

RevDate: 2018-09-19
CmpDate: 2018-09-19

Akrami K, DA Sweeney (2018)

The microbiome of the critically ill patient.

Current opinion in critical care, 24(1):49-54.

PURPOSE OF REVIEW: Advances in the understanding of the human microbiome outside of the ICU have led investigators to consider the role of the microbiome in critical illness. The picture that is being elucidated is one of dysbiosis occurring at multiple sites in the critically ill patient. This review describes the changes that occur in the various microbiomes of a critically ill patient, the implications of these changes and shows how advances in the understanding of dysbiosis may lead to microbiome-targeted therapies.

RECENT FINDINGS: Critically ill patients undergo dysbiosis at several organ sites including the skin, gastrointestinal system and the lungs with loss of microbial diversity and a propensity for potentially pathogenic organisms to dominate a particular microbiome. These microbiome changes appear to be predictive of clinical outcome. While the use of fecal microbial transplantation has been demonstrated to be an effective treatment for recurrent Clostridium difficile infection, the use of fecal microbial transplantation and other microbiome modifying therapies may have a role in managing critical illness in the ICU.

SUMMARY: A growing understanding of the microbiome in the critically ill may modify current dogma regarding the pathogenesis of sepsis and other life-threatening conditions seen in the ICU, thereby fundamentally changing antibiotic stewardship and the management of the critically ill patient.

RevDate: 2018-09-18

Drastich P, Bajer L, M Kverka (2018)

Possibilities of therapeutic manipulation of the gut microbiota.

Vnitrni lekarstvi, 64(6):665-671.

Human gut microbiota, complex ecosystem of microbes associated with human gut, is essential for the development of the host's immune system and many other physiological functions. Recently, numerous diseases and syndromes were associated with disruption of this ecosystem thus stressing its importance in maintaining the host's health. Growing evidence suggests that by manipulating the gut microbiota, some of these diseases could be treated or even prevented. These manipulations include changes in diet, use of probiotics, prebiotics, antibiotics and fecal microbiota transplantation (FMT). The successes in FMT treatment of recurrent infection of Clostridium difficile led recently to a great interest in extending this treatment modality to other diseases with proven disruption of gut microbiota, such as ulcerative colitis or metabolic syndrome. Key words: Clostridium difficile - dysbiosis - fecal microbial transplantation - microbiota - prebiotics - probiotics.

RevDate: 2018-09-18
CmpDate: 2018-09-18

Ooijevaar RE, van Beurden YH, Terveer EM, et al (2018)

Update of treatment algorithms for Clostridium difficile infection.

Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 24(5):452-462.

BACKGROUND: Clostridium difficile is the leading cause of antibiotic-associated diarrhoea, both in healthcare facilities and in the community. The recurrence rate of C. difficile infection (CDI) remains high, up to 20%. Since the publication of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidance document on CDI treatment in 2014, new therapeutic approaches have been developed and tested to achieve higher sustained clinical cure in CDI.

AIM: To review novel treatments and approaches for CDI, except probiotics and vaccines. We focused on new antibiotics, antibiotic inactivators, monoclonal antibodies and gut microbiota modulating therapies.

SOURCES: A literature review was performed for clinical trials published in PubMed, Embase or Cochrane Library between January 2013 and November 2017.

CONTENT: We analysed 28 clinical trials and identified 14 novel agents. Completed phase 2 studies were found for cadazolid, LFF571, ridinilazole and nontoxigenic C. difficile strains. Four phase 3 active comparator studies comparing vancomycin with bezlotoxumab, surotomycin (n = 2) and rifaximin have been published. Seven clinical trials for treatment of multiple recurrent CDI with faecal microbiota transplantation were analysed, describing faecal microbiota transplantation by upper or lower gastrointestinal route (n = 5) or by capsules (n = 2).

IMPLICATIONS: Metronidazole is mentioned in the ESCMID guideline as first-line therapy, but we propose that oral vancomycin will become the first choice when antibiotic treatment for CDI is necessary. Fidaxomicin is a good alternative, especially in patients at risk of relapse. Vancomycin combined with faecal microbiota transplantation remains the primary therapy for multiple recurrent CDI. We anticipate that new medication that protects the gut microbiota will be further developed and tested to prevent CDI during antibiotic therapy.

RevDate: 2018-09-18
CmpDate: 2018-09-18

Chilton CH, Pickering DS, J Freeman (2018)

Microbiologic factors affecting Clostridium difficile recurrence.

Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 24(5):476-482.

BACKGROUND: Recurrent Clostridium difficile infection (rCDI) places a huge economic and practical burden on healthcare facilities. Furthermore, rCDI may affect quality of life, leaving patients in an rCDI cycle and dependant on antibiotic therapy.

AIMS: To discuss the importance of microbiologic factors in the development of rCDI.

SOURCES: Literature was drawn from a search of PubMed from 2000 onwards with the search term 'recurrent Clostridium difficile infection' and further references cited within these articles.

CONTENT: Meta-analyses and systematic reviews have shown that CDI and rCDI risk factors are similar. Development of rCDI is attendant on many factors, including immune status or function, comorbidities and concomitant treatments. Studies suggest that poor bacterial diversity is correlated with clinical rCDI. Narrow-spectrum gut microflora-sparing antimicrobials (e.g. surotomycin, cadazolid, ridinilazole) are in development for CDI treatment, while microbiota therapeutics (faecal microbiota transplantation, nontoxigenic C. difficile, stool substitutes) are increasingly being explored. rCDI can only occur when viable C. difficile spores are present, either within the gut lumen after infection or when reacquired from the environment. C. difficile spore germination can be influenced by gut environmental factors resulting from dysbiosis, and spore outgrowth may be affected stage by some antimicrobials (e.g. fidaxomicin, ramoplanin, oritavancin).

IMPLICATIONS: rCDI is a significant challenge for healthcare professionals, requiring a multifaceted approach; optimized infection control to minimize reinfection; C. difficile-targeted antibiotics to minimize dysbiosis; and gut microflora restoration to promote colonization resistance. These elements should be informed by our understanding of the microbiologic factors involved in both C. difficile itself and the gut microbiome.

RevDate: 2018-09-17

Reigadas E, Olmedo M, Valerio M, et al (2018)

Fecal microbiota transplantation for recurrent Clostridium difficile infection: Experience, protocol, and results.

Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia pii:reigadas14sep2018 [Epub ahead of print].

OBJECTIVE: Fecal microbiota transplantation (FMT) is a highly effective therapy for recurrent Clostridium difficile infection (R-CDI). Despite its excellent efficacy, it is still not a routine procedure in most European centers. FMT has not been widely used in Spain to date. We describe our experience with FMT, including a novel approach based on oral fecal capsules.

METHODS: We analyzed a prospectively recorded case series of patients with R-CDI treated with FMT at a single center (June 2014-July 2017). Primary outcome was defined as resolution of CDI without recurrence in a two-month period. FMT was administered via colonoscopy, nasojejunal tube, or oral capsules. All stool donors were rigorously screened.

RESULTS: FMT was performed in 13 patients with R-CDI. Median age was 75.0 years and 76.9% were females. Six FMT were performed via nasojejunal tube, 5 via oral capsules, and 2 by colonoscopy. There were no procedure-related adverse events, except for bacteremia in one patient. During follow-up, R- CDI was observed in one patient at one month after FMT. The primary resolution rate was 83.3% and the overall resolution rate was 91.7%. FMT by capsules achieved a 100% resolution rate, colonoscopy 100%, and nasojejunal tube 80.0%.

CONCLUSIONS: In our cohort, FMT proved to be safe and effective, even in high risk patients. Oral administration in capsules also proved to be safe, well-tolerated, and highly effective for R-CDI. In our experience, the FMT capsule formulation seems feasible in the routine of a hospital. This administration method will allow FMT to be more widely used.

RevDate: 2018-09-17

Daniels LM, WD Kufel (2018)

Clinical review of Clostridium difficile infection: an update on treatment and prevention.

Expert opinion on pharmacotherapy [Epub ahead of print].

INTRODUCTION: Clostridium difficile infection (CDI) has become a significant healthcare-associated infection and is strongly associated with antibiotic use. Practice guidelines have recently been revised incorporating updated recommendations for diagnosis, treatment, and prevention. Areas Covered: This review discusses updated aspects of CDI management. New and emerging pharmacologic options for treatment and prevention are reviewed. Expert opinion: Metronidazole is associated with lower rates of treatment success compared to vancomycin and should no longer be used as primary therapy for the first episode of CDI or recurrent disease. Vancomycin or fidaxomicin are now recommended for first line therapy for most cases of CDI. Fecal microbiota transplant is effective and safe for the treatment of recurrent CDI. Evidence supports the use of fidaxomicin and bezlotoxumab for prevention of recurrent CDI; however, the costs associated with these therapies may limit their use. Validated risk prediction tools are needed to identify patients most likely to benefit from these treatments. Future advancements in microbiota targeting treatments will emerge as promising alternatives to standard CDI treatments. Antibiotic stewardship and infection control measures will remain essential components for CDI management.

RevDate: 2018-09-17
CmpDate: 2018-09-17

Arab JP, Martin-Mateos RM, VH Shah (2018)

Gut-liver axis, cirrhosis and portal hypertension: the chicken and the egg.

Hepatology international, 12(Suppl 1):24-33.

The term gut-liver axis is used to highlight the close anatomical and functional relationship between the intestine and the liver. The intestine has a highly specialized epithelial membrane which regulates transport across the mucosa. Due to dysbiosis, impairment of the intestinal barrier and altered immunity status, bacterial products can reach the liver through the portal vein, where they are recognized by specific receptors, activate the immune system and lead to a proinflammatory response. Gut microbiota and bacterial translocation play an important role in the pathogenesis of chronic liver diseases, including alcoholic and non-alcoholic fatty liver disease, cirrhosis, and its complications, such as portal hypertension, spontaneous bacterial peritonitis and hepatic encephalopaty. The gut microbiota also plays a critical role as a modulator of bile acid metabolism which can also influence intestinal permeability and portal hypertension through the farnesoid-X receptor. On the other hand, cirrhosis and portal hypertension affect the microbiota and increase translocation, leading to a "chicken and egg" situation, where translocation increases portal pressure, and vice versa. A myriad of therapies targeting gut microbiota have been evaluated specifically in patients with chronic liver disease. Further studies targeting intestinal microbiota and its possible hemodynamic and metabolic effects are needed. This review summarizes the current knowledge about the role of gut microbiota in the pathogenesis of chronic liver diseases and portal hypertension.

RevDate: 2018-09-15

Schmulson M, M Bashashati (2018)

Fecal microbiota transfer for bowel disorders: efficacy or hype?.

Current opinion in pharmacology, 43:72-80 pii:S1471-4892(18)30074-2 [Epub ahead of print].

PURPOSE OF REVIEW: Dysbiosis has been related to the pathophysiology of disorders of - gut-brain interaction (DGBI) including irritable bowel syndrome (IBS) and functional constipation (FC). Accordingly, modulation of gut microbiota has been proposed as a potential treatment for these disorders. Gut microbiota modulation can be effected by probiotics, prebiotics, symbiotics, postbiotics, antibiotics and fecal transplantation (FMT) or bacteriotherapy. The latter is currently used for recurrent or severe Clostridium difficile colitis and has been the focus of recent research in IBS and FC.

RECENT FINDINGS: Several case series reported promising results for FMT in patients with IBS and FC, which prompted the conduction of randomized controlled trials (RCT) in these DGBI.

SUMMARY: Both case series and RCTs are herein discussed. To the best of our knowledge, as of yet, 5 RCTs have been published on IBS and one in FC with slow colonic transit. In IBS, the majority of studies have used the IBS severity scoring system (IBS-SSS) as an outcome measure; however, the selection criteria were different among the trials as well as the route and form of administration of the FMT. Therefore, the results are inconsistent and no conclusion can be drawn. Some studies suggest that the presence of post-infection (PI)-IBS and the baseline microbiota status in the donors could be predictor factors of successful FMT in IBS. In constipation with slow colonic transit, the FMT seems to be more effective, although the data is based on only one RCT. We believe that larger RCTs, controlled with true placebos and considering baseline intestinal microbiota of the study subjects as well as donors' microbiota are still needed before recommending FMT in IBS and/or FC. History of previous GI infection (e.g. PI-IBS) and IBS subtypes should also be taken into account.

RevDate: 2018-09-14

Diorio C, Robinson PD, Ammann RA, et al (2018)

Guideline for the Management of Clostridium Difficile Infection in Children and Adolescents With Cancer and Pediatric Hematopoietic Stem-Cell Transplantation Recipients.

Journal of clinical oncology : official journal of the American Society of Clinical Oncology [Epub ahead of print].

Purpose The aim of this work was to develop a clinical practice guideline for the prevention and treatment of Clostridium difficile infection (CDI) in children and adolescents with cancer and pediatric hematopoietic stem-cell transplantation (HSCT) patients. Methods An international multidisciplinary panel of experts in pediatric oncology and infectious diseases with patient advocate representation was convened. We performed systematic reviews of randomized controlled trials for the prevention or treatment of CDI in any population and considered the directness of the evidence to children with cancer and pediatric HSCT patients. We used the Grading of Recommendations Assessment, Development, and Evaluation approach to generate recommendations. Results The panel made strong recommendations to administer either oral metronidazole or oral vancomycin for the initial treatment of nonsevere CDI and oral vancomycin for the initial treatment of severe CDI. Fidaxomicin may be considered in the setting of recurrent CDI. The panel suggested that probiotics not be routinely used for the prevention of CDI, and that monoclonal antibodies and probiotics not be routinely used for the treatment of CDI. A strong recommendation to not use fecal microbiota transplantation was made in this population. We identified key knowledge gaps and suggested directions for future research. Conclusion We present a guideline for the prevention and treatment of CDI in children and adolescents with cancer and pediatric HSCT patients. Future research should include randomized controlled trials that involve children with cancer and pediatric HSCT patients to improve the management of CDI in this population.

RevDate: 2018-09-14

Sunkara T, Rawla P, Ofosu A, et al (2018)

Fecal microbiota transplant - a new frontier in inflammatory bowel disease.

Journal of inflammation research, 11:321-328 pii:jir-11-321.

Inflammatory bowel disease (IBD) is a chronic multifactorial disease that affects the gastrointestinal tract and results from an aberrant immune response toward luminal antigens in genetically susceptible people. Most of the current therapies for IBD focus on the management of the inflammation by using corticosteroids, immune modulators, and more recently, monoclonal antibodies (biological therapy). Although these therapies provide benefit in most cases, there are still a significant number of patients who do not respond or become refractory over time, suggesting the need for alternative therapeutic options. In the last decade, it has been recognized that "dysbiosis," an imbalanced gut microbiota, is a key element in IBD suggesting microbiome-based therapies as an attractive approach. Recently, fecal microbiota transplant (FMT) has been successfully used for the treatment of Clostridium difficile infection, and it is now under investigation for the treatment of IBD. Clinical trials data are still poor but strongly support a future introduction of FMT in therapy to manage IBD microbiome. More studies are needed to assess the optimal route of administration and the frequency of FMT, the best matched donor for each patient as well as the risks associated with FMT in IBD.

RevDate: 2018-09-14
CmpDate: 2018-09-14

Frossard JL, D Moradpour (2016)

.

Revue medicale suisse, 12(528):1403.

RevDate: 2018-09-14
CmpDate: 2018-09-14

Biedermann L (2017)

Vancomycin in Very-Early Onset Inflammatory Bowel Disease-Dysbiosis: Fight Fire with Fire?.

Digestion, 95(4):327-328.

RevDate: 2018-09-14
CmpDate: 2018-09-14

Hecker MT, Ho E, CJ Donskey (2017)

Fear of Failure: Engaging Patients in Antimicrobial Stewardship after Fecal Transplantation for Recurrent Clostridium difficile Infection.

Infection control and hospital epidemiology, 38(1):127-129.

RevDate: 2018-09-13

Ossorio PN, Y Zhou (2018)

Regulating stool for microbiota transplantation.

Gut microbes [Epub ahead of print].

In 2017 Gut Microbes published "A proposed definition of microbiota transplantation for regulatory purposes," in which the authors suggest that regulators should draw a line between microbiota transplants and biologic drugs composed of microbial communities (or other products derived from the human microbiome). They develop a definition of microbiota transplantation (MT) to help regulators draw such a line, and suggest that MT need not be, and cannot be, regulated as a biologic drug (a live biotherapeutic product). However, an agency's regulatory scrutiny of a medical product should be commensurate with that product's degree of risk to patients. Products for MT, such as stool, are likely to be as or more dangerous than more highly manipulated microbial products that scientists and regulators agree should be regulated as biologic drugs. Therefore, we argue that MT, as defined by the authors, should receive the same regulatory oversight as any other biologic product intended to cure, mitigate, treat, or prevent disease. We also suggest that regulators might not be able to operationalize the proposed definition of MT.

RevDate: 2018-09-13

Wang Z, Lou H, Wang Y, et al (2018)

GePMI: A statistical model for personal intestinal microbiome identification.

NPJ biofilms and microbiomes, 4:20 pii:65.

Human gut microbiomes consist of a large number of microbial genomes, which vary by diet and health conditions and from individual to individual. In the present work, we asked whether such variation or similarity could be measured and, if so, whether the results could be used for personal microbiome identification (PMI). To address this question, we herein propose a method to estimate the significance of similarity among human gut metagenomic samples based on reference-free, long k-mer features. Using these features, we find that pairwise similarities between the metagenomes of any two individuals obey a beta distribution and that a p value derived accordingly well characterizes whether two samples are from the same individual or not. We develop a computational framework called GePMI (Generating inter-individual similarity distribution for Personal Microbiome Identification) and apply it to several human gut metagenomic datasets (>300 individuals and >600 samples in total). From the results of GePMI, most of the human gut microbiomes can be identified (auROC = 0.9470, auPRC = 0.8702). Even after antibiotic treatment or fecal microbiota transplantation, the individual k-mer signature still maintains a certain specificity.

RevDate: 2018-09-13
CmpDate: 2018-09-13

Digby-Bell J, Williams A, Irving P, et al (2018)

Successful faecal microbiota transplant for recurrent Clostridium difficile infection delivered by colonoscopy through a diverted ileostomy in a patient with severe perianal Crohn's disease.

BMJ case reports, 2018: pii:bcr-2017-222958.

We present the first reported case of successful treatment of recurrent Clostridium difficile infection with faecal microbiota transplantation delivered antegrade with a colonoscope through a diverting ileostomy.

RevDate: 2018-09-13
CmpDate: 2018-09-13

Quraishi MN, Critchlow T, Bhala N, et al (2017)

Faecal transplantation for IBD management-pitfalls and promises.

British medical bulletin, 124(1):181-190.

Background: Faecal microbiota transplantation (FMT) as a potential treatment for inflammatory bowel disease (IBD) is an area of active current research, having been stimulated by the remarkable efficacy of FMT in treatment of Clostridium difficile-associated colitis.

Sources of data: This review is based on data from numerous case series on FMT in IBD since 1989 and results of four RCTs in ulcerative colitis (UC); three fully published.

Areas of agreement: Early signals of short to medium-term efficacy of FMT for UC are promising.

Areas of controversy: Methodology, underlying mechanisms and questions regarding safety of FMT remain controversial.

Growing points: Many trials of FMT in adults and children are currently recruiting.

Future trials of FMT will likely revisit Crohn's disease and patients undergoing pouch surgery. Advances in microbial culture complementing genetic sequencing and investigations into the virome and mycobiome in IBD will be of great future interest.

RevDate: 2018-09-12
CmpDate: 2018-09-12

Evans TJ, Hilton R, S Douthwaite (2018)

Treating chronic hepatitis E: when is enough enough?.

BMJ case reports, 2018: pii:bcr-2017-223592.

We present a 38-year-old white British man who was taking long-term immunosuppressive medication following kidney transplantation. On routine review, he was noted to have an isolated and asymptomatic rise in alanine aminotransferase. After thorough investigation, he was found to have positive IgM and IgG serology to hepatitis E virus-and given the duration of his transaminitis, he was determined to have chronic hepatitis E infection. Treatment options were complicated by the presence of his kidney transplant, by chronic anaemia and by his wish for concomitant fertility treatment. Ribavirin therapy was instituted with a dramatic and immediate drop in serum viral load, although stool viraemia persisted. No clear protocols guide duration of treatment in chronic hepatitis E infection, but protracted faecal virus shedding predicts viral recrudescence, and treatment should continue at least until the stool is clear of virus.

RevDate: 2018-09-11

Zuo T, Wong SH, Cheung CP, et al (2018)

Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection.

Nature communications, 9(1):3663 pii:10.1038/s41467-018-06103-6.

Fecal microbiota transplantation (FMT) is effective in treating recurrent Clostridium difficile infection (CDI). Bacterial colonization in recipients after FMT has been studied, but little is known about the role of the gut fungal community, or mycobiota. Here, we show evidence of gut fungal dysbiosis in CDI, and that donor-derived fungal colonization in recipients is associated with FMT response. CDI is accompanied by over-representation of Candida albicans and decreased fungal diversity, richness, and evenness. Cure after FMT is associated with increased colonization of donor-derived fungal taxa in recipients. Recipients of successful FMT ("responders") display, after FMT, a high relative abundance of Saccharomyces and Aspergillus, whereas "nonresponders" and individuals treated with antibiotics display a dominant presence of Candida. High abundance of C. albicans in donor stool also correlates with reduced FMT efficacy. Furthermore, C. albicans reduces FMT efficacy in a mouse model of CDI, while antifungal treatment reestablishes its efficacy, supporting a potential causal relationship between gut fungal dysbiosis and FMT outcome.

RevDate: 2018-09-11
CmpDate: 2018-09-11

Sadowsky MJ, A Khoruts (2016)

Faecal microbiota transplantation is promising but not a panacea.

Nature microbiology, 1:16015 pii:nmicrobiol201615.

RevDate: 2018-09-10

Wei YL, Chen YQ, Gong H, et al (2018)

Fecal Microbiota Transplantation Ameliorates Experimentally Induced Colitis in Mice by Upregulating AhR.

Frontiers in microbiology, 9:1921.

Ulcerative colitis (UC) is a chronic non-specific inflammatory disease that occurs in the colon and rectum. While fecal microbiota transplantation (FMT) is gaining attention as a clinical treatment of UC, the molecular mechanisms behind this effect have yet to be fully understood. A C57BL/6 mouse model was established to test whether FMT promotes the recovery of colon inflammation. Administration of 2% dextran sulfate sodium (DSS) for 7 days successfully induced acute colitis, as evidenced by diarrhea, hematochezia and colon shortening as well as a decrease in body weight. FMT alleviated the severity of colon mucosa injury and improved histological alterations compared with that of the DSS group. In addition, FMT promoted homeostasis of the intestinal microbiota. Furthermore, FMT upregulated the expression of aryl hydrocarbon receptor (AHR), interleukin-10 (IL-10), and transforming growth factor beta (TGF-β) in colon tissues. These results suggest that the significant anti-inflammatory effect of FMT may be attributed to its promotion of IL-10 and TGF-β production and AHR activation. Based on these results, FMT had a favorable therapeutic effect on DSS-induced colitis.

RevDate: 2018-09-10
CmpDate: 2018-09-10

Spindelboeck W, Schulz E, Uhl B, et al (2017)

Repeated fecal microbiota transplantations attenuate diarrhea and lead to sustained changes in the fecal microbiota in acute, refractory gastrointestinal graft-versus-host-disease.

Haematologica, 102(5):e210-e213.

RevDate: 2018-09-08

Luo Y, Zeng B, Zeng L, et al (2018)

Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus.

Translational psychiatry, 8(1):187 pii:10.1038/s41398-018-0240-5.

Gut microbiota has an important role in the immune system, metabolism, and digestion, and has a significant effect on the nervous system. Recent studies have revealed that abnormal gut microbiota induces abnormal behaviors, which may be associated with the hypothalamic-pituitary-adrenal (HPA) axis. Therefore, we investigated the behavioral changes in germ-free (GF) mice by behavioral tests, quantified the basal serum cortisol levels, and examined glucocorticoid receptor pathway genes in hippocampus using microarray analysis followed by real-time PCR validation, to explore the molecular mechanisms by which the gut microbiota influences the host's behaviors and brain function. Moreover, we quantified the basal serum cortisol levels and validated the differential genes in an Escherichia coli-derived lipopolysaccharide (LPS) treatment mouse model and fecal "depression microbiota" transplantation mouse model by real-time PCR. We found that GF mice showed antianxiety- and antidepressant-like behaviors, whereas E. coli LPS-treated mice showed antidepressant-like behavior, but did not show antianxiety-like behavior. However, "depression microbiota" recipient mice exhibited anxiety- and depressive-like behaviors. In addition, six glucocorticoid receptor pathway genes (Slc22a5, Aqp1, Stat5a, Ampd3, Plekhf1, and Cyb561) were upregulated in GF mice, and of these only two (Stat5a and Ampd3) were upregulated in LPS-treated mice, whereas the shared gene, Stat5a, was downregulated in "depression microbiota" recipient mice. Furthermore, basal serum cortisol levels were decreased in E. coli LPS-treated mice but not in GF mice and "depression microbiota" recipient mice. These results indicated that the gut microbiota may lead to behavioral abnormalities in mice through the downstream pathway of the glucocorticoid receptor. Herein, we proposed a new insight into the molecular mechanisms by which gut microbiota influence depressive-like behavior.

RevDate: 2018-09-07
CmpDate: 2018-09-07

Yoon MY, Min KB, Lee KM, et al (2016)

A single gene of a commensal microbe affects host susceptibility to enteric infection.

Nature communications, 7:11606 pii:ncomms11606.

Indigenous microbes inside the host intestine maintain a complex self-regulating community. The mechanisms by which gut microbes interact with intestinal pathogens remain largely unknown. Here we identify a commensal Escherichia coli strain whose expansion predisposes mice to infection by Vibrio cholerae, a human pathogen. We refer to this strain as 'atypical' E. coli (atEc) because of its inability to ferment lactose. The atEc strain is resistant to reactive oxygen species (ROS) and proliferates extensively in antibiotic-treated adult mice. V. cholerae infection is more severe in neonatal mice transplanted with atEc compared with those transplanted with a typical E. coli strain. Intestinal ROS levels are decreased in atEc-transplanted mice, favouring proliferation of ROS-sensitive V. cholerae. An atEc mutant defective in ROS degradation fails to facilitate V. cholerae infection when transplanted, suggesting that host infection susceptibility can be regulated by a single gene product of one particular commensal species.

RevDate: 2018-09-06
CmpDate: 2018-09-06

Verspohl E (2016)

[In process].

Medizinische Monatsschrift fur Pharmazeuten, 39(12):539-542.

RevDate: 2018-09-05

Monaghan T, Mullish BH, Patterson J, et al (2018)

Effective fecal microbiota transplantation for recurrent Clostridioides difficile infection in humans is associated with increased signalling in the bile acid-farnesoid X receptor-fibroblast growth factor pathway.

Gut microbes [Epub ahead of print].

The mechanisms of efficacy for fecal microbiota transplantation (FMT) in treating recurrent Clostridioides difficile infection (rCDI) remain poorly defined, with restored gut microbiota-bile acid interactions representing one possible explanation. Furthermore, the potential implications for host physiology of these FMT-related changes in gut bile acid metabolism are also not well explored. In this study, we investigated the impact of FMT for rCDI upon signalling through the farnesoid X receptor (FXR)-fibroblast growth factor (FGF) pathway. Herein, we identify that in addition to restoration of gut microbiota and bile acid profiles, FMT for rCDI is accompanied by a significant, sustained increase in circulating levels of FGF19 and reduction in FGF21. These FGF changes were associated with weight gain post-FMT, to a level not exceeding the pre-rCDI baseline. Collectively, these data support the hypothesis that the restoration of gut microbial communities by FMT for rCDI is associated with an upregulated FXR-FGF pathway, and highlight the potential systemic effect of FMT.

RevDate: 2018-09-05

Wang JW, Kuo CH, Kuo FC, et al (2018)

Fecal microbiota transplantation: Review and update.

Journal of the Formosan Medical Association = Taiwan yi zhi pii:S0929-6646(18)30555-2 [Epub ahead of print].

Fecal microbiota transplantation (FMT) is a method to directly change the recipient's gut microbiota to normalize the composition and gain a therapeutic benefit. The history of FMT has been traced back to the 4th century and has been highly regarded since 2013, when the United States Food and Drug Administration approved FMT for treating recurrent and refractory Clostridium difficile infection. Since then, the range of FMT applications extended rapidly and broadly not only in gastrointestinal disorders, but also in extra-gastrointestinal diseases. Donor selection with questionnaire, interview, blood tests, and stool examinations should be strictly performed before FMT to reduce and prevent occurrence of any adverse events. Step-by-step cautious fecal and recipient preparation along with adequately choosing delivery methods based on individual clinical situations are key points of the FMT process. Although current evidence deems FMT as a generally safe therapeutic method with few adverse effects, the long-term outcomes of FMT have not been completely elucidated. Therefore, establishing periodicity and length of regular follow-up after FMT to monitor the clinical efficacy and long-term adverse events are other essential issues. In the future, we will look forward to personalized FMT for different patients and conditions according to varied hosts and diseases.

RevDate: 2018-09-04

Han R, Ma J, H Li (2018)

Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota.

Frontiers of medicine pii:10.1007/s11684-018-0645-9 [Epub ahead of print].

Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases currently in the context of obesity worldwide, which contains a spectrum of chronic liver diseases, including hepatic steatosis, non-alcoholic steatohepatitis and hepatic carcinoma. In addition to the classical "Two-hit" theory, NAFLD has been recognized as a typical gut microbiota-related disease because of the intricate role of gut microbiota in maintaining human health and disease formation. Moreover, gut microbiota is even regarded as a "metabolic organ" that play complementary roles to that of liver in many aspects. The mechanisms underlying gut microbiota-mediated development of NAFLD include modulation of host energy metabolism, insulin sensitivity, and bile acid and choline metabolism. As a result, gut microbiota have been emerging as a novel therapeutic target for NAFLD by manipulating it in various ways, including probiotics, prebiotics, synbiotics, antibiotics, fecal microbiota transplantation, and herbal components. In this review, we summarized the most recent advances in gut microbiota-mediated mechanisms, as well as gut microbiota-targeted therapies on NAFLD.

RevDate: 2018-09-03

Ruiz L, López P, Suárez A, et al (2018)

The role of gut microbiota in lupus: what we know in 2018?.

Expert review of clinical immunology [Epub ahead of print].

INTRODUCTION: The role of the human intestinal microbiota in the maintenance of a healthy physiological condition, as well as its relation to the development of disease, remains to be clarified. Current evidence suggests that intestinal microbes could be involved in the initiation and amplification of autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus (SLE). Despite recent progress in understanding how these microbes influence the pathophysiology of lupus, studies are still limited. Areas covered: In this review, we have tried to summarize the most relevant findings that have contributed to our understanding of the links between the human intestinal microbiota and the development of lupus. We also describe the potential role of individual microbial players in the physiology of lupus, and how they can shape relevant immune responses. Expert commentary: Culture-independent techniques based on massive sequencing represent a powerful tool to unravel the biological activity of gut microbes. Current data demonstrates that, depending on the pattern of intestinal microorganisms or the presence of specific bacteria, different responses related to lupus physiology can be triggered. Fecal Microbiota Transplantation, live biotherapeutics or dietary interventions targeting the microbiota will likely become a treatment for SLE.

RevDate: 2018-09-03

Delaune V, Orci LA, Lacotte S, et al (2018)

Fecal microbiota transplantation: a promising strategy in preventing the progression of non-alcoholic steatohepatitis and improving the anti-cancer immune response.

Expert opinion on biological therapy [Epub ahead of print].

INTRODUCTION: Non-alcoholic fatty liver disease (NAFLD) has the potential to progress to hepatocellular carcinoma (HCC). However, limited therapies are currently available for the treatment of advanced HCC, and one must strive to search for novel strategies. Areas covered: We provide insight on current knowledge related to gut microbiota and NAFLD, summarize the sequence linking obesity to hepatocellular carcinoma and highlight gut dysbiosis in obesity and its consequences on the liver. We detail the impact of the gut microbiota on immune checkpoint inhibitors, and speculate on the role of fecal microbiota transplantation (FMT) in NAFLD and in improving anti-neoplastic immune response. Expert Opinion: Manipulation of the gut microbiota seems promising in the secondary prevention of NAFLD/NASH and/or in potentiating anti-cancer immune response, notably by a global "resetting" using FMT. However, the composition of a "harmful" gut microbiome in HCC still needs to be characterized, and the impact of FMT on HCC growth needs to be assessed.

RevDate: 2018-08-30

Wang S, Huang M, You X, et al (2018)

Gut microbiota mediates the anti-obesity effect of calorie restriction in mice.

Scientific reports, 8(1):13037 pii:10.1038/s41598-018-31353-1.

Calorie restriction (CR) extends lifespan and elicits numerous effects beneficial to health and metabolism in various model organisms, but the underlying mechanisms are not completely understood. Gut microbiota has been reported to be associated with the beneficial effects of CR; however, it is unknown whether these effects of CR are causally mediated by gut microbiota. In this study, we employed an antibiotic-induced microbiota-depleted mouse model to investigate the functional role of gut microbiota in CR. Depletion of gut microbiota rendered mice resistant to CR-induced loss of body weight, accompanied by the increase in fat mass, the reduction in lean mass and the decline in metabolic rate. Depletion of gut microbiota led to increases in fasting blood glucose and cholesterol levels independent of CR. A few metabolism-modulating hormones including leptin and insulin were altered by CR and/or gut microbiota depletion. In addition, CR altered the composition of gut microbiota with significant increases in major probiotic genera such as Lactobacillus and Bifidobacterium, together with the decrease of Helicobacter. In addition, we performed fecal microbiota transplantation in mice fed with high-fat diet. Mice with transferred microbiota from calorie-restricted mice resisted high fat diet-induced obesity and exhibited metabolic improvement such as alleviated hepatic lipid accumulation. Collectively, these data indicate that CR-induced metabolic improvement especially in body weight reduction is mediated by intestinal microbiota to a certain extent.

RevDate: 2018-08-30

Enck P (2018)

Primum non nocere: is faecal microbiota transplantation doing harm to patients with IBS?.

Gut pii:gutjnl-2018-317277 [Epub ahead of print].

RevDate: 2018-08-29

Barfuss S, Knackstedt ED, Jensen K, et al (2018)

Cardiac allograft vasculopathy following fecal microbiota transplantation for recurrent C. difficile infection.

We report the case of a 3-year-old male who developed recurrent Clostridium difficile infection after receiving an orthotopic heart transplant. Despite multiple courses of antibiotics, C. difficile infection was persistent and he underwent a fecal microbiota transplant. The patient responded with resolution of his diarrhea. However, within 2 months he developed severe mixed rejection with high circulating donor specific antibodies and significant coronary vasculopathy. Organ dysfunction led to the need for re-transplantation. The patient's post-operative course has since been complicated by pneumatosis intestinalis and recurrent C. difficile infection. This article is protected by copyright. All rights reserved.

RevDate: 2018-08-29

Kho ZY, SK Lal (2018)

The Human Gut Microbiome - A Potential Controller of Wellness and Disease.

Frontiers in microbiology, 9:1835.

Interest toward the human microbiome, particularly gut microbiome has flourished in recent decades owing to the rapidly advancing sequence-based screening and humanized gnotobiotic model in interrogating the dynamic operations of commensal microbiota. Although this field is still at a very preliminary stage, whereby the functional properties of the complex gut microbiome remain less understood, several promising findings have been documented and exhibit great potential toward revolutionizing disease etiology and medical treatments. In this review, the interactions between gut microbiota and the host have been focused on, to provide an overview of the role of gut microbiota and their unique metabolites in conferring host protection against invading pathogen, regulation of diverse host physiological functions including metabolism, development and homeostasis of immunity and the nervous system. We elaborate on how gut microbial imbalance (dysbiosis) may lead to dysfunction of host machineries, thereby contributing to pathogenesis and/or progression toward a broad spectrum of diseases. Some of the most notable diseases namely Clostridium difficile infection (infectious disease), inflammatory bowel disease (intestinal immune-mediated disease), celiac disease (multisystemic autoimmune disorder), obesity (metabolic disease), colorectal cancer, and autism spectrum disorder (neuropsychiatric disorder) have been discussed and delineated along with recent findings. Novel therapies derived from microbiome studies such as fecal microbiota transplantation, probiotic and prebiotics to target associated diseases have been reviewed to introduce the idea of how certain disease symptoms can be ameliorated through dysbiosis correction, thus revealing a new scientific approach toward disease treatment. Toward the end of this review, several research gaps and limitations have been described along with suggested future studies to overcome the current research lacunae. Despite the ongoing debate on whether gut microbiome plays a role in the above-mentioned diseases, we have in this review, gathered evidence showing a potentially far more complex link beyond the unidirectional cause-and-effect relationship between them.

RevDate: 2018-08-28

Zhang X, Zhao S, Song X, et al (2018)

Inhibition effect of glycyrrhiza polysaccharide (GCP) on tumor growth through regulation of the gut microbiota composition.

Journal of pharmacological sciences pii:S1347-8613(18)30059-8 [Epub ahead of print].

Glycyrrhiza Uralensis Polysaccharide (GCP), as a macromolecular polysaccharide extracted from the Traditional Chinese Medicine (TCM) - Licorice has been proved to inhibit tumor growth in vitro and in vivo; however, the specific anti-tumor mechanism of GCP needs to be further investigated. In this study, we explore the anti-tumor mechanism of GCP from the angle of gut microbiota. Colon carcinoma cells (CT-26) were used to set up a tumor-bearing mouse model. After 14 days of GCP treatment, the weights of tumors were significantly reduced. In addition, HE staining of tissue sections reflected that GCP could effectively inhibit tumor metastasis. 16SrRNA high-throughput sequencing of fecal samples showed a significant change between the model group and GCP group in the composition of gut microbiota. Subsequently, gut microbiota depletion and fecal transplantation experiments further confirmed the relationship between the anti-tumor effects of GCP and gut microbiota. Following depletion of gut microbiota, GCP cannot inhibit tumor growth. Fecal transplantation experiments found that transplanting the feces of GCP-treated mice, to a certain extent, could inhibit tumor growth and metastasis. These results indicate that Glycyrrhiza Polysaccharides exert anti-tumor effects by affecting gut microbiota composition.

RevDate: 2018-08-27

Tampaki EC, Tampakis A, Posabella A, et al (2018)

Current clostridium difficile treatments: Lessons that need to be learned from the clinical trials.

Human vaccines & immunotherapeutics [Epub ahead of print].

Clostridium difficile infection (CDI) is the most common infectious disease cause of nosocomial diarrhea in adults in developed countries. Judging from the clinical trials on drugs used in CDIs, no approved treatment for recurrences exists, possibly indicating that a combination of treatment approaches are mandatory especially in severe infections, with current studies not being fully representative. Among the new strategies researched intensively fidaxomicin is presented, which demonstrates reduced CDI recurrences. Moreover, biotherapeutic strategies, mainly fecal microbiota transplantation but also competitive inhibition with non-toxigenic strains of C. difficile, and finally monoclonal antibodies against C. difficile toxins which offer protection against recurrences. Careful interpretation of the results based on lessons learned from previous trials conducted seems crucial. Questions are raised regarding how the results of future studies regarding new strategies researched will be managed and interpreted especially with regard to recurrence management as relevant data must be monitored for at least 30 days after end of treatment.

RevDate: 2018-08-27

Pouch SM, RJ Friedman-Moraco (2018)

Prevention and Treatment of Clostridium difficile-Associated Diarrhea in Solid Organ Transplant Recipients.

Infectious disease clinics of North America, 32(3):733-748.

Clostridium difficile infection is a significant cause of morbidity and mortality in solid organ transplant recipients. Risk factors in this population include frequent hospitalizations, receipt of immunosuppressive agents, and intestinal dysbiosis triggered by several factors, including exposure to broad-spectrum antimicrobials. The incidence and potential for significant adverse outcomes among solid organ transplant recipients with C difficile infection highlight the evolving need for strategic C difficile infection risk factor modification and novel approaches to disease management in this patient population. This review focuses on current concepts related to the prevention and treatment of C difficile infection in solid organ transplant recipients.

RevDate: 2018-08-24

Dias C, Pipa S, Duarte-Ribeiro F, et al (2018)

Fecal microbiota transplantation as a potential way to eradicate multiresistant microorganisms.

IDCases, 13:e00432 pii:e00432.

Multiresistant microorganism infection often can produce a life-threatening situation. We report two cases in which fecal microbiota transplantation used for the treatment of recurrent Clostridium difficile infection were effective in eradicating colonization by carbapenemase-producing Enterobacteriaceae. The presented cases illustrate the potential benefit of fecal microbiota transplantation in resolution of asymptomatic carrier states of multiresistant microorganisms, suggesting the need for further investigations with a view to their applicability in this area.

RevDate: 2018-08-23

Khan MY, Dirweesh A, Khurshid T, et al (2018)

Comparing fecal microbiota transplantation to standard-of-care treatment for recurrent Clostridium difficile infection: a systematic review and meta-analysis.

European journal of gastroenterology & hepatology [Epub ahead of print].

BACKGROUND: The use of fecal microbiota transplantation (FMT) as a treatment option for recurrent Clostridium difficile infection (rCDI) is well established. Various studies have used different forms and administration routes for FMT. We performed a systemic review and meta-analysis to update the clinical knowledge about different FMT modalities for curing rCDI compared with medical treatment (MT).

PATIENTS AND METHODS: We searched PubMed and Medline from inception through 10 May 2018 for randomized control trials (RCTs) comparing FMT (fresh or frozen) versus MT. We used Cochrane Collaboration's Risk of Bias tool to assess bias in the RCTs. We estimated odds ratio (OR) with 95% confidence interval (CI) for each outcome using a random effects model. P values of less than 0.05 were considered significant.

RESULTS: We included seven RCTs comprising a total of 543 patients with recurrent CDI. There was a nonsignificant trend toward resolution of diarrhea following a single fresh FMT infusion compared with frozen FMT and MT (OR=2.45, 95% CI=0.78-7.71, P=0.12, I=69%). Subgroup analysis of fresh FMT vs. frozen FMT showed no difference between the two groups (OR=2.13, 95% CI=0.22-20.41, P=0.51, I=61%). Frozen FMT infusion through upper route versus lower route showed no difference (OR=0.62, 95% CI=0.15-2.54, P=0.51, I=0%). There was a nonsignificant trend favoring multiple treatments with FMT versus multiple courses of MT (OR=3.68, 95% CI=0.74-18.22, P=0.11, I=0%).

CONCLUSION: FMT is a promising treatment modality for rCDI compared with MT alone. Different forms and routes of FMT administration seem to be equally efficacious. In future, more well-designed RCTs directed at homogenous FMT preparation and delivery methods are required to validate these findings.

RevDate: 2018-08-20

Ishikawa D, Sasaki T, Takahashi M, et al (2018)

The Microbial Composition of Bacteroidetes Species in Ulcerative Colitis Is Effectively Improved by Combination Therapy With Fecal Microbiota Transplantation and Antibiotics.

Inflammatory bowel diseases pii:5074053 [Epub ahead of print].

Background: We previously reported that fresh fecal microbiota transplantation (FMT) after triple-antibiotic therapy (amoxicillin, fosfomycin, and metronidazole [AFM]; A-FMT) synergistically contributed to the recovery of phylum Bacteroidetes composition associated with the endoscopic severity and treatment efficacy of ulcerative colitis (UC). Here, we performed further microbial analyses using a higher-resolution method to identify the key bacterial species in UC and determine whether viable Bacteroidetes species from donor feces were successfully colonized by A-FMT.

Methods: The taxonomic composition of Bacteroidetes in 25 healthy donors and 27 UC patients at baseline was compared at the species level using a heat-shock protein (hsp) 60-based microbiome method. Microbiota alterations before and after treatment of UC patients were also analyzed in 24 cases (n = 17 A-FMT; n = 3 mono-AFM; n = 4 mono-FMT).

Results: We found species-level dysbiosis within the phylum Bacteroidetes in UC samples, which was associated with reduced species diversity, resulting from hyperproliferation and hypoproliferation of particular species. Moreover, in responders treated with A-FMT, diversity was significantly recovered at 4 weeks after a fresh round of FMT, after which high degrees of similarity in Bacteroidetes species composition among recipients and donors were observed.

Conclusions: A-FMT alleviated intestinal dysbiosis, which is caused by the loss of Bacteroidetes species diversity in patients with UC. Eradication of dysbiotic indigenous Bacteroidetes species by AFM pretreatment might promote the colonization of viable Bacteroidetes cells, thereby improving the intestinal microbiota dysbiosis induced by UC. Our findings serve as a basis for further investigations into the mechanisms of FMT.

RevDate: 2018-08-20

Williamson IA, Arnold JW, Samsa LA, et al (2018)

A High-Throughput Organoid Microinjection Platform to Study Gastrointestinal Microbiota and Luminal Physiology.

Cellular and molecular gastroenterology and hepatology, 6(3):301-319 pii:S2352-345X(18)30080-8.

Background & Aims: The human gut microbiota is becoming increasingly recognized as a key factor in homeostasis and disease. The lack of physiologically relevant in vitro models to investigate host-microbe interactions is considered a substantial bottleneck for microbiota research. Organoids represent an attractive model system because they are derived from primary tissues and embody key properties of the native gut lumen; however, access to the organoid lumen for experimental perturbation is challenging. Here, we report the development and validation of a high-throughput organoid microinjection system for cargo delivery to the organoid lumen and high-content sampling.

Methods: A microinjection platform was engineered using off-the-shelf and 3-dimensional printed components. Microinjection needles were modified for vertical trajectories and reproducible injection volumes. Computer vision (CVis) and microfabricated CellRaft Arrays (Cell Microsystems, Research Triangle Park, NC) were used to increase throughput and enable high-content sampling of mock bacterial communities. Modeling preformed using the COMSOL Multiphysics platform predicted a hypoxic luminal environment that was functionally validated by transplantation of fecal-derived microbial communities and monocultures of a nonsporulating anaerobe.

Results: CVis identified and logged locations of organoids suitable for injection. Reproducible loads of 0.2 nL could be microinjected into the organoid lumen at approximately 90 organoids/h. CVis analyzed and confirmed retention of injected cargos in approximately 500 organoids over 18 hours and showed the requirement to normalize for organoid growth for accurate assessment of barrier function. CVis analyzed growth dynamics of a mock community of green fluorescent protein- or Discosoma sp. red fluorescent protein-expressing bacteria, which grew within the organoid lumen even in the presence of antibiotics to control media contamination. Complex microbiota communities from fecal samples survived and grew in the colonoid lumen without appreciable changes in complexity.

Conclusions: High-throughput microinjection into organoids represents a next-generation in vitro approach to investigate gastrointestinal luminal physiology and the gastrointestinal microbiota.

RevDate: 2018-08-17

Farowski F, Els G, Tsakmaklis A, et al (2018)

Assessment of urinary 3-indoxyl sulfate as a marker for gut microbiota diversity and abundance of Clostridiales.

Gut microbes [Epub ahead of print].

OBJECTIVES: After allogeneic hematopoietic stem cell transplantation (allo-HCT), urinary levels of 3-indoxyl sulfate (3-IS) correlate with the relative abundance of bacteria from the class Clostridia (RAC), and antibiotic treatment is considered the major determinant of this outcome. A high RAC has been associated with favorable outcome after allo-HCT and protection from Clostridium difficile infection (CDI). We assessed correlations between alpha diversity, RAC and urinary 3-IS levels in a non-allo-HCT clinical cohort of antibiotic treated patients to further explore 3-IS as a biomarker of reduced diversity and predisposition to CDI.

METHODS: Fecal and urinary specimens were analyzed from 40 non-allo-HCT hospitalized patients before and 9 ± 2 days after initiation of intravenous antibiotic treatment. Fecal microbiota were analyzed by 16s RNA sequencing and urinary 3-IS was analyzed by liquid chromatography-tandem mass spectrometry. Receiver operating characteristic (ROC) analysis was performed to assess the predictive value of 3-IS.

RESULTS: At a RAC cutoff of <30%, the binary logarithm of 3-IS (medium 3-IS: ≤2.5; high 3-IS: >2.5) was predictive with an accuracy of 82% (negative predictive value: 87%, positive predictive value 67%). Accuracy was improved by combing antibiotic history with 3-IS levels (accuracy 89%, npv 88%, ppv 92%).

CONCLUSION: In conjunction with patient antibiotic history, 3-IS is a candidate marker to predict RAC.

RevDate: 2018-08-17
CmpDate: 2018-08-17

Terveer EM, van Beurden YH, van Dorp S, et al (2016)

Is the Lower Gastrointestinal Route Really Preferred Over the Upper Gastrointestinal Route for Fecal Microbiota Transfer?.

Journal of clinical gastroenterology, 50(10):895.

RevDate: 2018-08-16
CmpDate: 2018-08-16

Schroeder BO, Birchenough GMH, Ståhlman M, et al (2018)

Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration.

Cell host & microbe, 23(1):27-40.e7.

Diet strongly affects gut microbiota composition, and gut bacteria can influence the colonic mucus layer, a physical barrier that separates trillions of gut bacteria from the host. However, the interplay between a Western style diet (WSD), gut microbiota composition, and the intestinal mucus layer is less clear. Here we show that mice fed a WSD have an altered colonic microbiota composition that causes increased penetrability and a reduced growth rate of the inner mucus layer. Both barrier defects can be prevented by transplanting microbiota from chow-fed mice. In addition, we found that administration of Bifidobacterium longum was sufficient to restore mucus growth, whereas administration of the fiber inulin prevented increased mucus penetrability in WSD-fed mice. We hypothesize that the presence of distinct bacteria is crucial for proper mucus function. If confirmed in humans, these findings may help to better understand diseases with an affected mucus layer, such as ulcerative colitis.

RevDate: 2018-08-15

Biehl LM, Cruz Aguilar R, Farowski F, et al (2018)

Fecal microbiota transplantation in a kidney transplant recipient with recurrent urinary tract infection.

Infection pii:10.1007/s15010-018-1190-9 [Epub ahead of print].

PURPOSE: We report on a kidney transplant recipient treated with fecal microbiota transplantation (FMT) for recurrent urinary tract infections.

METHODS: FMT was administered via frozen capsulized microbiota. Before and after FMT, urinary, fecal and vaginal microbiota compositions were analyzed.

RESULTS: The patient remained without symptoms after FMT.

CONCLUSIONS: Underlying mechanisms of action need to be addressed in depth by future research.

RevDate: 2018-08-12

Colombel JF, Shin A, PR Gibson (2018)

Functional gastrointestinal symptoms in patients with inflammatory bowel disease: A clinical challenge.

Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association pii:S1542-3565(18)30810-3 [Epub ahead of print].

DESCRIPTION: The purpose of this clinical practice update review is to describe key principles in the diagnosis and management of functional gastrointestinal (GI) symptoms in patients with inflammatory bowel disease (IBD).

METHODS: The evidence and best practices summarized in this manuscript are based on relevant scientific publications, systematic reviews, and expert opinion where applicable. BEST PRACTICE ADVICE 1: A stepwise approach to rule-out ongoing inflammatory activity should be followed in IBD patients with persistent GI symptoms (measurement of fecal calprotectin, endoscopy with biopsy, cross-sectional imaging). BEST PRACTICE ADVICE 2: In those patients with indeterminate fecal calprotectin levels and mild symptoms, clinicians may consider serial calprotectin monitoring to facilitate anticipatory management. BEST PRACTICE ADVICE 3: Anatomic abnormalities or structural complications should be considered in patients with obstructive symptoms including abdominal distention, pain, nausea and vomiting, obstipation or constipation. BEST PRACTICE ADVICE 4: Alternative pathophysiologic mechanisms should be considered and evaluated (small intestinal bacterial overgrowth, bile acid diarrhea, carbohydrate intolerance, chronic pancreatitis) based on predominant symptom patterns. BEST PRACTICE ADVICE 5: A low FODMAP diet may be offered for management of functional GI symptoms in IBD with careful attention to nutritional adequacy. BEST PRACTICE ADVICE 6: Psychological therapies (cognitive behavioural therapy, hypnotherapy, mindfulness therapy) should be considered in IBD patients with functional symptoms. BEST PRACTICE ADVICE 7: Osmotic and stimulant laxative should be offered to IBD patients with chronic constipation. BEST PRACTICE ADVICE 8: Hypomotility agents or bile-acid sequestrants may be used for chronic diarrhea in quiescent IBD. BEST PRACTICE ADVICE 9: Antispasmodics, neuropathic-directed agents, and anti-depressants should be used for functional pain in IBD while use of opiates should be avoided. BEST PRACTICE ADVICE 10: Probiotics may be considered for treatment of functional symptoms in IBD. BEST PRACTICE ADVICE 11: Pelvic floor therapy should be offered to IBD patients with evidence of an underlying defecatory disorder. BEST PRACTICE ADVICE 12: Until further evidence is available, fecal microbiota transplant should not be offered for treatment of functional GI symptoms in IBD. BEST PRACTICE ADVICE 13: Physical exercise should be encourage in IBD patients with functional GI symptoms. BEST PRACTICE ADVICE 14: Until further evidence is available, complementary and alternative therapies should not be routinely offered for functional symptoms in IBD.

RevDate: 2018-08-10

Filip M, Tzaneva V, DL Dumitrascu (2018)

Fecal transplantation: digestive and extradigestive clinical applications.

Clujul medical (1957), 91(3):259-265.

Background and aim: Fecal transplantation or fecal material transplantation (FMT) became a hot topic in gastroenterology in recent years. Therefore it is important to disseminate the up-to-date information on FMT. The aim of the paper is to review the knowledge on FMT and its clinical applications.

Methods: An extensive review of the literature was carried out. Titles from Pubmed were searched and analyzed. A narrative review has been written with emphasis on indications of FMT in different conditions.

Results: The guidelines recommend FMT in relapsing infection with Clostridium difficile. Several attempts to use FMT in other conditions have been analyzed. Attempts were recorded in other bowel disorders like IBD, IBS, chronic constipation and even colorectal cancer. The attempt to change the microbiota by FMT in diabetes and obesity represent challenges for the future.

Conclusions: Fecal transplantation represents an important therapeutic method, intensively investigated these years. Beside the indication for persistent and recurrent Clostridium difficile infection, several attempts were undertaken in other intestinal diseases and in metabolic conditions. The efficiency of these applications has to be demonstrated.

RevDate: 2018-08-10
CmpDate: 2018-08-10

Walker MM, Potter M, NJ Talley (2018)

Eosinophilic gastroenteritis and other eosinophilic gut diseases distal to the oesophagus.

The lancet. Gastroenterology & hepatology, 3(4):271-280.

Under normal physiological conditions, eosinophils are present throughout the gastrointestinal tract distal to the squamous oesophagus. Increases in their numbers signify primary and secondary eosinophilic conditions. The rare primary eosinophilic diseases eosinophilic gastroenteritis and eosinophilic colitis affect fewer than ten in 100 000 people, and are characterised by numerous mucosal eosinophils, distributed in sheets and sometimes extending from the mucosa into the submucosa. Pathogenesis of these diseases is poorly understood, but food allergies and intestinal dysbiosis have been implicated. Presentation ranges from vague abdominal symptoms and systemic complaints to, rarely, an acute abdomen with intestinal obstruction. Diagnosis is made from mucosal biopsy samples taken at endoscopy or from surgically resected specimens that demonstrate substantially increased numbers of eosinophils. Eosinophilia secondary to other conditions, such as pathogenic infections, must be excluded. Subtle eosinophilia has also been identified in the duodenum in functional dyspepsia and in the colon in spirochaetosis. Treatment of eosinophilic gastroenteritis and eosinophilic colitis is based on evidence from case reports and small case series, and first-line therapy includes empirical food-elimination diets and single courses of steroids, whereas relapsing or refractory disease might respond to steroid-sparing immunosuppressive agents and biological agents. The progression of disease in eosinophilic gastroenteritis and eosinophilic colitis is variable: a considerable number of patients have just one episode without relapse, whereas others have relapsing-remitting or chronic disease. Primary and secondary eosinophilia in the gastrointestinal tract is increasingly recognised as a clinical conundrum waiting to be solved.

RevDate: 2018-08-09

Micic D, Hirsch A, Setia N, et al (2018)

Enteric infections complicating ulcerative colitis.

Intestinal research, 16(3):489-493.

Enteric infections have previously been postulated to play a role in the pathogenesis of inflammatory bowel disease (IBD), however, little evidence exists in the etiologic role of specific enteric infections in the development of IBD. When encountered in the setting of IBD, enteric infections pose a clinical challenge in management given the competing treatment strategies for infectious conditions and autoimmune disorders. Here we present the case of a young male with enteric infections complicating a new diagnosis of IBD. Our patient's initial clinical presentation included diagnoses of Klebsiella oxytoca isolation and Clostridium difficile infection. Directed therapies to include withdrawal of antibiotics and fecal microbiota transplantation were performed without resolution of clinical symptoms. Given persistence of symptoms and active colitis, the patient was diagnosed with ulcerative colitis (UC), requiring treatments directed at severe UC to include cyclosporine therapy. The finding of multiple enteric infections in a newly presenting patient with IBD is an unexpected finding that has treatment implications.

RevDate: 2018-08-09

Yu LC, Wei SC, YH Ni (2018)

Impact of microbiota in colorectal carcinogenesis: lessons from experimental models.

Intestinal research, 16(3):346-357.

A role of gut microbiota in colorectal cancer (CRC) growth was first suggested in germ-free rats almost 50 years ago, and the existence of disease-associated bacteria (termed pathobionts) had becoming increasingly evident from experimental data of fecal transplantation, and microbial gavage or monoassociation. Altered bacterial compositions in fecal and mucosal specimens were observed in CRC patients compared to healthy subjects. Microbial fluctuations were found at various cancer stages; an increase of bacterial diversity was noted in the adenoma specimens, while a reduction of bacterial richness was documented in CRC samples. The bacterial species enriched in the human cancerous tissues included Escherichia coli, Fusobacterium nucleatum, and enterotoxigenic Bacteroides fragilis. The causal relationship of gut bacteria in tumorigenesis was established by introducing particular bacterial strains in in situ mouse CRC models. Detailed experimental protocols of bacterial gavage and the advantages and caveats of different experimental models are summarized in this review. The microbial genotoxins, enterotoxins, and virulence factors implicated in the mechanisms of bacteria-driven tumorigenesis are described. In conclusion, intestinal microbiota is involved in colon tumorigenesis. Bacteria-targeting intervention would be the next challenge for CRC.

RevDate: 2018-08-08

Gagliardi A, Totino V, Cacciotti F, et al (2018)

Rebuilding the Gut Microbiota Ecosystem.

International journal of environmental research and public health, 15(8): pii:ijerph15081679.

A microbial ecosystem in which bacteria no longer live in a mutualistic association is called dysbiotic. Gut microbiota dysbiosis is a condition related with the pathogenesis of intestinal illnesses (irritable bowel syndrome, celiac disease, and inflammatory bowel disease) and extra-intestinal illnesses (obesity, metabolic disorder, cardiovascular syndrome, allergy, and asthma). Dysbiosis status has been related to various important pathologies, and many therapeutic strategies aimed at restoring the balance of the intestinal ecosystem have been implemented. These strategies include the administration of probiotics, prebiotics, and synbiotics; phage therapy; fecal transplantation; bacterial consortium transplantation; and a still poorly investigated approach based on predatory bacteria. This review discusses the various aspects of these strategies to counteract intestinal dysbiosis.

RevDate: 2018-08-08
CmpDate: 2018-08-08

Allamneni C, Nelson G, F Weber (2018)

A Rare Cause of Recurrent Abdominal Pain and Diarrhea.

Gastroenterology, 155(2):e11-e12.

RevDate: 2018-08-07

Cheng YW, Phelps E, Ganapini V, et al (2018)

Fecal microbiota transplantation for the treatment of recurrent and severe Clostridium difficile infection in solid organ transplant recipients: A multicenter experience.

American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons [Epub ahead of print].

Fecal microbiota transplant (FMT) is recommended for Clostridium difficile infection (CDI) treatment, however use in solid organ transplantation (SOT) patients has theoretical safety concerns. This multicenter, retrospective study evaluated FMT safety, effectiveness, and risk factors for failure in SOT patients. Primary cure and overall cure were defined as resolution of diarrhea or negative C. difficile stool test after a single FMT or after subsequent FMT(s) ± anti-CDI antibiotics, respectively. 94 SOT patients underwent FMT, 78% for recurrent CDI and 22% for severe or fulminant CDI. FMT-related adverse events (AE) occurred in 22.3% of cases, mainly comprised of self-limiting conditions including nausea, abdominal pain, and FMT-related diarrhea. Severe AEs occurred in 3.2% of cases, with no FMT-related bacteremia. After FMT, 25% of patients with underlying IBD had worsening disease activity, while 14% of CMV seropositive patients had reactivation. At 3 months, primary cure was 58.7%, while overall cure was 91.3% Predictors of failing a single FMT included inpatient status, severe and fulminant CDI, presence of pseudomembranous colitis, and use of non-CDI antibiotics at the time of FMT. These data suggest FMT is safe in SOT patients. However, repeated FMT(s) or additional antibiotics may be needed to optimize rates of cure with FMT. This article is protected by copyright. All rights reserved.

RevDate: 2018-08-07

Niederwerder MC, Constance LA, Rowland RRR, et al (2018)

Fecal Microbiota Transplantation Is Associated With Reduced Morbidity and Mortality in Porcine Circovirus Associated Disease.

Frontiers in microbiology, 9:1631.

Porcine circovirus associated disease (PCVAD) is a term used to describe the multi-factorial disease syndromes caused by porcine circovirus type 2 (PCV-2), which can be reproduced in an experimental setting through the co-infection of pigs with PCV-2 and porcine reproductive and respiratory syndrome virus (PRRSV). The resulting PCVAD-affected pigs represent a subpopulation within the co-infected group. In co-infection studies, the presence of increased microbiome diversity is linked to a reduction in clinical signs. In this study, fecal microbiota transplantation (FMT) was investigated as a means to prevent PCVAD in pigs co-infected with PRRSV and PCV-2d. The sources of the FMT material were high-parity sows with a documented history of high health status and robust litter characteristics. The analysis of the donated FMT material showed the absence of common pathogens along with the presence of diverse microbial phyla and families. One group of pigs (n = 10) was administered the FMT while a control group (n = 10) was administered a sterile mock-transplant. Over the 42-day post-infection period, the FMT group showed fewer PCVAD-affected pigs, as evidenced by a significant reduction in morbidity and mortality in transplanted pigs, along with increased antibody levels. Overall, this study provides evidence that FMT decreases the severity of clinical signs following co-infection with PRRSV and PCV-2 by reducing the prevalence of PCVAD.

RevDate: 2018-08-07

Montassier E, Al-Ghalith GA, Hillmann B, et al (2018)

CLOUD: a non-parametric detection test for microbiome outliers.

Microbiome, 6(1):137 pii:10.1186/s40168-018-0514-4.

BACKGROUND: Dysbiosis of the human gut microbiome is defined as a maladaptive or clinically relevant deviation of the community profile from the healthy or normal state. Dysbiosis has been implicated in an extensive set of metabolic, auto-immune, and infectious diseases, and yet there is substantial inter-individual variation in microbiome composition even within body sites of healthy humans. An individual's microbiome varies over time in a high-dimensional space to form their personal microbiome cloud. This cloud may or may not be similar to that of other people, both in terms of the average microbiome profile (conformity) and the diameter of the cloud (stability). However, there is currently no robust non-parametric test that determines whether a patient's microbiome cloud is an outlier with respect to a reference group of healthy individuals with widely varying microbiome profiles.

METHODS: Here, we propose a test for outliers' detection in the human gut microbiome that accounts for the wide range of microbiome phenotypes observed in a typical set of healthy individuals and for intra-individual temporal variation. Our robust nonparametric outlier detection test, the CLOUD test, performs two assessments of a patient's microbiome health: conformity, the extent to which the patient's microbiome cloud is ecologically similar to a subset of healthy subjects; and stability, which compares the cloud diameter of a patient to those of healthy subjects. The CLOUD test is based on locally linear embedded ecological distances, allowing it to account for widely varying microbiome compositions among reference individuals. It also leverages temporal variability within patients and reference individuals to increase the robustness of the test.

RESULTS: We describe the CLOUD test, and we apply it to one novel and two previously published cohorts of patients receiving fecal microbiota transplantation for recurrent Clostridium difficile colitis, as well as to two known healthy cohorts, demonstrating high concordance of the CLOUD conformity and stability indices with clinical outcomes.

CONCLUSIONS: Although the CLOUD test is not, on its own, a test for clinical dysbiosis, it nonetheless provides a framework for outlier testing that could be incorporated into evaluation of suspected dysbiosis, which may play a role in diagnosis and prognosis of numerous pediatric and adult diseases.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
21454 NE 143rd Street
Woodinville, WA 98077

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )