Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Topologically Associating Domains

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 14 Nov 2022 at 02:06 Created: 

Topologically Associating Domains

"Recent studies have shown that chromosomes in a range of organisms are compartmentalized in different types of chromatin domains. In mammals, chromosomes form compartments that are composed of smaller Topologically Associating Domains (TADs). TADs are thought to represent functional domains of gene regulation but much is still unknown about the mechanisms of their formation and how they exert their regulatory effect on embedded genes. Further, similar domains have been detected in other organisms, including flies, worms, fungi and bacteria. Although in all these cases these domains appear similar as detected by 3C-based methods, their biology appears to be quite distinct with differences in the protein complexes involved in their formation and differences in their internal organization." QUOTE FROM: Dekker Job and Heard Edith (2015), Structural and functional diversity of Topologically Associating Domains, FEBS Letters, 589, doi: 10.1016/j.febslet.2015.08.044

Created with PubMed® Query: "Topologically Associating Domains" OR "Topologically Associating Domain" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2022-11-08

Torosin NS, Golla TR, Lawlor MA, et al (2022)

Mode and Tempo of 3D Genome Evolution in Drosophila.

Molecular biology and evolution, 39(11):.

Topologically associating domains (TADs) are thought to play an important role in preventing gene misexpression by spatially constraining enhancer-promoter contacts. The deleterious nature of gene misexpression implies that TADs should, therefore, be conserved among related species. Several early studies comparing chromosome conformation between species reported high levels of TAD conservation; however, more recent studies have questioned these results. Furthermore, recent work suggests that TAD reorganization is not associated with extensive changes in gene expression. Here, we investigate the evolutionary conservation of TADs among 11 species of Drosophila. We use Hi-C data to identify TADs in each species and employ a comparative phylogenetic approach to derive empirical estimates of the rate of TAD evolution. Surprisingly, we find that TADs evolve rapidly. However, we also find that the rate of evolution depends on the chromatin state of the TAD, with TADs enriched for developmentally regulated chromatin evolving significantly slower than TADs enriched for broadly expressed, active chromatin. We also find that, after controlling for differences in chromatin state, highly conserved TADs do not exhibit higher levels of gene expression constraint. These results suggest that, in general, most TADs evolve rapidly and their divergence is not associated with widespread changes in gene expression. However, higher levels of evolutionary conservation and gene expression constraints in TADs enriched for developmentally regulated chromatin suggest that these TAD subtypes may be more important for regulating gene expression, likely due to the larger number of long-distance enhancer-promoter contacts associated with developmental genes.

RevDate: 2022-11-04

Kim J, Jimenez DS, Ragipani B, et al (2022)

Condensin DC loads and spreads from recruitment sites to create loop-anchored TADs in C. elegans.

eLife, 11: pii:68745.

Condensins are molecular motors that compact DNA via linear translocation. In Caenorhabditis elegans, the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of recruitment elements on the X-chromosome (rex) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a 'super rex' composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to the formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.

RevDate: 2022-11-03

Attou A, Zülske T, G Wedemann (2022)

Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions.

Biophysical journal pii:S0006-3495(22)00898-0 [Epub ahead of print].

The spatial organization of the eukaryotic genome plays an important role in regulating transcriptional activity. In the nucleus, chromatin forms loops that assemble into fundamental units called topologically associating domains that facilitate or inhibit long-range contacts. These loops are formed and held together by the ring-shaped cohesin protein complex, and this can involve binding of CCCTC-binding factor (CTCF). High-resolution conformation capture experiments provide the frequency at which two DNA fragments physically associate in 3D space. However, technical limitations of this approach, such as low throughput, low resolution or noise in contact maps make data interpretation and identification of chromatin intra-loop contacts, e.g. between distal regulatory elements and their target genes, challenging. Herein, an existing coarse-grained model of chromatin at single nucleosome resolution was extended by integrating potentials describing CTCF and cohesin. We performed replica exchange Monte Carlo simulations with regularly spaced nucleosomes, and experimentally determined nucleosome positions in the presence of cohesin-CTCF, as well as depleted systems as controls. In fully extruded loops caused by the presence of cohesin and CTCF, the number of contacts within the formed loops was increased. The number and types of these contacts were impacted by the nucleosome distribution and loop size. Micro loops were observed within cohesin mediated loops due to thermal fluctuations without additional influence of other factors, and the number, size, and shape of micro loops were determined by nucleosome distribution and loop size. Nucleosome positions directly affect the spatial structure and contact probability within a loop, with presumed consequences for transcriptional activity.

RevDate: 2022-11-02

Zhu X, Qi C, Wang R, et al (2022)

Acute depletion of human core nucleoporin reveals direct roles in transcription control but dispensability for 3D genome organization.

Cell reports, 41(5):111576.

The nuclear pore complex (NPC) comprises more than 30 nucleoporins (NUPs) and is a hallmark of eukaryotes. NUPs have been suggested to be important in regulating gene transcription and 3D genome organization. However, evidence in support of their direct roles remains limited. Here, by Cut&Run, we find that core NUPs display broad but also cell-type-specific association with active promoters and enhancers in human cells. Auxin-mediated rapid depletion of two NUPs demonstrates that NUP93, but not NUP35, directly and specifically controls gene transcription. NUP93 directly activates genes with high levels of RNA polymerase II loading and transcriptional elongation by facilitating full BRD4 recruitment to their active enhancers. dCas9-based tethering confirms a direct and causal role of NUP93 in gene transcriptional activation. Unexpectedly, in situ Hi-C and H3K27ac or H3K4me1 HiChIP results upon acute NUP93 depletion show negligible changesS2211-1247(22)01437-1 of 3D genome organization ranging from A/B compartments and topologically associating domains (TADs) to enhancer-promoter contacts.

RevDate: 2022-11-01

Wang Y, Song C, Zhao J, et al (2022)

SEdb 2.0: a comprehensive super-enhancer database of human and mouse.

Nucleic acids research pii:6786195 [Epub ahead of print].

Super-enhancers (SEs) are cell-specific DNA cis-regulatory elements that can supervise the transcriptional regulation processes of downstream genes. SEdb 2.0 ( aims to provide a comprehensive SE resource and annotate their potential roles in gene transcriptions. Compared with SEdb 1.0, we have made the following improvements: (i) Newly added the mouse SEs and expanded the scale of human SEs. SEdb 2.0 contained 1 167 518 SEs from 1739 human H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) samples and 550 226 SEs from 931 mouse H3K27ac ChIP-seq samples, which was five times that of SEdb 1.0. (ii) Newly added transcription factor binding sites (TFBSs) in SEs identified by TF motifs and TF ChIP-seq data. (iii) Added comprehensive (epi)genetic annotations of SEs, including chromatin accessibility regions, methylation sites, chromatin interaction regions and topologically associating domains (TADs). (iv) Newly embedded and updated search and analysis tools, including 'Search SE by TF-based', 'Differential-Overlapping-SE analysis' and 'SE-based TF-Gene analysis'. (v) Newly provided quality control (QC) metrics for ChIP-seq processing. In summary, SEdb 2.0 is a comprehensive update of SEdb 1.0, which curates more SEs and annotation information than SEdb 1.0. SEdb 2.0 provides a friendly platform for researchers to more comprehensively clarify the important role of SEs in the biological process.

RevDate: 2022-11-01

Telonis AG, Yang Q, Huang HT, et al (2022)

MIR retrotransposons link the epigenome and the transcriptome of coding genes in acute myeloid leukemia.

Nature communications, 13(1):6524.

DNMT3A and IDH1/2 mutations combinatorically regulate the transcriptome and the epigenome in acute myeloid leukemia; yet the mechanisms of this interplay are unknown. Using a systems approach within topologically associating domains, we find that genes with significant expression-methylation correlations are enriched in signaling and metabolic pathways. The common denominator across these methylation-regulated genes is the density in MIR retrotransposons of their introns. Moreover, a discrete number of CpGs overlapping enhancers are responsible for regulating most of these genes. Established mouse models recapitulate the dependency of MIR-rich genes on the balanced expression of epigenetic modifiers, while projection of leukemic profiles onto normal hematopoiesis ones further consolidates the dependencies of methylation-regulated genes on MIRs. Collectively, MIR elements on genes and enhancers are susceptible to changes in DNA methylation activity and explain the cooperativity of proteins in this pathway in normal and malignant hematopoiesis.

RevDate: 2022-10-30

Schöpflin R, Melo US, Moeinzadeh H, et al (2022)

Integration of Hi-C with short and long-read genome sequencing reveals the structure of germline rearranged genomes.

Nature communications, 13(1):6470.

Structural variants are a common cause of disease and contribute to a large extent to inter-individual variability, but their detection and interpretation remain a challenge. Here, we investigate 11 individuals with complex genomic rearrangements including germline chromothripsis by combining short- and long-read genome sequencing (GS) with Hi-C. Large-scale genomic rearrangements are identified in Hi-C interaction maps, allowing for an independent assessment of breakpoint calls derived from the GS methods, resulting in >300 genomic junctions. Based on a comprehensive breakpoint detection and Hi-C, we achieve a reconstruction of whole rearranged chromosomes. Integrating information on the three-dimensional organization of chromatin, we observe that breakpoints occur more frequently than expected in lamina-associated domains (LADs) and that a majority reshuffle topologically associating domains (TADs). By applying phased RNA-seq, we observe an enrichment of genes showing allelic imbalanced expression (AIG) within 100 kb around the breakpoints. Interestingly, the AIGs hit by a breakpoint (19/22) display both up- and downregulation, thereby suggesting different mechanisms at play, such as gene disruption and rearrangements of regulatory information. However, the majority of interpretable genes located 200 kb around a breakpoint do not show significant expression changes. Thus, there is an overall robustness in the genome towards large-scale chromosome rearrangements.

RevDate: 2022-10-26

Xu J, Song F, Lyu H, et al (2022)

Subtype-specific 3D genome alteration in acute myeloid leukaemia.

Nature [Epub ahead of print].

Acute myeloid leukaemia (AML) represents a set of heterogeneous myeloid malignancies, and hallmarks include mutations in epigenetic modifiers, transcription factors and kinases1-5. The extent to which mutations in AML drive alterations in chromatin 3D structure and contribute to myeloid transformation is unclear. Here we use Hi-C and whole-genome sequencing to analyse 25 samples from patients with AML and 7 samples from healthy donors. Recurrent and subtype-specific alterations in A/B compartments, topologically associating domains and chromatin loops were identified. RNA sequencing, ATAC with sequencing and CUT&Tag for CTCF, H3K27ac and H3K27me3 in the same AML samples also revealed extensive and recurrent AML-specific promoter-enhancer and promoter-silencer loops. We validated the role of repressive loops on their target genes by CRISPR deletion and interference. Structural variation-induced enhancer-hijacking and silencer-hijacking events were further identified in AML samples. Hijacked enhancers play a part in AML cell growth, as demonstrated by CRISPR screening, whereas hijacked silencers have a downregulating role, as evidenced by CRISPR-interference-mediated de-repression. Finally, whole-genome bisulfite sequencing of 20 AML and normal samples revealed the delicate relationship between DNA methylation, CTCF binding and 3D genome structure. Treatment of AML cells with a DNA hypomethylating agent and triple knockdown of DNMT1, DNMT3A and DNMT3B enabled the manipulation of DNA methylation to revert 3D genome organization and gene expression. Overall, this study provides a resource for leukaemia studies and highlights the role of repressive loops and hijacked cis elements in human diseases.

RevDate: 2022-10-25

Mohajeri K, Yadav R, D'haene E, et al (2022)

Transcriptional and functional consequences of alterations to MEF2C and its topological organization in neuronal models.

American journal of human genetics pii:S0002-9297(22)00448-7 [Epub ahead of print].

Point mutations and structural variants that directly disrupt the coding sequence of MEF2C have been associated with a spectrum of neurodevelopmental disorders (NDDs). However, the impact of MEF2C haploinsufficiency on neurodevelopmental pathways and synaptic processes is not well understood, nor are the complex mechanisms that govern its regulation. To explore the functional changes associated with structural variants that alter MEF2C expression and/or regulation, we generated an allelic series of 204 isogenic human induced pluripotent stem cell (hiPSC)-derived neural stem cells and glutamatergic induced neurons. These neuronal models harbored CRISPR-engineered mutations that involved direct deletion of MEF2C or deletion of the boundary points for topologically associating domains (TADs) and chromatin loops encompassing MEF2C. Systematic profiling of mutation-specific alterations, contrasted to unedited controls that were exposed to the same guide RNAs for each edit, revealed that deletion of MEF2C caused differential expression of genes associated with neurodevelopmental pathways and synaptic function. We also discovered significant reduction in synaptic activity measured by multielectrode arrays (MEAs) in neuronal cells. By contrast, we observed robust buffering against MEF2C regulatory disruption following deletion of a distal 5q14.3 TAD and loop boundary, whereas homozygous loss of a proximal loop boundary resulted in down-regulation of MEF2C expression and reduced electrophysiological activity on MEA that was comparable to direct gene disruption. Collectively, these studies highlight the considerable functional impact of MEF2C deletion in neuronal cells and systematically characterize the complex interactions that challenge a priori predictions of regulatory consequences from structural variants that disrupt three-dimensional genome organization.

RevDate: 2022-10-19
CmpDate: 2022-10-19

Simmons JR, An R, Amankwaa B, et al (2022)

Phosphorylated histone variant γH2Av is associated with chromatin insulators in Drosophila.

PLoS genetics, 18(10):e1010396.

Chromatin insulators are responsible for orchestrating long-range interactions between enhancers and promoters throughout the genome and align with the boundaries of Topologically Associating Domains (TADs). Here, we demonstrate an association between gypsy insulator proteins and the phosphorylated histone variant H2Av (γH2Av), normally a marker of DNA double strand breaks. Gypsy insulator components colocalize with γH2Av throughout the genome, in polytene chromosomes and in diploid cells in which Chromatin IP data shows it is enriched at TAD boundaries. Mutation of insulator components su(Hw) and Cp190 results in a significant reduction in γH2Av levels in chromatin and phosphatase inhibition strengthens the association between insulator components and γH2Av and rescues γH2Av localization in insulator mutants. We also show that γH2Av, but not H2Av, is a component of insulator bodies, which are protein condensates that form during osmotic stress. Phosphatase activity is required for insulator body dissolution after stress recovery. Together, our results implicate the H2A variant with a novel mechanism of insulator function and boundary formation.

RevDate: 2022-10-05

Jouret G, Egloff M, Landais E, et al (2022)

Clinical and genomic delineation of the new proximal 19p13.3 microduplication syndrome.

American journal of medical genetics. Part A [Epub ahead of print].

A small but growing body of scientific literature is emerging about clinical findings in patients with 19p13.3 microdeletion or duplication. Recently, a proximal 19p13.3 microduplication syndrome was described, associated with growth delay, microcephaly, psychomotor delay and dysmorphic features. The aim of our study was to better characterize the syndrome associated with duplications in the proximal 19p13.3 region (prox 19p13.3 dup), and to propose a comprehensive analysis of the underlying genomic mechanism. We report the largest cohort of patients with prox 19p13.3 dup through a collaborative study. We collected 24 new patients with terminal or interstitial 19p13.3 duplication characterized by array-based Comparative Genomic Hybridization (aCGH). We performed mapping, phenotype-genotype correlations analysis, critical region delineation and explored three-dimensional chromatin interactions by analyzing Topologically Associating Domains (TADs). We define a new 377 kb critical region (CR 1) in chr19: 3,116,922-3,494,377, GRCh37, different from the previously described critical region (CR 2). The new 377 kb CR 1 includes a TAD boundary and two enhancers whose common target is PIAS4. We hypothesize that duplications of CR 1 are responsible for tridimensional structural abnormalities by TAD disruption and misregulation of genes essentials for the control of head circumference during development, by breaking down the interactions between enhancers and the corresponding targeted gene.

RevDate: 2022-10-19
CmpDate: 2022-10-04

Ringel AR, Szabo Q, Chiariello AM, et al (2022)

Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes.

Cell, 185(20):3689-3704.e21.

Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.

RevDate: 2022-10-14
CmpDate: 2022-09-28

Martinez-Fundichely A, Dixon A, E Khurana (2022)

Modeling tissue-specific breakpoint proximity of structural variations from whole-genomes to identify cancer drivers.

Nature communications, 13(1):5640.

Structural variations (SVs) in cancer cells often impact large genomic regions with functional consequences. However, identification of SVs under positive selection is a challenging task because little is known about the genomic features related to the background breakpoint distribution in different cancers. We report a method that uses a generalized additive model to investigate the breakpoint proximity curves from 2,382 whole-genomes of 32 cancer types. We find that a multivariate model, which includes linear and nonlinear partial contributions of various tissue-specific features and their interaction terms, can explain up to 57% of the observed deviance of breakpoint proximity. In particular, three-dimensional genomic features such as topologically associating domains (TADs), TAD-boundaries and their interaction with other features show significant contributions. The model is validated by identification of known cancer genes and revealed putative drivers in cancers different than those with previous evidence of positive selection.

RevDate: 2022-10-12
CmpDate: 2022-09-28

Damas J, Corbo M, Kim J, et al (2022)

Evolution of the ancestral mammalian karyotype and syntenic regions.

Proceedings of the National Academy of Sciences of the United States of America, 119(40):e2209139119.

Decrypting the rearrangements that drive mammalian chromosome evolution is critical to understanding the molecular bases of speciation, adaptation, and disease susceptibility. Using 8 scaffolded and 26 chromosome-scale genome assemblies representing 23/26 mammal orders, we computationally reconstructed ancestral karyotypes and syntenic relationships at 16 nodes along the mammalian phylogeny. Three different reference genomes (human, sloth, and cattle) representing phylogenetically distinct mammalian superorders were used to assess reference bias in the reconstructed ancestral karyotypes and to expand the number of clades with reconstructed genomes. The mammalian ancestor likely had 19 pairs of autosomes, with nine of the smallest chromosomes shared with the common ancestor of all amniotes (three still conserved in extant mammals), demonstrating a striking conservation of synteny for ∼320 My of vertebrate evolution. The numbers and types of chromosome rearrangements were classified for transitions between the ancestral mammalian karyotype, descendent ancestors, and extant species. For example, 94 inversions, 16 fissions, and 14 fusions that occurred over 53 My differentiated the therian from the descendent eutherian ancestor. The highest breakpoint rate was observed between the mammalian and therian ancestors (3.9 breakpoints/My). Reconstructed mammalian ancestor chromosomes were found to have distinct evolutionary histories reflected in their rates and types of rearrangements. The distributions of genes, repetitive elements, topologically associating domains, and actively transcribed regions in multispecies homologous synteny blocks and evolutionary breakpoint regions indicate that purifying selection acted over millions of years of vertebrate evolution to maintain syntenic relationships of developmentally important genes and regulatory landscapes of gene-dense chromosomes.

RevDate: 2022-09-24

Chow CN, Tseng KC, Hou PF, et al (2022)

Mysteries of gene regulation: Promoters are not the sole triggers of gene expression.

Computational and structural biotechnology journal, 20:4910-4920.

Cis-regulatory elements of promoters are essential for gene regulation by transcription factors (TFs). However, the regulatory roles of nonpromoter regions, TFs, and epigenetic marks remain poorly understood in plants. In this study, we characterized the cis-regulatory regions of 53 TFs and 19 histone marks in 328 chromatin immunoprecipitation (ChIP-seq) datasets from Arabidopsis. The genome-wide maps indicated that both promoters and regions around the transcription termination sites of protein-coding genes recruit the most TFs. The maps also revealed a diverse of histone combinations. The analysis suggested that exons play critical roles in the regulation of non-coding genes. Additionally, comparative analysis between heat-stress-responsive and nonresponsive genes indicated that the genes with distinct functions also exhibited substantial differences in cis-regulatory regions, histone regulation, and topologically associating domain (TAD) boundary organization. By integrating multiple high-throughput sequencing datasets, this study generated regulatory models for protein-coding genes, non-coding genes, and TAD boundaries to explain the complexity of transcriptional regulation.

RevDate: 2022-09-17

Doyle EJ, Morey L, E Conway (2022)

Know when to fold 'em: Polycomb complexes in oncogenic 3D genome regulation.

Frontiers in cell and developmental biology, 10:986319.

Chromatin is spatially and temporally regulated through a series of orchestrated processes resulting in the formation of 3D chromatin structures such as topologically associating domains (TADs), loops and Polycomb Bodies. These structures are closely linked to transcriptional regulation, with loss of control of these processes a frequent feature of cancer and developmental syndromes. One such oncogenic disruption of the 3D genome is through recurrent dysregulation of Polycomb Group Complex (PcG) functions either through genetic mutations, amplification or deletion of genes that encode for PcG proteins. PcG complexes are evolutionarily conserved epigenetic complexes. They are key for early development and are essential transcriptional repressors. PcG complexes include PRC1, PRC2 and PR-DUB which are responsible for the control of the histone modifications H2AK119ub1 and H3K27me3. The spatial distribution of the complexes within the nuclear environment, and their associated modifications have profound effects on the regulation of gene transcription and the 3D genome. Nevertheless, how PcG complexes regulate 3D chromatin organization is still poorly understood. Here we glean insights into the role of PcG complexes in 3D genome regulation and compaction, how these processes go awry during tumorigenesis and the therapeutic implications that result from our insights into these mechanisms.

RevDate: 2022-09-18
CmpDate: 2022-09-16

Götz M, Messina O, Espinola S, et al (2022)

Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila.

Nature communications, 13(1):5375.

The spatial organization of chromatin at the scale of topologically associating domains (TADs) and below displays large cell-to-cell variations. Up until now, how this heterogeneity in chromatin conformation is shaped by chromatin condensation, TAD insulation, and transcription has remained mostly elusive. Here, we used Hi-M, a multiplexed DNA-FISH imaging technique providing developmental timing and transcriptional status, to show that the emergence of TADs at the ensemble level partially segregates the conformational space explored by single nuclei during the early development of Drosophila embryos. Surprisingly, a substantial fraction of nuclei display strong insulation even before TADs emerge. Moreover, active transcription within a TAD leads to minor changes to the local inter- and intra-TAD chromatin conformation in single nuclei and only weakly affects insulation to the neighboring TAD. Overall, our results indicate that multiple parameters contribute to shaping the chromatin architecture of single nuclei at the TAD scale.

RevDate: 2022-10-04
CmpDate: 2022-09-28

Kane L, Williamson I, Flyamer IM, et al (2022)

Cohesin is required for long-range enhancer action at the Shh locus.

Nature structural & molecular biology, 29(9):891-897.

The regulatory landscapes of developmental genes in mammals can be complex, with enhancers spread over many hundreds of kilobases. It has been suggested that three-dimensional genome organization, particularly topologically associating domains formed by cohesin-mediated loop extrusion, is important for enhancers to act over such large genomic distances. By coupling acute protein degradation with synthetic activation by targeted transcription factor recruitment, here we show that cohesin, but not CTCF, is required for activation of the target gene Shh by distant enhancers in mouse embryonic stem cells. Cohesin is not required for activation directly at the promoter or by an enhancer located closer to the Shh gene. Our findings support the hypothesis that chromatin compaction via cohesin-mediated loop extrusion allows for genes to be activated by enhancers that are located many hundreds of kilobases away in the linear genome and suggests that cohesin is dispensable for enhancers located more proximally.

RevDate: 2022-09-13
CmpDate: 2022-09-13

Zheng L, W Wang (2022)

Regulation associated modules reflect 3D genome modularity associated with chromatin activity.

Nature communications, 13(1):5281.

The 3D genome has been shown to be organized into modules including topologically associating domains (TADs) and compartments that are primarily defined by spatial contacts from Hi-C. There exists a gap to investigate whether and how the spatial modularity of the chromatin is related to the functional modularity resulting from chromatin activity. Despite histone modifications reflecting chromatin activity, inferring spatial modularity of the genome directly from the histone modification patterns has not been well explored. Here, we report that histone modifications show a modular pattern (referred to as regulation associated modules, RAMs) that reflects spatial chromatin modularity. Enhancer-promoter interactions, loop anchors, super-enhancer clusters and extrachromosomal DNAs (ecDNAs) are found to occur more often within the same RAMs than within the same TADs. Consistently, compared to the TAD boundaries, deletions of RAM boundaries perturb the chromatin structure more severely (may even cause cell death) and somatic variants in cancer samples are more enriched in RAM boundaries. These observations suggest that RAMs reflect a modular organization of the 3D genome at a scale better aligned with chromatin activity, providing a bridge connecting the structural and functional modularity of the genome.

RevDate: 2022-09-02

Sun Y, Dotson GA, Muir LA, et al (2022)

Rearrangement of T Cell genome architecture regulates GVHD.

iScience, 25(9):104846.

WAPL, cohesin's DNA release factor, regulates three-dimensional (3D) chromatin architecture. The 3D chromatin structure and its relevance to mature T cell functions is not well understood. We show that in vivo lymphopenic expansion, and alloantigen-driven proliferation, alters the 3D structure and function of the genome in mature T cells. Conditional deletion of WAPL, cohesin's DNA release factor, in T cells reduced long-range genomic interactions and altered chromatin A/B compartments and interactions within topologically associating domains (TADs) of the chromatin in T cells at baseline. WAPL deficiency in T cells reduced loop extensions, changed expression of cell cycling genes and reduced proliferation following in vitro and in vivo stimulation, and reduced severity of graft-versus-host disease (GVHD) following experimental allogeneic hematopoietic stem cell transplantation. These data collectively characterize 3D genomic architecture of T cells in vivo and demonstrate biological and clinical implications for its disruption by cohesin release factor WAPL.

RevDate: 2022-08-30

Che Y, Yang X, Jia P, et al (2022)

D2 Plot, a Matrix of DNA Density and Distance to Periphery, Reveals Functional Genome Regions.

Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Epub ahead of print].

The execution of biological activities inside space-limited cell nuclei requires sophisticated organization. Current studies on the 3D genome focus on chromatin interactions and local structures, e.g., topologically associating domains (TADs). In this study, two global physical properties: DNA density and distance to nuclear periphery (DisTP), are introduced and a 2D matrix, D2 plot, is constructed for mapping genetic and epigenetic markers. Distinct patterns of functional markers on the D2 plot, indicating its ability to compartmentalize functional genome regions, are observed. Furthermore, enrichments of transcription-related markers are concatenated into a cross-species transcriptional activation model, where the nucleus is divided into four areas: active, intermediate, repress and histone, and repress and repeat. Based on the trajectories of the genomic regions on D2 plot, the constantly active and newly activated genes are successfully identified during olfactory sensory neuron maturation. The analysis reveals that the D2 plot effectively categorizes functional regions and provides a universal and transcription-related measurement for the 3D genome.

RevDate: 2022-10-06
CmpDate: 2022-10-06

Schwartz M (2022)

Can abnormal chromatin folding cause high-penetrance cancer predisposition?.

Physiological genomics, 54(10):380-388.

Sequencing cancer predisposing genes (CPGs) in evocative patients (i.e., patients with personal and family history of multiple/early-onset/unusual cancers) allows follow-up in their relatives to be adapted when a causative pathogenic variant is identified. Unfortunately, many evocative families remain unexplained. Part of this "missing heritability" could be due to CPG dysregulations caused by remote noncoding genomic alterations. Transcription levels are regulated through the ability of promoters to physically interact with their distant cis-regulatory elements. Three-dimensional chromatin contacts, mediated by a dynamic loop extrusion process, are uncovered by chromosome conformation capture (3C) and 3C-derived techniques, which have enabled the discovery of new pathological mechanisms in developmental diseases and cancers. High-penetrance cancer predisposition is caused by germline hereditary alterations otherwise found at the somatic level in sporadic cancers. Thus, data from both developmental diseases and cancers provide information about possible unknown cancer predisposition mechanisms. This mini-review aims to deduce from these data whether abnormal chromatin folding can cause high-penetrance cancer predisposition.

RevDate: 2022-08-28

Kulikova T, Maslova A, Starshova P, et al (2022)

Comparison of the somatic TADs and lampbrush chromomere-loop complexes in transcriptionally active prophase I oocytes.

Chromosoma [Epub ahead of print].

In diplotene oocyte nuclei of all vertebrate species, except mammals, chromosomes lack interchromosomal contacts and chromatin is linearly compartmentalized into distinct chromomere-loop complexes forming lampbrush chromosomes. However, the mechanisms underlying the formation of chromomere-loop complexes remain unexplored. Here we aimed to compare somatic topologically associating domains (TADs), recently identified in chicken embryonic fibroblasts, with chromomere-loop complexes in lampbrush meiotic chromosomes. By measuring 3D-distances and colocalization between linear equidistantly located genomic loci, positioned within one TAD or separated by a TAD border, we confirmed the presence of predicted TADs in chicken embryonic fibroblast nuclei. Using three-colored FISH with BAC probes, we mapped equidistant genomic regions included in several sequential somatic TADs on isolated chicken lampbrush chromosomes. Eight genomic regions, each comprising two or three somatic TADs, were mapped to non-overlapping neighboring lampbrush chromatin domains - lateral loops, chromomeres, or chromomere-loop complexes. Genomic loci from the neighboring somatic TADs could localize in one lampbrush chromomere-loop complex, while genomic loci belonging to the same somatic TAD could be localized in neighboring lampbrush chromomere-loop domains. In addition, FISH-mapping of BAC probes to the nascent transcripts on the lateral loops indicates transcription of at least 17 protein-coding genes and 2 non-coding RNA genes during the lampbrush stage of chicken oogenesis, including genes involved in oocyte maturation and early embryo development.

RevDate: 2022-08-26

Wang X, Yan J, Ye Z, et al (2022)

Reorganization of 3D chromatin architecture in doxorubicin-resistant breast cancer cells.

Frontiers in cell and developmental biology, 10:974750.

Background: Doxorubicin resistance remains a major therapeutic challenge leading to poor survival prognosis and treatment failure in breast cancer. Although doxorubicin induces massive changes in the transcriptional landscape are well known, potential diagnostic or therapeutic targets associated with the reorganization of three-dimensional (3D) chromatin architecture have not yet been systematically investigated. Methods: Here we performed in situ high-throughput chromosome conformation capture (Hi-C) on parental and doxorubicin-resistant MCF7 (MCF7-DR) human breast cancer cells, followed by integrative analysis of HiC, ATAC-seq, RNA-seq and TCGA data. Results: It revealed that A/B compartment switching was positively correlated to genome-wide differential gene expression. The genome of MCF7-DR cells was spatially reorganized into smaller topologically associating domains (TADs) and chromatin loops. We also revealed the contribution of increased chromatin accessibility and potential transcription factor families, including CTCF, AP-1 and bHLH, to gained TADs or loops. Intriguingly, we observed two condensed genomic regions (∼20 kb) with decreased chromatin accessibility flanking TAD boundaries, which might play a critical role in the formation or maintenance of TADs. Finally, combining data from TCGA, we identified a number of gained and lost enhancer-promoter interactions and their corresponding differentially expressed genes involved in chromatin organization and breast cancer signaling pathways, including FA2H, FOXA1 and JRKL, which might serve as potential treatment targets for breast cancer. Conclusion: These data uncovered a close connection between 3D genome reorganization, chromatin accessibility as well as gene transcription and provide novel insights into the epigenomic mechanisms involving doxorubicin resistance in breast cancer.

RevDate: 2022-10-05
CmpDate: 2022-10-05

Chen M, Jia L, Zheng X, et al (2022)

Ancient Human Endogenous Retroviruses Contribute to Genetic Evolution and Regulate Cancer Cell Type-Specific Gene Expression.

Cancer research, 82(19):3457-3473.

Human endogenous retroviruses (HERV), a type of transposable elements (TE), play crucial roles in human placental morphogenesis, immune response, and cancer progression. Emerging evidence suggests that TEs have been a rich source of regulatory elements in the human genome, but little is known about the global impact of HERVs on transcriptional networks in cancer. Using genome-wide approaches, we show that HERVs are composed primarily of three ancient superfamilies: ERVL-MaLR, ERVL, and ERV1. This analysis suggests that the integration of exonic, intronic, and intergenic HERVs, as well as human or Hominidae gene-specific HERVs, contributes to human genomic innovation. HERVs exonized in genes are located mainly in the 3' untranslated region (UTR) or 3' end and participate in basic biological processes. Active HERVs are located mainly in intronic and intergenic regions and tend to function as enhancers and contribute to cancer cell type-specific gene expression. More importantly, HERVs may also define chromatin topologically associating domain (TAD) and loop boundaries in a cell type-specific manner. Taken together, these findings reveal that ancient HERV elements are a source of diverse regulatory sequences, including 3' UTRs, 5' UTRs, promoters, and enhancers, and they contribute to genetic innovation and cancer cell type-specific gene expression, highlighting the previously underestimated importance of these elements.

SIGNIFICANCE: Genome-wide analyses show that human endogenous retroviruses mediate cancer cell type-specific gene expression, epigenetic modification, and 3D chromatin architecture, elucidating the relationship between HERVs and diverse cancers.

RevDate: 2022-10-05
CmpDate: 2022-08-17

Kurotaki D, Kikuchi K, Cui K, et al (2022)

Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation.

Proceedings of the National Academy of Sciences of the United States of America, 119(34):e2207009119.

Classical dendritic cells (cDCs) are essential for immune responses and differentiate from hematopoietic stem cells via intermediate progenitors, such as monocyte-DC progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are activated and rapidly express host defense-related genes, such as those encoding cytokines and chemokines. Chromatin structures, including nuclear compartments and topologically associating domains (TADs), have been implicated in gene regulation. However, the extent and dynamics of their reorganization during cDC development and activation remain unknown. In this study, we comprehensively determined higher-order chromatin structures by Hi-C in DC progenitors and cDC subpopulations. During cDC differentiation, chromatin activation was initially induced at the MDP stage. Subsequently, a shift from inactive to active nuclear compartments occurred at the cDC gene loci in CDPs, which was followed by increased intra-TAD interactions and loop formation. Mechanistically, the transcription factor IRF8, indispensable for cDC differentiation, mediated chromatin activation and changes into the active compartments in DC progenitors, thereby possibly leading to cDC-specific gene induction. Using an infection model, we found that the chromatin structures of host defense-related gene loci were preestablished in unstimulated cDCs, indicating that the formation of higher-order chromatin structures prior to infection may contribute to the rapid responses to pathogens. Overall, these results suggest that chromatin structure reorganization is closely related to the establishment of cDC-specific gene expression and immune functions. This study advances the fundamental understanding of chromatin reorganization in cDC differentiation and activation.

RevDate: 2022-08-16

Zhou T, Q Feng (2022)

Androgen receptor signaling and spatial chromatin organization in castration-resistant prostate cancer.

Frontiers in medicine, 9:924087.

Prostate cancer is one of the leading causes of cancer death and affects millions of men in the world. The American Cancer Society estimated about 34,500 deaths from prostate cancer in the United States in year 2022. The Androgen receptor (AR) signaling is a major pathway that sustains local and metastatic prostate tumor growth. Androgen-deprivation therapy (ADT) is the standard of care for metastatic prostate cancer patient and can suppress the tumor growth for a median of 2-3 years. Unfortunately, the malignancy inevitably progresses to castration-resistant prostate cancer (CRPC) which is more aggressive and no longer responsive to ADT. Surprisingly, for most of the CPRC patients, cancer growth still depends on androgen receptor signaling. Accumulating evidence suggests that CRPC cells have rewired their transcriptional program to retain AR signaling in the absence of androgens. Besides AR, other transcription factors also contribute to the resistance mechanism through multiple pathways including enhancing AR signaling pathway and activating other complementary signaling pathways for the favor of AR downstream genes expression. More recent studies have shown the role of transcription factors in reconfiguring chromatin 3D structure and regulating topologically associating domains (TADs). Pioneer factors, transcription factors and coactivators form liquid-liquid phase separation compartment that can modulate transcriptional events along with configuring TADs. The role of AR and other transcription factors on chromatin structure change and formation of condensate compartment in prostate cancer cells has only been recently investigated and appreciated. This review intends to provide an overview of transcription factors that contribute to AR signaling through activation of gene expression, governing 3D chromatin structure and establishing phase to phase separation. A more detailed understanding of the spatial role of transcription factors in CRPC might provide novel therapeutic targets for the treatment of CRPC.

RevDate: 2022-08-31
CmpDate: 2022-08-16

Giaimo BD, T Borggrefe (2022)

Enhancer-promoter communication: unraveling enhancer strength and positioning within a given topologically associating domain (TAD).

Signal transduction and targeted therapy, 7(1):281.

RevDate: 2022-10-15

Fang K, Wang J, Liu L, et al (2022)

Mapping nucleosome and chromatin architectures: A survey of computational methods.

Computational and structural biotechnology journal, 20:3955-3962.

With ever-growing genomic sequencing data, the data variabilities and the underlying biases of the sequencing technologies pose significant computational challenges ranging from the need for accurately detecting the nucleosome positioning or chromatin interaction to the need for developing normalization methods to eliminate systematic biases. This review mainly surveys the computational methods for mapping the higher-resolution nucleosome and higher-order chromatin architectures. While a detailed discussion of the underlying algorithms is beyond the scope of our survey, we have discussed the methods and tools that can detect the nucleosomes in the genome, then demonstrated the computational methods for identifying 3D chromatin domains and interactions. We further illustrated computational approaches for integrating multi-omics data with Hi-C data and the advance of single-cell (sc)Hi-C data analysis. Our survey provides a comprehensive and valuable resource for biomedical scientists interested in studying nucleosome organization and chromatin structures as well as for computational scientists who are interested in improving upon them.

RevDate: 2022-08-09

Ahn J, Lee J, Kim DH, et al (2022)

Loss of Monoallelic Expression of IGF2 in the Adult Liver Via Alternative Promoter Usage and Chromatin Reorganization.

Frontiers in genetics, 13:920641.

In mammals, genomic imprinting operates via gene silencing mechanisms. Although conservation of the imprinting mechanism at the H19/IGF2 locus has been generally described in pigs, tissue-specific imprinting at the transcript level, monoallelic-to-biallelic conversion, and spatio-temporal chromatin reorganization remain largely uninvestigated. Here, we delineate spatially regulated imprinting of IGF2 transcripts, age-dependent hepatic mono- to biallelic conversion, and reorganization of topologically associating domains at the porcine H19/IGF2 locus for better translation to human and animal research. Whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of normal and parthenogenetic porcine embryos revealed the paternally hypermethylated H19 differentially methylated region and paternal expression of IGF2. Using a polymorphism-based approach and omics datasets from chromatin immunoprecipitation sequencing (ChIP-seq), whole-genome sequencing (WGS), RNA-seq, and Hi-C, regulation of IGF2 during development was analyzed. Regulatory elements in the liver were distinguished from those in the muscle where the porcine IGF2 transcript was monoallelically expressed. The IGF2 transcript from the liver was biallelically expressed at later developmental stages in both pigs and humans. Chromatin interaction was less frequent in the adult liver compared to the fetal liver and skeletal muscle. The duration of genomic imprinting effects within the H19/IGF2 locus might be reduced in the liver with biallelic conversion through alternative promoter usage and chromatin remodeling. Our integrative omics analyses of genome, epigenome, and transcriptome provided a comprehensive view of imprinting status at the H19/IGF2 cluster.

RevDate: 2022-08-09

Sun Z, Wang Y, Song Z, et al (2022)

DNA methylation in transposable elements buffers the connection between three-dimensional chromatin organization and gene transcription upon rice genome duplication.

Journal of advanced research pii:S2090-1232(22)00161-8 [Epub ahead of print].

INTRODUCTION: Polyploidy is a major force in plant evolution and the domestication of cultivated crops.

OBJECTIVES: The study aimed to explore the relationship and underlying mechanism between three-dimensional (3D) chromatin organization and gene transcription upon rice genome duplication.

METHODS: The 3D chromatin structures between diploid (2C) and autotetraploid (4C) rice were compared using high-throughput chromosome conformation capture (Hi-C) analysis. The study combined genetics, transcriptomics, whole-genome bisulfite sequencing (WGBS-seq) and 3D genomics approaches to uncover the mechanism for DNA methylation in modulating gene transcription through 3D chromatin architectures upon rice genome duplication.

RESULTS: We found that 4C rice presents weakened intra-chromosomal interactions compared to its 2C progenitor in some chromosomes. In addition, we found that changes of 3D chromatin organizations including chromatin compartments, topologically associating domains (TADs), and loops, are uncorrelated with gene transcription. Moreover, DNA methylations in the regulatory sequences of genes in compartment A/B switched regions and TAD boundaries are unrelated to their expression. Importantly, although there was no significant difference in the methylation levels in transposable elements (TEs) in differentially expressed gene (DEG) and non-DEG promoters between 2C and 4C rice, we found that the hypermethylated TEs across genes in compartment A/B switched regions and TAD boundaries may suppress the expression of these genes.

CONCLUSION: The study proposed that the rice genome doubling might modulate TE methylation to buffer the effects of chromatin architecture on gene transcription in compartment A/B switched regions and TAD boundaries, resulting in the disconnection between 3D chromatin structure alteration and gene transcription upon rice genome duplication.

RevDate: 2022-08-09

Li D, Strong A, Hou C, et al (2022)

Interstitial deletion 4p15.32p16.1 and complex chromoplexy in a female proband with severe neurodevelopmental delay, growth failure and dysmorphism.

Molecular cytogenetics, 15(1):33.

Complex chromosomal rearrangements involve the restructuring of genetic material within a single chromosome or across multiple chromosomes. These events can cause serious human disease by disrupting coding DNA and gene regulatory elements via deletions, duplications, and structural rearrangements. Here we describe a 5-year-old female with severe developmental delay, dysmorphic features, multi-suture craniosynostosis, and growth failure found to have a complex series of balanced intra- and inter-chromosomal rearrangements involving chromosomes 4, 11, 13, and X. Initial clinical studies were performed by karyotype, chromosomal microarray, and FISH with research-based short-read genome sequencing coupled with sanger sequencing to precisely map her breakpoints to the base pair resolution to understand the molecular basis of her phenotype. Genome analysis revealed two pathogenic deletions at 4p16.1-p15.32 and 4q31.1, accounting for her developmental delay and dysmorphism. We identified over 60 breakpoints, many with blunt ends and limited homology, supporting a role for non-homologous end joining in restructuring and resolution of the seminal chromoplexy event. We propose that the complexity of our patient's genomic rearrangements with a high number of breakpoints causes dysregulation of gene expression by three-dimensional chromatin interactions or topologically associating domains leading to growth failure and craniosynostosis. Our work supports an important role for genome sequencing in understanding the molecular basis of complex chromosomal rearrangements in human disease.

RevDate: 2022-08-04

Campbell M, Chantarasrivong C, Yanagihashi Y, et al (2022)

KSHV Topologically Associating Domains in Latent and Reactivated Viral Chromatin.

Journal of virology, 96(14):e0056522.

Eukaryotic genomes are structurally organized via the formation of multiple loops that create gene expression regulatory units called topologically associating domains (TADs). Here we revealed the KSHV TAD structure at 500 bp resolution and constructed a 3D KSHV genomic structural model with 2 kb binning. The latent KSHV genome formed very similar genomic architectures in three different naturally infected PEL cell lines and in an experimentally infected epithelial cell line. The majority of the TAD boundaries were occupied by structural maintenance of chromosomes (SMC1) cohesin complex and CCCTC-binding factor (CTCF), and the KSHV transactivator was recruited to those sites during reactivation. Triggering KSHV gene expression decreased prewired genomic loops within the regulatory unit, while contacts extending outside of regulatory borders increased, leading to formation of a larger regulatory unit with a shift from repressive to active compartments (B to A). The 3D genomic structural model proposes that the immediate early promoter region is localized on the periphery of the 3D viral genome during latency, while highly inducible noncoding RNA regions moved toward the inner space of the structure, resembling the configuration of a "bird cage" during reactivation. The compartment-like properties of viral episomal chromatin structure and its reorganization during the transition from latency may help facilitate viral gene transcription. IMPORTANCE The 3D architecture of chromatin allows for efficient arrangement, expression, and replication of genetic material. The genomes of all organisms studied to date have been found to be organized through some form of tiered domain structures. However, the architectural framework of the genomes of large double-stranded DNA viruses such as the herpesvirus family has not been reported. Prior studies with Kaposi's sarcoma-associated herpesvirus (KSHV) have indicated that the viral chromatin shares many biological properties exhibited by the host cell genome, essentially behaving as a mini human chromosome. Thus, we hypothesized that the KSHV genome may be organized in a similar manner. In this report, we describe the domain structure of the latent and lytic KSHV genome at 500 bp resolution and present a 3D genomic structural model for KSHV under each condition. These results add new insights into the complex regulation of the viral life cycle.

RevDate: 2022-09-13
CmpDate: 2022-07-26

Sabaté T, Zimmer C, E Bertrand (2022)

Versatile CRISPR-Based Method for Site-Specific Insertion of Repeat Arrays to Visualize Chromatin Loci in Living Cells.

Methods in molecular biology (Clifton, N.J.), 2532:275-290.

Hi-C and related sequencing-based techniques have brought a detailed understanding of the 3D genome architecture and the discovery of novel structures such as topologically associating domains (TADs) and chromatin loops, which emerge from cohesin-mediated DNA extrusion. However, these techniques require cell fixation, which precludes assessment of chromatin structure dynamics, and are generally restricted to population averages, thus masking cell-to-cell heterogeneity. By contrast, live-cell imaging allows to characterize and quantify the temporal dynamics of chromatin, potentially including TADs and loops in single cells. Specific chromatin loci can be visualized at high temporal and spatial resolution by inserting a repeat array from bacterial operator sequences bound by fluorescent tags. Using two different types of repeats allows to tag both anchors of a loop in different colors, thus enabling to track them separately even when they are in close vicinity. Here, we describe a versatile cloning method for generating many repeat array repair cassettes in parallel and inserting them by CRISPR-Cas9 into the human genome. This method should be instrumental to studying chromatin loop dynamics in single human cells.

RevDate: 2022-09-07
CmpDate: 2022-07-26

Miranda M, Noordermeer D, B Moindrot (2022)

Detection of Allele-Specific 3D Chromatin Interactions Using High-Resolution In-Nucleus 4C-seq.

Methods in molecular biology (Clifton, N.J.), 2532:15-33.

Chromosome conformation capture techniques are a set of methods used to determine 3D genome organization through the capture and identification of physical contacts between pairs of genomic loci. Among them, 4C-seq (circular chromosome conformation capture coupled to high-throughput sequencing) allows for the identification and quantification of the sequences interacting with a preselected locus of interest. 4C-seq has been widely used in the literature, mainly to study chromatin loops between enhancers and promoters or between CTCF binding sites and to identify chromatin domain boundaries. As 3D-contacts may be established in an allele-specific manner, we describe an up-to-date allele-specific 4C-seq protocol, starting from the selection of allele-specific viewpoints to Illumina sequencing. This protocol has mainly been optimized for cultured mammalian cells, but can be adapted for other cell types with relatively minor changes in initial steps.

RevDate: 2022-07-22

Sengupta K, Denkiewicz M, Chiliński M, et al (2022)

Multi-scale phase separation by explosive percolation with single-chromatin loop resolution.

Computational and structural biotechnology journal, 20:3591-3603.

The 2 m-long human DNA is tightly intertwined into the cell nucleus of the size of 10 μm. The DNA packing is explained by folding of chromatin fiber. This folding leads to the formation of such hierarchical structures as: chromosomal territories, compartments; densely-packed genomic regions known as Topologically Associating Domains (TADs), or Chromatin Contact Domains (CCDs), and loops. We propose models of dynamical human genome folding into hierarchical components in human lymphoblastoid, stem cell, and fibroblast cell lines. Our models are based on explosive percolation theory. The chromosomes are modeled as graphs where CTCF chromatin loops are represented as edges. The folding trajectory is simulated by gradually introducing loops to the graph following various edge addition strategies that are based on topological network properties, chromatin loop frequencies, compartmentalization, or epigenomic features. Finally, we propose the genome folding model - a biophysical pseudo-time process guided by a single scalar order parameter. The parameter is calculated by Linear Discriminant Analysis of chromatin features. We also include dynamics of loop formation by using Loop Extrusion Model (LEM) while adding them to the system. The chromatin phase separation, where fiber folds in 3D space into topological domains and compartments, is observed when the critical number of contacts is reached. We also observe that at least 80% of the loops are needed for chromatin fiber to condense in 3D space, and this is constant through various cell lines. Overall, our in-silico model integrates the high-throughput 3D genome interaction experimental data with the novel theoretical concept of phase separation, which allows us to model event-based time dynamics of chromatin loop formation and folding trajectories.

RevDate: 2022-07-16

Lamberti WF, C Zang (2022)

Extracting physical characteristics of higher-order chromatin structures from 3D image data.

Computational and structural biotechnology journal, 20:3387-3398.

Higher-order chromatin structures have functional impacts on gene regulation and cell identity determination. Using high-throughput sequencing (HTS)-based methods like Hi-C, active or inactive compartments and open or closed topologically associating domain (TAD) structures can be identified on a cell population level. Recently developed high-resolution three-dimensional (3D) molecular imaging techniques such as 3D electron microscopy with in situ hybridization (3D-EMSIH) and 3D structured illumination microscopy (3D-SIM) enable direct detection of physical representations of chromatin structures in a single cell. However, computational analysis of 3D image data with explainability and interpretability on functional characteristics of chromatin structures is still challenging. We developed Extracting Physical-Characteristics from Images of Chromatin Structures (EPICS), a machine-learning based computational method for processing high-resolution chromatin 3D image data. Using EPICS on images produced by 3D-EMISH or 3D-SIM techniques, we generated more direct 3D representations of higher-order chromatin structures, identified major chromatin domains, and determined the open or closed status of each domain. We identified several high-contributing features from the model as the major physical characteristics that define the open or closed chromatin domains, demonstrating the explainability and interpretability of EPICS. EPICS can be applied to the analysis of other high-resolution 3D molecular imaging data for spatial genomics studies. The R and Python codes of EPICS are available at

RevDate: 2022-07-25
CmpDate: 2022-07-14

Ballarino R, Bouwman BAM, Agostini F, et al (2022)

An atlas of endogenous DNA double-strand breaks arising during human neural cell fate determination.

Scientific data, 9(1):400.

Endogenous DNA double-strand breaks (DSBs) occurring in neural cells have been implicated in the pathogenesis of neurodevelopmental disorders (NDDs). Currently, a genomic map of endogenous DSBs arising during human neurogenesis is missing. Here, we applied in-suspension Breaks Labeling In Situ and Sequencing (sBLISS), RNA-Seq, and Hi-C to chart the genomic landscape of DSBs and relate it to gene expression and genome architecture in 2D cultures of human neuroepithelial stem cells (NES), neural progenitor cells (NPC), and post-mitotic neural cells (NEU). Endogenous DSBs were enriched at the promoter and along the gene body of transcriptionally active genes, at the borders of topologically associating domains (TADs), and around chromatin loop anchors. NDD risk genes harbored significantly more DSBs in comparison to other protein-coding genes, especially in NEU cells. We provide sBLISS, RNA-Seq, and Hi-C datasets for each differentiation stage, and all the scripts needed to reproduce our analyses. Our datasets and tools represent a unique resource that can be harnessed to investigate the role of genome fragility in the pathogenesis of NDDs.

RevDate: 2022-10-20
CmpDate: 2022-07-15

Anania C, Acemel RD, Jedamzick J, et al (2022)

In vivo dissection of a clustered-CTCF domain boundary reveals developmental principles of regulatory insulation.

Nature genetics, 54(7):1026-1036.

Vertebrate genomes organize into topologically associating domains, delimited by boundaries that insulate regulatory elements from nontarget genes. However, how boundary function is established is not well understood. Here, we combine genome-wide analyses and transgenic mouse assays to dissect the regulatory logic of clustered-CCCTC-binding factor (CTCF) boundaries in vivo, interrogating their function at multiple levels: chromatin interactions, transcription and phenotypes. Individual CTCF binding site (CBS) deletions revealed that the characteristics of specific sites can outweigh other factors such as CBS number and orientation. Combined deletions demonstrated that CBSs cooperate redundantly and provide boundary robustness. We show that divergent CBS signatures are not strictly required for effective insulation and that chromatin loops formed by nonconvergently oriented sites could be mediated by a loop interference mechanism. Further, we observe that insulation strength constitutes a quantitative modulator of gene expression and phenotypes. Our results highlight the modular nature of boundaries and their control over developmental processes.

RevDate: 2022-07-16

Wu H, Song X, Lyu S, et al (2022)

Integrated Analysis of Hi-C and RNA-Seq Reveals the Molecular Mechanism of Autopolyploid Growth Advantages in Pak Choi (Brassica rapa ssp. chinensis).

Frontiers in plant science, 13:905202.

Polyploids generated by the replication of a single genome (autopolyploid) or synthesis of two or more distinct genomes (allopolyploid) usually show significant advantages over their diploid progenitors in biological characteristics, including growth and development, nutrient accumulation, and plant resistance. Whereas, the impacts of genomic replication on transcription regulation and chromatin structure in pak choi have not been explored fully. In this study, we observed the transcriptional and genomic structural alterations between diploid B. rapa (AA) and artificial autotetraploid B. rapa (AAAA) using RNA-seq and Hi-C. RNA-seq revealed 1,786 differentially expressed genes (DEGs) between the diploids and autotetraploids, including 717 down-regulated and 1,069 up-regulated genes in autotetraploids. Of all the 1,786 DEGs, 23 DEGs (10 down-regulated DEGs in autotetraploids) were involved in Compartment A-B shifts, while 28 DEGs (20 up-regulated DEGs in autotetraploids) participated in Compartment B-A shifts. Moreover, there were 15 DEGs in activated topologically associating domains (TADs) (9 up-regulated DEGs in diploids) and 80 DEGs in repressed TADs (49 down-regulated DEGs in diploids). Subsequently, eight DEGs with genomic structural variants were selected as potential candidate genes, including four DEGs involved in photosynthesis (BraA01003143, BraA09002798, BraA04002224, and BraA08000594), three DEGs related to chloroplast (BraA05002974, BraA05001662, and BraA04001148), and one DEG associated with disease resistance (BraA09004451), which all showed high expression in autotetraploids. Overall, our results demonstrated that integrative RNA-seq and Hi-C analysis can identify related genes to phenotypic traits and also provided new insights into the molecular mechanism of the growth advantage of polyploids.

RevDate: 2022-09-28
CmpDate: 2022-09-26

Fujita Y, Pather SR, Ming GL, et al (2022)

3D spatial genome organization in the nervous system: From development and plasticity to disease.

Neuron, 110(18):2902-2915.

Chromatin is organized into multiscale three-dimensional structures, including chromosome territories, A/B compartments, topologically associating domains, and chromatin loops. This hierarchically organized genomic architecture regulates gene transcription, which, in turn, is essential for various biological processes during brain development and adult plasticity. Here, we review different aspects of spatial genome organization and their functions in regulating gene expression in the nervous system, as well as their dysregulation in brain disorders. We also highlight new technologies to probe and manipulate chromatin architecture and discuss how investigating spatial genome organization can lead to a better understanding of the nervous system and associated disorders.

RevDate: 2022-09-25
CmpDate: 2022-08-03

Wei C, Jia L, Huang X, et al (2022)

CTCF organizes inter-A compartment interactions through RYBP-dependent phase separation.

Cell research, 32(8):744-760.

Chromatin is spatially organized into three-dimensional structures at different levels including A/B compartments, topologically associating domains and loops. The canonical CTCF-mediated loop extrusion model can explain the formation of loops. However, the organization mechanisms underlying long-range chromatin interactions such as interactions between A-A compartments are still poorly understood. Here we show that different from the canonical loop extrusion model, RYBP-mediated phase separation of CTCF organizes inter-A compartment interactions. Based on this model, we designed and verified an induced CTCF phase separation system in embryonic stem cells (ESCs), which facilitated inter-A compartment interactions, improved self-renewal of ESCs and inhibited their differentiation toward neural progenitor cells. These findings support a novel and non-canonical role of CTCF in organizing long-range chromatin interactions via phase separation.

RevDate: 2022-09-30
CmpDate: 2022-08-16

Sawh AN, SE Mango (2022)

Chromosome organization in 4D: insights from C. elegans development.

Current opinion in genetics & development, 75:101939.

Eukaryotic genome organization is ordered and multilayered, from the nucleosome to chromosomal scales. These layers are not static during development, but are remodeled over time and between tissues. Thus, animal model studies with high spatiotemporal resolution are necessary to understand the various forms and functions of genome organization in vivo. In C. elegans, sequencing- and imaging-based advances have provided insight on how histone modifications, regulatory elements, and large-scale chromosome conformations are established and changed. Recent observations include unexpected physiological roles for topologically associating domains, different roles for the nuclear lamina at different chromatin scales, cell-type-specific enhancer and promoter regulatory grammars, and prevalent compartment variability in early development. Here, we summarize these and other recent findings in C. elegans, and suggest future avenues of research to enrich our in vivo knowledge of the forms and functions of nuclear organization.

RevDate: 2022-09-24
CmpDate: 2022-06-27

Liu T, Z Wang (2022)

scHiCEmbed: Bin-Specific Embeddings of Single-Cell Hi-C Data Using Graph Auto-Encoders.

Genes, 13(6):.

Most publicly accessible single-cell Hi-C data are sparse and cannot reach a higher resolution. Therefore, learning latent representations (bin-specific embeddings) of sparse single-cell Hi-C matrices would provide us with a novel way of mining valuable information hidden in the limited number of single-cell Hi-C contacts. We present scHiCEmbed, an unsupervised computational method for learning bin-specific embeddings of single-cell Hi-C data, and the computational system is applied to the tasks of 3D structure reconstruction of whole genomes and detection of topologically associating domains (TAD). The only input of scHiCEmbed is a raw or scHiCluster-imputed single-cell Hi-C matrix. The main process of scHiCEmbed is to embed each node/bin in a higher dimensional space using graph auto-encoders. The learned n-by-3 bin-specific embedding/latent matrix is considered the final reconstructed 3D genome structure. For TAD detection, we use constrained hierarchical clustering on the latent matrix to classify bins: S_Dbw is used to determine the optimal number of clusters, and each cluster is considered as one potential TAD. Our reconstructed 3D structures for individual chromatins at different cell stages reveal the expanding process of chromatins during the cell cycle. We observe that the TADs called from single-cell Hi-C data are not shared across individual cells and that the TAD boundaries called from raw or imputed single-cell Hi-C are significantly different from those called from bulk Hi-C, confirming the cell-to-cell variability in terms of TAD definitions. The source code for scHiCEmbed is publicly available, and the URL can be found in the conclusion section.

RevDate: 2022-08-18
CmpDate: 2022-06-23

Tian GG, Hou C, Li J, et al (2022)

Three-dimensional genome structure shapes the recombination landscape of chromatin features during female germline stem cell development.

Clinical and translational medicine, 12(6):e927.

BACKGROUND: During meiosis of mammalian cells, chromatin undergoes drastic reorganization. However, the dynamics of the three-dimensional (3D) chromatin structure during the development of female germline stem cells (FGSCs) are poorly understood.

METHODS: The high-throughput chromosome conformation capture technique was used to probe the 3D structure of chromatin in mouse germ cells at each stage of FGSC development.

RESULTS: The global 3D genome was dramatically reorganized during FGSC development. In topologically associating domains, the chromatin structure was weakened in germinal vesicle stage oocytes and still present in meiosis I stage oocytes but had vanished in meiosis II oocytes. This switch between topologically associating domains was related to the biological process of FGSC development. Moreover, we constructed a landscape of chromosome X organization, which showed that the X chromosome occupied a smaller proportion of the active (A) compartment than the autosome during FGSC development. By comparing the high-order chromatin structure between female and male germline development, we found that 3D genome organization was remodelled by two different potential mechanisms during gamete development, in which interchromosomal interactions, compartments, and topologically associating domain were decreased during FGSC development but reorganized and recovered during spermatogenesis. Finally, we identified conserved chromatin structures between FGSC development and early embryonic development.

CONCLUSIONS: These results provide a valuable resource to characterize chromatin organization and for further studies of FGSC development.

RevDate: 2022-08-11
CmpDate: 2022-07-14

Wang W, Chandra A, Goldman N, et al (2022)

TCF-1 promotes chromatin interactions across topologically associating domains in T cell progenitors.

Nature immunology, 23(7):1052-1062.

The high mobility group (HMG) transcription factor TCF-1 is essential for early T cell development. Although in vitro biochemical assays suggest that HMG proteins can serve as architectural elements in the assembly of higher-order nuclear organization, the contribution of TCF-1 on the control of three-dimensional (3D) genome structures during T cell development remains unknown. Here, we investigated the role of TCF-1 in 3D genome reconfiguration. Using gain- and loss-of-function experiments, we discovered that the co-occupancy of TCF-1 and the architectural protein CTCF altered the structure of topologically associating domains in T cell progenitors, leading to interactions between previously insulated regulatory elements and target genes at late stages of T cell development. The TCF-1-dependent gain in long-range interactions was linked to deposition of active enhancer mark H3K27ac and recruitment of the cohesin-loading factor NIPBL at active enhancers. These data indicate that TCF-1 has a role in controlling global genome organization during T cell development.

RevDate: 2022-08-17
CmpDate: 2022-06-22

Liu E, Lyu H, Peng Q, et al (2022)

TADfit is a multivariate linear regression model for profiling hierarchical chromatin domains on replicate Hi-C data.

Communications biology, 5(1):608.

Topologically associating domains (TADs) are fundamental building blocks of three dimensional genome, and organized into complex hierarchies. Identifying hierarchical TADs on Hi-C data helps to understand the relationship between genome architectures and gene regulation. Herein we propose TADfit, a multivariate linear regression model for profiling hierarchical chromatin domains, which tries to fit the interaction frequencies in Hi-C contact matrix with and without replicates using all-possible hierarchical TADs, and the significant ones can be determined by the regression coefficients obtained with the help of an online learning solver called Follow-The-Regularized-Leader (FTRL). Beyond the existing methods, TADfit has an ability to handle multiple contact matrix replicates and find partially overlapping TADs on them, which helps to find the comprehensive underlying TADs across replicates from different experiments. The comparative results tell that TADfit has better accuracy and reproducibility, and the hierarchical TADs called by it exhibit a reasonable biological relevance.

RevDate: 2022-07-29

Bolt CC, Lopez-Delisle L, Hintermann A, et al (2022)

Context-dependent enhancer function revealed by targeted inter-TAD relocation.

Nature communications, 13(1):3488.

The expression of some genes depends on large, adjacent regions of the genome that contain multiple enhancers. These regulatory landscapes frequently align with Topologically Associating Domains (TADs), where they integrate the function of multiple similar enhancers to produce a global, TAD-specific regulation. We asked if an individual enhancer could overcome the influence of one of these landscapes, to drive gene transcription. To test this, we transferred an enhancer from its native location, into a nearby TAD with a related yet different functional specificity. We used the biphasic regulation of Hoxd genes during limb development as a paradigm. These genes are first activated in proximal limb cells by enhancers located in one TAD, which is then silenced when the neighboring TAD activates its enhancers in distal limb cells. We transferred a distal limb enhancer into the proximal limb TAD and found that its new context suppresses its normal distal specificity, even though it is bound by HOX13 transcription factors, which are responsible for the distal activity. This activity can be rescued only when a large portion of the surrounding environment is removed. These results indicate that, at least in some cases, the functioning of enhancer elements is subordinated to the host chromatin context, which can exert a dominant control over its activity.

RevDate: 2022-09-02
CmpDate: 2022-06-21

Michieletto D, WA Bickmore (2022)

TADs do not stay in the loop.

Molecular cell, 82(12):2188-2189.

In a recent issue of Science, Gabriele et al. have, for the first time, quantified the dynamics of a topologically associating domain (TAD) in live cells by coupling super-resolution imaging and computational modelling, concluding that a TAD spends most of its life in a "partially extruded state" and that CTCF-CTCF loops are rare.

RevDate: 2022-09-01
CmpDate: 2022-07-18

Sudarshan D, Avvakumov N, Lalonde ME, et al (2022)

Recurrent chromosomal translocations in sarcomas create a megacomplex that mislocalizes NuA4/TIP60 to Polycomb target loci.

Genes & development, 36(11-12):664-683.

Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.

RevDate: 2022-09-01
CmpDate: 2022-07-18

Taylor T, Sikorska N, Shchuka VM, et al (2022)

Transcriptional regulation and chromatin architecture maintenance are decoupled functions at the Sox2 locus.

Genes & development, 36(11-12):699-717.

How distal regulatory elements control gene transcription and chromatin topology is not clearly defined, yet these processes are closely linked in lineage specification during development. Through allele-specific genome editing and chromatin interaction analyses of the Sox2 locus in mouse embryonic stem cells, we found a striking disconnection between transcriptional control and chromatin architecture. We traced nearly all Sox2 transcriptional activation to a small number of key transcription factor binding sites, whose deletions have no effect on promoter-enhancer interaction frequencies or topological domain organization. Local chromatin architecture maintenance, including at the topologically associating domain (TAD) boundary downstream from the Sox2 enhancer, is widely distributed over multiple transcription factor-bound regions and maintained in a CTCF-independent manner. Furthermore, partial disruption of promoter-enhancer interactions by ectopic chromatin loop formation has no effect on Sox2 transcription. These findings indicate that many transcription factors are involved in modulating chromatin architecture independently of CTCF.

RevDate: 2022-09-15
CmpDate: 2022-09-15

Shukla V, Cetnarowska A, Hyldahl M, et al (2022)

Interplay between regulatory elements and chromatin topology in cellular lineage determination.

Trends in genetics : TIG, 38(10):1048-1061.

Cellular lineage determination is controlled by combinations of lineage-selective transcription factors (TFs) and associated coregulators that bind to cis-regulatory elements in DNA and regulate gene expression. The ability of these factors to regulate transcription is determined not only by their cooperativity, but also by biochemical and structural properties of the chromatin, sculpting higher-order genome organization. Here, we review recent advances in the understanding of the interplay between chromatin topology and transcription. Studies from many different fields, including adipocyte lineage determination, indicate that lineage determination and differentiation are dependent on elaborate crosstalk between cis-regulatory elements, leading to the formation of transcriptional hubs. Chromatin topology appears to provide a dynamic and supportive, rather than a deterministic, scaffold for this crosstalk.

RevDate: 2022-06-22
CmpDate: 2022-06-22

Tsujikawa LM, Kharenko OA, Stotz SC, et al (2022)

Breaking boundaries: Pan BETi disrupt 3D chromatin structure, BD2-selective BETi are strictly epigenetic transcriptional regulators.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 152:113230.

BACKGROUND: Bromodomain and extraterminal proteins (BETs) are more than just epigenetic regulators of transcription. Here we highlight a new role for the BET protein BRD4 in the maintenance of higher order chromatin structure at Topologically Associating Domain Boundaries (TADBs). BD2-selective and pan (non-selective) BET inhibitors (BETi) differentially support chromatin structure, selectively affecting transcription and cell viability.

METHODS: Using RNA-seq and BRD4 ChIP-seq, the differential effect of BETi treatment on the transcriptome and BRD4 chromatin occupancy of human aortic endothelial cells from diabetic patients (dHAECs) stimulated with TNFα was evaluated. Chromatin decondensation and DNA fragmentation was assessed by immunofluorescence imaging and quantification. Key dHAEC findings were verified in proliferating monocyte-like THP-1 cells using real time-PCR, BRD4 co-immunoprecipitation studies, western blots, proliferation and apoptosis assays.

FINDINGS: We discovered that 1) BRD4 co-localizes with Ying-Yang 1 (YY1) at TADBs, critical chromatin structure complexes proximal to many DNA repair genes. 2) BD2-selective BETi enrich BRD4/YY1 associations, while pan-BETi do not. 3) Failure to support chromatin structures through BRD4/YY1 enrichment inhibits DNA repair gene transcription, which induces DNA damage responses, and causes widespread chromatin decondensation, DNA fragmentation, and apoptosis. 4) BD2-selective BETi maintain high order chromatin structure and cell viability, while reducing deleterious pro-inflammatory transcription.

INTERPRETATION: BRD4 plays a previously unrecognized role at TADBs. BETi differentially impact TADB stability. Our results provide translational insight for the development of BETi as therapeutics for a range of diseases including CVD, chronic kidney disease, cancer, and COVID-19.

RevDate: 2022-07-16

Segueni J, D Noordermeer (2022)

CTCF: A misguided jack-of-all-trades in cancer cells.

Computational and structural biotechnology journal, 20:2685-2698.

The emergence and progression of cancers is accompanied by a dysregulation of transcriptional programs. The three-dimensional (3D) organization of the human genome has emerged as an important multi-level mediator of gene transcription and regulation. In cancer cells, this organization can be restructured, providing a framework for the deregulation of gene activity. The CTCF protein, initially identified as the product from a tumor suppressor gene, is a jack-of-all-trades for the formation of 3D genome organization in normal cells. Here, we summarize how CTCF is involved in the multi-level organization of the human genome and we discuss emerging insights into how perturbed CTCF function and DNA binding causes the activation of oncogenes in cancer cells, mostly through a process of enhancer hijacking. Moreover, we highlight non-canonical functions of CTCF that can be relevant for the emergence of cancers as well. Finally, we provide guidelines for the computational identification of perturbed CTCF binding and reorganized 3D genome structure in cancer cells.

RevDate: 2022-07-16
CmpDate: 2022-06-24

Emerson DJ, Zhao PA, Cook AL, et al (2022)

Cohesin-mediated loop anchors confine the locations of human replication origins.

Nature, 606(7915):812-819.

DNA replication occurs through an intricately regulated series of molecular events and is fundamental for genome stability1,2. At present, it is unknown how the locations of replication origins are determined in the human genome. Here we dissect the role of topologically associating domains (TADs)3-6, subTADs7 and loops8 in the positioning of replication initiation zones (IZs). We stratify TADs and subTADs by the presence of corner-dots indicative of loops and the orientation of CTCF motifs. We find that high-efficiency, early replicating IZs localize to boundaries between adjacent corner-dot TADs anchored by high-density arrays of divergently and convergently oriented CTCF motifs. By contrast, low-efficiency IZs localize to weaker dotless boundaries. Following ablation of cohesin-mediated loop extrusion during G1, high-efficiency IZs become diffuse and delocalized at boundaries with complex CTCF motif orientations. Moreover, G1 knockdown of the cohesin unloading factor WAPL results in gained long-range loops and narrowed localization of IZs at the same boundaries. Finally, targeted deletion or insertion of specific boundaries causes local replication timing shifts consistent with IZ loss or gain, respectively. Our data support a model in which cohesin-mediated loop extrusion and stalling at a subset of genetically encoded TAD and subTAD boundaries is an essential determinant of the locations of replication origins in human S phase.

RevDate: 2022-07-16

Zhang S, Tao W, JJ Han (2022)

3D chromatin structure changes during spermatogenesis and oogenesis.

Computational and structural biotechnology journal, 20:2434-2441.

Gametogenesis, including spermatogenesis and oogenesis, are unique differentiation processes involving extraordinarily complex and precise regulatory mechanisms that require the interactions of multiple cell types, hormones, paracrine factors, genes and epigenetic regulators, and extensive chromatin 3D structure re-organization. In recent years, the development of 3D genome technology represented by Hi-C, enabled mapping of the 3D re-organization of chromosomes during zygogenesis at an unprecedented resolution. The 3D remodeling is achieved by folding chromatin into loops, topologically associating domains (TADs), and compartments (A and B), which ultimately affect transcriptional activity. In this review, we summarize the research progresses and findings on chromatin 3D structure changes during spermatogenesis and oogenesis.

RevDate: 2022-07-16
CmpDate: 2022-07-06

Zhang Y, Tian GG, Wang X, et al (2022)

Retinoic acid induced meiosis initiation in female germline stem cells by remodelling three-dimensional chromatin structure.

Cell proliferation, 55(7):e13242.

OBJECTIVES: This study aimed to clarify the regulation and mechanism of meiotic initiation in FGSC development.

MATERIALS AND METHODS: FGSCs were induced to differentiate into meiosis in differentiation medium. RNA sequencing was performed to analysis the difference of transcription level. High-through chromosome conformation capture sequencing (Hi-C) was performed to analysis changes of three-dimensional chromatin structure. Chromosome conformation capture further confirmed a spatial chromatin loop. ChIP-qPCR and dual luciferase reporter were used to test the interaction between Stimulated by retinoic acid gene 8 (STRA8) protein and Trip13 promoter.

RESULTS: Compared with FGSCs, the average diameter of STRA8-positive germ cells increased from 13 μm to 16.8 μm. Furthermore, there were 4788 differentially expressed genes between the two cell stages; Meiosis and chromatin structure-associated terms were significantly enriched. Additionally, Hi-C results showed that FGSCs underwent A/B compartment switching (switch rate was 29.81%), the number of topologically associating domains (TADs) increasing, the average size of TADs decreasing, and chromatin loop changes at genome region of Trip13 from undifferentiated stage to meiosis-initiation stage. Furthermore, we validated that Trip13 promoter contacted distal enhancer to form spatial chromatin loop and STRA8 could bind Trip13 promoter to promote gene expression.

CONCLUSION: FGSCs underwent chromatin structure remodelling from undifferentiated stage to meiosis-initiation stage, which facilitated STRA8 binding to Trip13 promoter and promoting its expression.

RevDate: 2022-08-09
CmpDate: 2022-08-09

Bin Akhtar G, Buist M, M Rastegar (2022)

MeCP2 and transcriptional control of eukaryotic gene expression.

European journal of cell biology, 101(3):151237.

Eukaryotic gene expression is controlled at multiple steps that work in harmony to ensure proper maintenance of cellular morphology and function. Such regulatory mechanisms would include transcriptional gene regulation, which is in turn controlled by chromatin remodeling, distinct topologically associating domains of the chromatin structure, cis-regulatory elements such as enhancers and promoters, action of trans-acting factors, DNA methylation, RNA modifications, and post-translational modification of histones. These guiding mechanisms of gene expression play critical roles in the epigenetic setting of individual cells within the eukaryotic systems. Some epigenetic factors may play multiple functional roles in guarding the accurate gene expression program of the eukaryotic cells, especially within the central nervous system. A well-studied example of such multi-functional factors is the methyl-CpG-binding protein 2 (MeCP2), a nuclear protein that is encoded by the X-linked MECP2 gene. Here, we aim to provide an overview of eukaryotic gene regulation, the three-dimensional chromatin organization, standard techniques to study newly synthesized RNA transcripts, and the role of MeCP2 as an important transcriptional regulator in eukaryotes.

RevDate: 2022-08-15
CmpDate: 2022-06-03

Dequeker BJH, Scherr MJ, Brandão HB, et al (2022)

MCM complexes are barriers that restrict cohesin-mediated loop extrusion.

Nature, 606(7912):197-203.

Eukaryotic genomes are compacted into loops and topologically associating domains (TADs)1-3, which contribute to transcription, recombination and genomic stability4,5. Cohesin extrudes DNA into loops that are thought to lengthen until CTCF boundaries are encountered6-12. Little is known about whether loop extrusion is impeded by DNA-bound machines. Here we show that the minichromosome maintenance (MCM) complex is a barrier that restricts loop extrusion in G1 phase. Single-nucleus Hi-C (high-resolution chromosome conformation capture) of mouse zygotes reveals that MCM loading reduces CTCF-anchored loops and decreases TAD boundary insulation, which suggests that loop extrusion is impeded before reaching CTCF. This effect extends to HCT116 cells, in which MCMs affect the number of CTCF-anchored loops and gene expression. Simulations suggest that MCMs are abundant, randomly positioned and partially permeable barriers. Single-molecule imaging shows that MCMs are physical barriers that frequently constrain cohesin translocation in vitro. Notably, chimeric yeast MCMs that contain a cohesin-interaction motif from human MCM3 induce cohesin pausing, indicating that MCMs are 'active' barriers with binding sites. These findings raise the possibility that cohesin can arrive by loop extrusion at MCMs, which determine the genomic sites at which sister chromatid cohesion is established. On the basis of in vivo, in silico and in vitro data, we conclude that distinct loop extrusion barriers shape the three-dimensional genome.

RevDate: 2022-06-30
CmpDate: 2022-06-24

Lei Z, Meng H, Liu L, et al (2022)

Mitochondrial base editor induces substantial nuclear off-target mutations.

Nature, 606(7915):804-811.

DddA-derived cytosine base editors (DdCBEs)-which are fusions of split DddA halves and transcription activator-like effector (TALE) array proteins from bacteria-enable targeted C•G-to-T•A conversions in mitochondrial DNA1. However, their genome-wide specificity is poorly understood. Here we show that the mitochondrial base editor induces extensive off-target editing in the nuclear genome. Genome-wide, unbiased analysis of its editome reveals hundreds of off-target sites that are TALE array sequence (TAS)-dependent or TAS-independent. TAS-dependent off-target sites in the nuclear DNA are often specified by only one of the two TALE repeats, challenging the principle that DdCBEs are guided by paired TALE proteins positioned in close proximity. TAS-independent off-target sites on nuclear DNA are frequently shared among DdCBEs with distinct TALE arrays. Notably, they co-localize strongly with binding sites for the transcription factor CTCF and are enriched in topologically associating domain boundaries. We engineered DdCBE to alleviate such off-target effects. Collectively, our results have implications for the use of DdCBEs in basic research and therapeutic applications, and suggest the need to thoroughly define and evaluate the off-target effects of base-editing tools.

RevDate: 2022-07-25
CmpDate: 2022-05-19

Zhou J (2022)

Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale.

Nature genetics, 54(5):725-734.

To learn how genomic sequence influences multiscale three-dimensional (3D) genome architecture, this manuscript presents a sequence-based deep-learning approach, Orca, that predicts directly from sequence the 3D genome architecture from kilobase to whole-chromosome scale. Orca captures the sequence dependencies of structures including chromatin compartments and topologically associating domains, as well as diverse types of interactions from CTCF-mediated to enhancer-promoter interactions and Polycomb-mediated interactions with cell-type specificity. Orca enables various applications including predicting structural variant effects on multiscale genome organization and it recapitulated effects of experimentally studied variants at varying sizes (300 bp to 90 Mb). Moreover, Orca enables in silico virtual screens to probe the sequence basis of 3D genome organization at different scales. At the submegabase scale, it predicted specific transcription factor motifs underlying cell-type-specific genome interactions. At the compartment scale, virtual screens of sequence activities suggest a model for the sequence basis of chromatin compartments with a prominent role of transcription start sites.

RevDate: 2022-07-16

Fan Z, Wu C, Chen M, et al (2022)

The generation of PD-L1 and PD-L2 in cancer cells: From nuclear chromatin reorganization to extracellular presentation.

Acta pharmaceutica Sinica. B, 12(3):1041-1053.

The immune checkpoint blockade (ICB) targeting on PD-1/PD-L1 has shown remarkable promise in treating cancers. However, the low response rate and frequently observed severe side effects limit its broad benefits. It is partially due to less understanding of the biological regulation of PD-L1. Here, we systematically and comprehensively summarized the regulation of PD-L1 from nuclear chromatin reorganization to extracellular presentation. In PD-L1 and PD-L2 highly expressed cancer cells, a new TAD (topologically associating domain) (chr9: 5,400,000-5,600,000) around CD274 and CD273 was discovered, which includes a reported super-enhancer to drive synchronous transcription of PD-L1 and PD-L2. The re-shaped TAD allows transcription factors such as STAT3 and IRF1 recruit to PD-L1 locus in order to guide the expression of PD-L1. After transcription, the PD-L1 is tightly regulated by miRNAs and RNA-binding proteins via the long 3'UTR. At translational level, PD-L1 protein and its membrane presentation are tightly regulated by post-translational modification such as glycosylation and ubiquitination. In addition, PD-L1 can be secreted via exosome to systematically inhibit immune response. Therefore, fully dissecting the regulation of PD-L1/PD-L2 and thoroughly detecting PD-L1/PD-L2 as well as their regulatory networks will bring more insights in ICB and ICB-based combinational therapy.

RevDate: 2022-07-16

Poszewiecka B, Pienkowski VM, Nowosad K, et al (2022)

TADeus2: a web server facilitating the clinical diagnosis by pathogenicity assessment of structural variations disarranging 3D chromatin structure.

Nucleic acids research [Epub ahead of print].

In recent years great progress has been made in identification of structural variants (SV) in the human genome. However, the interpretation of SVs, especially located in non-coding DNA, remains challenging. One of the reasons stems in the lack of tools exclusively designed for clinical SVs evaluation acknowledging the 3D chromatin architecture. Therefore, we present TADeus2 a web server dedicated for a quick investigation of chromatin conformation changes, providing a visual framework for the interpretation of SVs affecting topologically associating domains (TADs). This tool provides a convenient visual inspection of SVs, both in a continuous genome view as well as from a rearrangement's breakpoint perspective. Additionally, TADeus2 allows the user to assess the influence of analyzed SVs within flaking coding/non-coding regions based on the Hi-C matrix. Importantly, the SVs pathogenicity is quantified and ranked using TADA, ClassifyCNV tools and sampling-based P-value. TADeus2 is publicly available at

RevDate: 2022-07-16
CmpDate: 2022-05-10

Li D, He M, Tang Q, et al (2022)

Comparative 3D genome architecture in vertebrates.

BMC biology, 20(1):99.

BACKGROUND: The three-dimensional (3D) architecture of the genome has a highly ordered and hierarchical nature, which influences the regulation of essential nuclear processes at the basis of gene expression, such as gene transcription. While the hierarchical organization of heterochromatin and euchromatin can underlie differences in gene expression that determine evolutionary differences among species, the way 3D genome architecture is affected by evolutionary forces within major lineages remains unclear. Here, we report a comprehensive comparison of 3D genomes, using high resolution Hi-C data in fibroblast cells of fish, chickens, and 10 mammalian species.

RESULTS: This analysis shows a correlation between genome size and chromosome length that affects chromosome territory (CT) organization in the upper hierarchy of genome architecture, whereas lower hierarchical features, including local transcriptional availability of DNA, are selected through the evolution of vertebrates. Furthermore, conservation of topologically associating domains (TADs) appears strongly associated with the modularity of expression profiles across species. Additionally, LINE and SINE transposable elements likely contribute to heterochromatin and euchromatin organization, respectively, during the evolution of genome architecture.

CONCLUSIONS: Our analysis uncovers organizational features that appear to determine the conservation and transcriptional regulation of functional genes across species. These findings can guide ongoing investigations of genome evolution by extending our understanding of the mechanisms shaping genome architecture.

RevDate: 2022-08-29
CmpDate: 2022-05-06

Deng S, Feng Y, S Pauklin (2022)

3D chromatin architecture and transcription regulation in cancer.

Journal of hematology & oncology, 15(1):49.

Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.

RevDate: 2022-07-16
CmpDate: 2022-05-06

Gilbertson SE, Walter HC, Gardner K, et al (2022)

Topologically associating domains are disrupted by evolutionary genome rearrangements forming species-specific enhancer connections in mice and humans.

Cell reports, 39(5):110769.

Distinguishing between conserved and divergent regulatory mechanisms is essential for translating preclinical research from mice to humans, yet there is a lack of information about how evolutionary genome rearrangements affect the regulation of the immune response, a rapidly evolving system. The current model is topologically associating domains (TADs) are conserved between species, buffering evolutionary rearrangements and conserving long-range interactions within a TAD. However, we find that TADs frequently span evolutionary translocation and inversion breakpoints near genes with species-specific expression in immune cells, creating unique enhancer-promoter interactions exclusive to the mouse or human genomes. This includes TADs encompassing immune-related transcription factors, cytokines, and receptors. For example, we uncover an evolutionary rearrangement that created a shared LPS-inducible regulatory module between OASL and P2RX7 in human macrophages that is absent in mice. Therefore, evolutionary genome rearrangements disrupt TAD boundaries, enabling sequence-conserved enhancer elements from divergent genomic locations between species to create unique regulatory modules.

RevDate: 2022-08-10
CmpDate: 2022-05-09

Galupa R, Picard C, Servant N, et al (2022)

Inversion of a topological domain leads to restricted changes in its gene expression and affects interdomain communication.

Development (Cambridge, England), 149(9):.

The interplay between the topological organization of the genome and the regulation of gene expression remains unclear. Depletion of molecular factors (e.g. CTCF) underlying topologically associating domains (TADs) leads to modest alterations in gene expression, whereas genomic rearrangements involving TAD boundaries disrupt normal gene expression and can lead to pathological phenotypes. Here, we targeted the TAD neighboring that of the noncoding transcript Xist, which controls X-chromosome inactivation. Inverting 245 kb within the TAD led to expected rearrangement of CTCF-based contacts but revealed heterogeneity in the 'contact' potential of different CTCF sites. Expression of most genes therein remained unaffected in mouse embryonic stem cells and during differentiation. Interestingly, expression of Xist was ectopically upregulated. The same inversion in mouse embryos led to biased Xist expression. Smaller inversions and deletions of CTCF clusters led to similar results: rearrangement of contacts and limited changes in local gene expression, but significant changes in Xist expression in embryos. Our study suggests that the wiring of regulatory interactions within a TAD can influence the expression of genes in neighboring TADs, highlighting the existence of mechanisms of inter-TAD communication.

RevDate: 2022-07-16
CmpDate: 2022-04-29

Panarotto M, Davidson IF, Litos G, et al (2022)

Cornelia de Lange syndrome mutations in NIPBL can impair cohesin-mediated DNA loop extrusion.

Proceedings of the National Academy of Sciences of the United States of America, 119(18):e2201029119.

Cornelia de Lange syndrome (CdLS) is a developmental multisystem disorder frequently associated with mutations in NIPBL. CdLS is thought to arise from developmental gene regulation defects, but how NIPBL mutations cause these is unknown. Here we show that several NIPBL mutations impair the DNA loop extrusion activity of cohesin. Because this activity is required for the formation of chromatin loops and topologically associating domains, which have important roles in gene regulation, our results suggest that defects in cohesin-mediated loop extrusion contribute to the etiology of CdLS by altering interactions between developmental genes and their enhancers.

RevDate: 2022-09-18
CmpDate: 2022-07-08

Jouret G, Heide S, Sorlin A, et al (2022)

Understanding the new BRD4-related syndrome: Clinical and genomic delineation with an international cohort study.

Clinical genetics, 102(2):117-122.

BRD4 is part of a multiprotein complex involved in loading the cohesin complex onto DNA, a fundamental process required for cohesin-mediated loop extrusion and formation of Topologically Associating Domains. Pathogenic variations in this complex have been associated with a growing number of syndromes, collectively known as cohesinopathies, the most classic being Cornelia de Lange syndrome. However, no cohort study has been conducted to delineate the clinical and molecular spectrum of BRD4-related disorder. We formed an international collaborative study, and collected 14 new patients, including two fetuses. We performed phenotype and genotype analysis, integrated prenatal findings from fetopathological examinations, phenotypes of pediatric patients and adults. We report the first cohort of patients with BRD4-related disorder and delineate the dysmorphic features at different ages. This work extends the phenotypic spectrum of cohesinopathies and characterize a new clinically relevant and recognizable pattern, distinguishable from the other cohesinopathies.

RevDate: 2022-07-16

Habash NW, Sehrawat TS, Shah VH, et al (2022)

Epigenetics of alcohol-related liver diseases.

JHEP reports : innovation in hepatology, 4(5):100466.

Alcohol-related liver disease (ARLD) is a primary cause of chronic liver disease in the United States. Despite advances in the diagnosis and management of ARLD, it remains a major public health problem associated with significant morbidity and mortality, emphasising the need to adopt novel approaches to the study of ARLD and its complications. Epigenetic changes are increasingly being recognised as contributing to the pathogenesis of multiple disease states. Harnessing the power of innovative technologies for the study of epigenetics (e.g., next-generation sequencing, DNA methylation assays, histone modification profiling and computational techniques like machine learning) has resulted in a seismic shift in our understanding of the pathophysiology of ARLD. Knowledge of these techniques and advances is of paramount importance for the practicing hepatologist and researchers alike. Accordingly, in this review article we will summarise the current knowledge about alcohol-induced epigenetic alterations in the context of ARLD, including but not limited to, DNA hyper/hypo methylation, histone modifications, changes in non-coding RNA, 3D chromatin architecture and enhancer-promoter interactions. Additionally, we will discuss the state-of-the-art techniques used in the study of ARLD (e.g. single-cell sequencing). We will also highlight the epigenetic regulation of chemokines and their proinflammatory role in the context of ARLD. Lastly, we will examine the clinical applications of epigenetics in the diagnosis and management of ARLD.

RevDate: 2022-07-16
CmpDate: 2022-04-26

Liu W, Zhong W, Chen J, et al (2022)

Understanding Regulatory Mechanisms of Brain Function and Disease through 3D Genome Organization.

Genes, 13(4):.

The human genome has a complex and dynamic three-dimensional (3D) organization, which plays a critical role for gene regulation and genome function. The importance of 3D genome organization in brain development and function has been well characterized in a region- and cell-type-specific fashion. Recent technological advances in chromosome conformation capture (3C)-based techniques, imaging approaches, and ligation-free methods, along with computational methods to analyze the data generated, have revealed 3D genome features at different scales in the brain that contribute to our understanding of genetic mechanisms underlying neuropsychiatric diseases and other brain-related traits. In this review, we discuss how these advances aid in the genetic dissection of brain-related traits.

RevDate: 2022-07-16
CmpDate: 2022-04-21

Aljahani A, Hua P, Karpinska MA, et al (2022)

Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF.

Nature communications, 13(1):2139.

Enhancers and promoters predominantly interact within large-scale topologically associating domains (TADs), which are formed by loop extrusion mediated by cohesin and CTCF. However, it is unclear whether complex chromatin structures exist at sub-kilobase-scale and to what extent fine-scale regulatory interactions depend on loop extrusion. To address these questions, we present an MNase-based chromosome conformation capture (3C) approach, which has enabled us to generate the most detailed local interaction data to date (20 bp resolution) and precisely investigate the effects of cohesin and CTCF depletion on chromatin architecture. Our data reveal that cis-regulatory elements have distinct internal nano-scale structures, within which local insulation is dependent on CTCF, but which are independent of cohesin. In contrast, we find that depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Together, our data show that loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression.

RevDate: 2022-08-01
CmpDate: 2022-05-02

Gabriele M, Brandão HB, Grosse-Holz S, et al (2022)

Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging.

Science (New York, N.Y.), 376(6592):496-501.

Animal genomes are folded into loops and topologically associating domains (TADs) by CTCF and loop-extruding cohesins, but the live dynamics of loop formation and stability remain unknown. Here, we directly visualized chromatin looping at the Fbn2 TAD in mouse embryonic stem cells using super-resolution live-cell imaging and quantified looping dynamics by Bayesian inference. Unexpectedly, the Fbn2 loop was both rare and dynamic, with a looped fraction of approximately 3 to 6.5% and a median loop lifetime of approximately 10 to 30 minutes. Our results establish that the Fbn2 TAD is highly dynamic, and about 92% of the time, cohesin-extruded loops exist within the TAD without bridging both CTCF boundaries. This suggests that single CTCF boundaries, rather than the fully CTCF-CTCF looped state, may be the primary regulators of functional interactions.

RevDate: 2022-09-23
CmpDate: 2022-04-22

Zuin J, Roth G, Zhan Y, et al (2022)

Nonlinear control of transcription through enhancer-promoter interactions.

Nature, 604(7906):571-577.

Chromosome structure in mammals is thought to regulate transcription by modulating three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated loops and topologically associating domains (TADs)1-4. However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. Here, to address this question, we use an assay to position an enhancer at large numbers of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity. A quantitative analysis of hundreds of cell lines reveals that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a nonlinear relationship. Mathematical modelling suggests that nonlinearity might arise from transient enhancer-promoter interactions being translated into slower promoter bursting dynamics in individual cells, therefore uncoupling the temporal dynamics of interactions from those of transcription. This uncovers a potential mechanism of how distal enhancers act from large genomic distances, and of how topologically associating domain boundaries block distal enhancers. Finally, we show that enhancer strength also determines absolute transcription levels as well as the sensitivity of a promoter to CTCF-mediated transcriptional insulation. Our measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.

RevDate: 2022-05-06
CmpDate: 2022-04-14

Sefer E (2022)

A comparison of topologically associating domain callers over mammals at high resolution.

BMC bioinformatics, 23(1):127.

BACKGROUND: Topologically associating domains (TADs) are locally highly-interacting genome regions, which also play a critical role in regulating gene expression in the cell. TADs have been first identified while investigating the 3D genome structure over High-throughput Chromosome Conformation Capture (Hi-C) interaction dataset. Substantial degree of efforts have been devoted to develop techniques for inferring TADs from Hi-C interaction dataset. Many TAD-calling methods have been developed which differ in their criteria and assumptions in TAD inference. Correspondingly, TADs inferred via these callers vary in terms of both similarities and biological features they are enriched in.

RESULT: We have carried out a systematic comparison of 27 TAD-calling methods over mammals. We use Micro-C, a recent high-resolution variant of Hi-C, to compare TADs at a very high resolution, and classify the methods into 3 categories: feature-based methods, Clustering methods, Graph-partitioning methods. We have evaluated TAD boundaries, gaps between adjacent TADs, and quality of TADs across various criteria. We also found particularly CTCF and Cohesin proteins to be effective in formation of TADs with corner dots. We have also assessed the callers performance on simulated datasets since a gold standard for TADs is missing. TAD sizes and numbers change remarkably between TAD callers and dataset resolutions, indicating that TADs are hierarchically-organized domains, instead of disjoint regions. A core subset of feature-based TAD callers regularly perform the best while inferring reproducible domains, which are also enriched for TAD related biological properties.

CONCLUSION: We have analyzed the fundamental principles of TAD-calling methods, and identified the existing situation in TAD inference across high resolution Micro-C interaction datasets over mammals. We come up with a systematic, comprehensive, and concise framework to evaluate the TAD-calling methods performance across Micro-C datasets. Our research will be useful in selecting appropriate methods for TAD inference and evaluation based on available data, experimental design, and biological question of interest. We also introduce our analysis as a benchmarking tool with publicly available source code.

RevDate: 2022-07-16
CmpDate: 2022-04-14

Xie L, Dong P, Qi Y, et al (2022)

BRD2 compartmentalizes the accessible genome.

Nature genetics, 54(4):481-491.

Mammalian chromosomes are organized into megabase-sized compartments that are further subdivided into topologically associating domains (TADs). While the formation of TADs is dependent on cohesin, the mechanism behind compartmentalization remains enigmatic. Here, we show that the bromodomain and extraterminal (BET) family scaffold protein BRD2 promotes spatial mixing and compartmentalization of active chromatin after cohesin loss. This activity is independent of transcription but requires BRD2 to recognize acetylated targets through its double bromodomain and interact with binding partners with its low-complexity domain. Notably, genome compartmentalization mediated by BRD2 is antagonized on the one hand by cohesin and on the other hand by the BET homolog protein BRD4, both of which inhibit BRD2 binding to chromatin. Polymer simulation of our data supports a BRD2-cohesin interplay model of nuclear topology, in which genome compartmentalization results from a competition between loop extrusion and chromatin-state-specific affinity interactions.

RevDate: 2022-07-16
CmpDate: 2022-06-02

Feng Y, Cai L, Hong W, et al (2022)

Rewiring of 3D Chromatin Topology Orchestrates Transcriptional Reprogramming and the Development of Human Dilated Cardiomyopathy.

Circulation, 145(22):1663-1683.

BACKGROUND: Transcriptional reconfiguration is central to heart failure, the most common cause of which is dilated cardiomyopathy (DCM). The effect of 3-dimensional chromatin topology on transcriptional dysregulation and pathogenesis in human DCM remains elusive.

METHODS: We generated a compendium of 3-dimensional epigenome and transcriptome maps from 101 biobanked human DCM and nonfailing heart tissues through highly integrative chromatin immunoprecipitation (H3K27ac [acetylation of lysine 27 on histone H3]), in situ high-throughput chromosome conformation capture, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin using sequencing, and RNA sequencing. We used human induced pluripotent stem cell-derived cardiomyocytes and mouse models to interrogate the key transcription factor implicated in 3-dimensional chromatin organization and transcriptional regulation in DCM pathogenesis.

RESULTS: We discovered that the active regulatory elements (H3K27ac peaks) and their connectome (H3K27ac loops) were extensively reprogrammed in DCM hearts and contributed to transcriptional dysregulation implicated in DCM development. For example, we identified that nontranscribing NPPA-AS1 (natriuretic peptide A antisense RNA 1) promoter functions as an enhancer and physically interacts with the NPPA (natriuretic peptide A) and NPPB (natriuretic peptide B) promoters, leading to the cotranscription of NPPA and NPPB in DCM hearts. We revealed that DCM-enriched H3K27ac loops largely resided in conserved high-order chromatin architectures (compartments, topologically associating domains) and their anchors unexpectedly had equivalent chromatin accessibility. We discovered that the DCM-enriched H3K27ac loop anchors exhibited a strong enrichment for HAND1 (heart and neural crest derivatives expressed 1), a key transcription factor involved in early cardiogenesis. In line with this, its protein expression was upregulated in human DCM and mouse failing hearts. To further validate whether HAND1 is a causal driver for the reprogramming of enhancer-promoter connectome in DCM hearts, we performed comprehensive 3-dimensional epigenome mappings in human induced pluripotent stem cell-derived cardiomyocytes. We found that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced a distinct gain of enhancer-promoter connectivity and correspondingly increased the expression of their connected genes implicated in DCM pathogenesis, thus recapitulating the transcriptional signature in human DCM hearts. Electrophysiology analysis demonstrated that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced abnormal calcium handling. Furthermore, cardiomyocyte-specific overexpression of Hand1 in the mouse hearts resulted in dilated cardiac remodeling with impaired contractility/Ca2+ handling in cardiomyocytes, increased ratio of heart weight/body weight, and compromised cardiac function, which were ascribed to recapitulation of transcriptional reprogramming in DCM.

CONCLUSIONS: This study provided novel chromatin topology insights into DCM pathogenesis and illustrated a model whereby a single transcription factor (HAND1) reprograms the genome-wide enhancer-promoter connectome to drive DCM pathogenesis.

RevDate: 2022-09-28
CmpDate: 2022-04-08

Chu Z, Gu L, Hu Y, et al (2022)

STAG2 regulates interferon signaling in melanoma via enhancer loop reprogramming.

Nature communications, 13(1):1859.

The cohesin complex participates in the organization of 3D genome through generating and maintaining DNA loops. Stromal antigen 2 (STAG2), a core subunit of the cohesin complex, is frequently mutated in various cancers. However, the impact of STAG2 inactivation on 3D genome organization, especially the long-range enhancer-promoter contacts and subsequent gene expression control in cancer, remains poorly understood. Here we show that depletion of STAG2 in melanoma cells leads to expansion of topologically associating domains (TADs) and enhances the formation of acetylated histone H3 lysine 27 (H3K27ac)-associated DNA loops at sites where binding of STAG2 is switched to its paralog STAG1. We further identify Interferon Regulatory Factor 9 (IRF9) as a major direct target of STAG2 in melanoma cells via integrated RNA-seq, STAG2 ChIP-seq and H3K27ac HiChIP analyses. We demonstrate that loss of STAG2 activates IRF9 through modulating the 3D genome organization, which in turn enhances type I interferon signaling and increases the expression of PD-L1. Our findings not only establish a previously unknown role of the STAG2 to STAG1 switch in 3D genome organization, but also reveal a functional link between STAG2 and interferon signaling in cancer cells, which may enhance the immune evasion potential in STAG2-mutant cancer.

RevDate: 2022-07-16
CmpDate: 2022-04-25

Serna-Pujol N, Salinas-Pena M, Mugianesi F, et al (2022)

Coordinated changes in gene expression, H1 variant distribution and genome 3D conformation in response to H1 depletion.

Nucleic acids research, 50(7):3892-3910.

Up to seven members of the histone H1 family may contribute to chromatin compaction and its regulation in human somatic cells. In breast cancer cells, knock-down of multiple H1 variants deregulates many genes, promotes the appearance of genome-wide accessibility sites and triggers an interferon response via activation of heterochromatic repeats. However, how these changes in the expression profile relate to the re-distribution of H1 variants as well as to genome conformational changes have not been yet studied. Here, we combined ChIP-seq of five endogenous H1 variants with Chromosome Conformation Capture analysis in wild-type and H1.2/H1.4 knock-down T47D cells. The results indicate that H1 variants coexist in the genome in two large groups depending on the local GC content and that their distribution is robust with respect to H1 depletion. Despite the small changes in H1 variants distribution, knock-down of H1 translated into more isolated but de-compacted chromatin structures at the scale of topologically associating domains (TADs). Such changes in TAD structure correlated with a coordinated gene expression response of their resident genes. This is the first report describing simultaneous profiling of five endogenous H1 variants and giving functional evidence of genome topology alterations upon H1 depletion in human cancer cells.

RevDate: 2022-05-18
CmpDate: 2022-05-12

Brown JM, De Ornellas S, Parisi E, et al (2022)

RASER-FISH: non-denaturing fluorescence in situ hybridization for preservation of three-dimensional interphase chromatin structure.

Nature protocols, 17(5):1306-1331.

DNA fluorescence in situ hybridization (FISH) has been a central technique in advancing our understanding of how chromatin is organized within the nucleus. With the increasing resolution offered by super-resolution microscopy, the optimal maintenance of chromatin structure within the nucleus is essential for accuracy in measurements and interpretation of data. However, standard 3D-FISH requires potentially destructive heat denaturation in the presence of chaotropic agents such as formamide to allow access to the DNA strands for labeled FISH probes. To avoid the need to heat-denature, we developed Resolution After Single-strand Exonuclease Resection (RASER)-FISH, which uses exonuclease digestion to generate single-stranded target DNA for efficient probe binding over a 2 d process. Furthermore, RASER-FISH is easily combined with immunostaining of nuclear proteins or the detection of RNAs. Here, we provide detailed procedures for RASER-FISH in mammalian cultured cells to detect single loci, chromatin tracks and topologically associating domains with conventional and super-resolution 3D structured illumination microscopy. Moreover, we provide a validation and characterization of our method, demonstrating excellent preservation of chromatin structure and nuclear integrity, together with improved hybridization efficiency, compared with classic 3D-FISH protocols.

RevDate: 2022-07-16
CmpDate: 2022-04-12

Chathoth KT, Mikheeva LA, Crevel G, et al (2022)

The role of insulators and transcription in 3D chromatin organization of flies.

Genome research, 32(4):682-698.

The DNA in many organisms, including humans, is shown to be organized in topologically associating domains (TADs). In Drosophila, several architectural proteins are enriched at TAD borders, but it is still unclear whether these proteins play a functional role in the formation and maintenance of TADs. Here, we show that depletion of BEAF-32, Cp190, Chro, and Dref leads to changes in TAD organization and chromatin loops. Their depletion predominantly affects TAD borders located in regions moderately enriched in repressive modifications and depleted in active ones, whereas TAD borders located in euchromatin are resilient to these knockdowns. Furthermore, transcriptomic data has revealed hundreds of genes displaying differential expression in these knockdowns and showed that the majority of differentially expressed genes are located within reorganized TADs. Our work identifies a novel and functional role for architectural proteins at TAD borders in Drosophila and a link between TAD reorganization and subsequent changes in gene expression.

RevDate: 2022-09-28

Yin S, NandyMazumdar M, Paranjapye A, et al (2022)

Cross-talk between enhancers, structural elements and activating transcription factors maintains the 3D architecture and expression of the CFTR gene.

Genomics, 114(3):110350 [Epub ahead of print].

Robust protocols to examine 3D chromatin structure have greatly advanced knowledge of gene regulatory mechanisms. Here we focus on the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which provides a paradigm for validating models of gene regulation built upon genome-wide analysis. We examine the mechanisms by which multiple cis-regulatory elements (CREs) at the CFTR gene coordinate its expression in intestinal epithelial cells. Using CRISPR/Cas9 to remove CREs, individually and in tandem, followed by assays of gene expression and higher-order chromatin structure (4C-seq), we reveal the cross-talk and dependency of two cell-specific intronic enhancers. The results suggest a mechanism whereby the locus responds when CREs are lost, which may involve activating transcription factors such as FOXA2. Also, by removing the 5' topologically-associating domain (TAD) boundary, we illustrate its impact on CFTR gene expression and architecture. These data suggest a multi-layered regulatory hierarchy that is highly sensitive to perturbations.

RevDate: 2022-07-16
CmpDate: 2022-05-10

Paranjapye A, NandyMazumdar M, A Harris (2022)

Krüppel-Like Factor 5 Regulates CFTR Expression Through Repression by Maintaining Chromatin Architecture Coupled with Direct Enhancer Activation.

Journal of molecular biology, 434(10):167561.

Single cell RNA-sequencing has accurately identified cell types within the human airway that express the Cystic Fibrosis Transmembrane Conductance regulator (CFTR) gene. Low abundance CFTR transcripts are seen in many secretory cells, while high levels are restricted to rare pulmonary ionocytes. Here we focus on the mechanisms coordinating basal CFTR expression in the secretory compartment. Cell-selective regulation of CFTR is achieved within its invariant topologically associating domain by the recruitment of cis-regulatory elements (CREs). CRE activity is coordinated by cell-type-selective transcription factors. One such factor, Krüppel-Like Factor 5 (KLF5), profoundly represses CFTR transcript and protein in primary human airway epithelial cells and airway cell lines. Here we reveal the mechanism of action of KLF5 upon the CFTR gene. We find that depletion or ablation of KLF5 from airway epithelial cells changes higher order chromatin structure at the CFTR locus. Critical looping interactions that are required for normal gene expression are altered, the H3K27ac active chromatin mark is redistributed, and CTCF occupancy is modified. However, mutation of a single KLF5 binding site within a pivotal airway cell CRE abolishes CFTR expression. Hence, KLF5 has both direct activating and indirect repressive effects, which together coordinate CFTR expression in the airway.

RevDate: 2022-09-25
CmpDate: 2022-04-08

Girdhar K, Hoffman GE, Bendl J, et al (2022)

Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains.

Nature neuroscience, 25(4):474-483.

Chromosomal organization, scaling from the 147-base pair (bp) nucleosome to megabase-ranging domains encompassing multiple transcriptional units, including heritability loci for psychiatric traits, remains largely unexplored in the human brain. In this study, we constructed promoter- and enhancer-enriched nucleosomal histone modification landscapes for adult prefrontal cortex from H3-lysine 27 acetylation and H3-lysine 4 trimethylation profiles, generated from 388 controls and 351 individuals diagnosed with schizophrenia (SCZ) or bipolar disorder (BD) (n = 739). We mapped thousands of cis-regulatory domains (CRDs), revealing fine-grained, 104-106-bp chromosomal organization, firmly integrated into Hi-C topologically associating domain stratification by open/repressive chromosomal environments and nuclear topography. Large clusters of hyper-acetylated CRDs were enriched for SCZ heritability, with prominent representation of regulatory sequences governing fetal development and glutamatergic neuron signaling. Therefore, SCZ and BD brains show coordinated dysregulation of risk-associated regulatory sequences assembled into kilobase- to megabase-scaling chromosomal domains.

RevDate: 2022-05-19
CmpDate: 2022-04-27

Zhao C, Liu T, Z Wang (2022)

Functional Similarities of Protein-Coding Genes in Topologically Associating Domains and Spatially-Proximate Genomic Regions.

Genes, 13(3):.

Topologically associating domains (TADs) are the structural and functional units of the genome. However, the functions of protein-coding genes existing in the same or different TADs have not been fully investigated. We compared the functional similarities of protein-coding genes existing in the same TAD and between different TADs, and also in the same gap region (the region between two consecutive TADs) and between different gap regions. We found that the protein-coding genes from the same TAD or gap region are more likely to share similar protein functions, and this trend is more obvious with TADs than the gap regions. We further created two types of gene-gene spatial interaction networks: the first type is based on Hi-C contacts, whereas the second type is based on both Hi-C contacts and the relationship of being in the same TAD. A graph auto-encoder was applied to learn the network topology, reconstruct the two types of networks, and predict the functions of the central genes/nodes based on the functions of the neighboring genes/nodes. It was found that better performance was achieved with the second type of network. Furthermore, we detected long-range spatially-interactive regions based on Hi-C contacts and calculated the functional similarities of the gene pairs from these regions.

RevDate: 2022-05-02
CmpDate: 2022-05-02

Xia Y, Liu X, Mu W, et al (2022)

Capturing 3D Chromatin Maps of Human Primary Monocytes: Insights From High-Resolution Hi-C.

Frontiers in immunology, 13:837336.

Although the variation in chromatin architecture during adaptive immune responses has been thoroughly investigated, the 3D landscape of innate immunity is still unknown. Herein, chromatin regulation and heterogeneity among human primary monocytes were investigated. Peripheral blood was collected from two healthy persons and two patients with systemic lupus erythematosus (SLE), and CD14+ monocytes were selected to perform Hi-C, RNA-seq, ATAC-seq and ChIP-seq analyses. Raw data from the THP1 cell line Hi-C library were used for comparison. For each sample, we constructed three Hi-C libraries and obtained approximately 3 billion paired-end reads in total. Resolution analysis showed that more than 80% of bins presented depths greater than 1000 at a 5 kb resolution. The constructed high-resolution chromatin interaction maps presented similar landscapes in the four individuals, which showed significant divergence from the THP1 cell line chromatin structure. The variability in chromatin interactions around HLA-D genes in the HLA complex region was notable within individuals. We further found that the CD16-encoding gene (FCGR3A) is located at a variable topologically associating domain (TAD) boundary and that chromatin loop dynamics might modulate CD16 expression. Our results indicate both the stability and variability of high-resolution chromatin interaction maps among human primary monocytes. This work sheds light on the potential mechanisms by which the complex interplay of epigenetics and spatial 3D architecture regulates chromatin in innate immunity.

RevDate: 2022-05-04
CmpDate: 2022-05-04

Sanders JT, Golloshi R, Das P, et al (2022)

Loops, topologically associating domains, compartments, and territories are elastic and robust to dramatic nuclear volume swelling.

Scientific reports, 12(1):4721.

Layers of genome organization are becoming increasingly better characterized, but less is known about how these structures respond to perturbation or shape changes. Low-salt swelling of isolated chromatin fibers or nuclei has been used for decades to investigate the structural properties of chromatin. But, visible changes in chromatin appearance have not been linked to known building blocks of genome structure or features along the genome sequence. We combine low-salt swelling of isolated nuclei with genome-wide chromosome conformation capture (Hi-C) and imaging approaches to probe the effects of chromatin extension genome-wide. Photoconverted patterns on nuclei during expansion and contraction indicate that global genome structure is preserved after dramatic nuclear volume swelling, suggesting a highly elastic chromosome topology. Hi-C experiments before, during, and after nuclear swelling show changes in average contact probabilities at short length scales, reflecting the extension of the local chromatin fiber. But, surprisingly, during this large increase in nuclear volume, there is a striking maintenance of loops, TADs, active and inactive compartments, and chromosome territories. Subtle differences after expansion are observed, suggesting that the local chromatin state, protein interactions, and location in the nucleus can affect how strongly a given structure is maintained under stress. From these observations, we propose that genome topology is robust to extension of the chromatin fiber and isotropic shape change, and that this elasticity may be beneficial in physiological circumstances of changes in nuclear size and volume.

RevDate: 2022-03-22

Zhang J, Liu P, He M, et al (2022)

Reorganization of 3D genome architecture across wild boar and Bama pig adipose tissues.

Journal of animal science and biotechnology, 13(1):32.

BACKGROUND: A growing body of evidence has revealed that the mammalian genome is organized into hierarchical layers that are closely correlated with and may even be causally linked with variations in gene expression. Recent studies have characterized chromatin organization in various porcine tissues and cell types and compared them among species and during the early development of pigs. However, how chromatin organization differs among pig breeds is poorly understood.

RESULTS: In this study, we investigated the 3D genome organization and performed transcriptome characterization of two adipose depots (upper layer of backfat [ULB] and greater omentum [GOM]) in wild boars and Bama pigs; the latter is a typical indigenous pig in China. We found that over 95% of the A/B compartments and topologically associating domains (TADs) are stable between wild boars and Bama pigs. In contrast, more than 70% of promoter-enhancer interactions (PEIs) are dynamic and widespread, involving over a thousand genes. Alterations in chromatin structure are associated with changes in the expression of genes that are involved in widespread biological functions such as basic cellular functions, endocrine function, energy metabolism and the immune response. Approximately 95% and 97% of the genes associated with reorganized A/B compartments and PEIs in the two pig breeds differed between GOM and ULB, respectively.

CONCLUSIONS: We reported 3D genome organization in adipose depots from different pig breeds. In a comparison of Bama pigs and wild boar, large-scale compartments and TADs were mostly conserved, while fine-scale PEIs were extensively reorganized. The chromatin architecture in these two pig breeds was reorganized in an adipose depot-specific manner. These results contribute to determining the regulatory mechanism of phenotypic differences between Bama pigs and wild boar.

RevDate: 2022-07-16

Hicks P, O Oluwadare (2022)

HiCARN: Resolution Enhancement of Hi-C Data Using Cascading Residual Networks.

Bioinformatics (Oxford, England) [Epub ahead of print].

MOTIVATION: High throughput chromosome conformation capture (Hi-C) contact matrices are used to predict three-dimensional (3D) chromatin structures in eukaryotic cells. High resolution Hi-C data are less available than low resolution Hi-C data due to sequencing costs,but provide greater insight into the intricate details of 3D chromatin structures such as enhancer-promoter interactions and sub-domains. To provide a cost-effective solution to high resolution Hi-C data collection, deep learning models are used to predict high resolution Hi-C matrices from existing low-resolution matrices across multiple cell types.

RESULTS: Here, we present two Cascading Residual Networks called HiCARN-1 and HiCARN-2, a convolutional neural network and a generative adversarial network, that use a novel framework of cascading connections throughout the network for Hi-C contact matrix prediction from low-resolution data. Shown by image evaluation and Hi-C reproducibility metrics, both HiCARN models, overall, outperform state-of-the-art Hi-C resolution enhancement algorithms in predictive accuracy for both human and mouse 1/16, 1/32, 1/64, and 1/100 downsampled high-resolution Hi-C data. Also, validation by extracting topologically associating domains (TADs), chromosome 3D structure, and chromatin loop predictions from the enhanced data shows that HiCARN can proficiently reconstruct biologically significant regions.

AVAILABILITY: HiCARN can be accessed and utilized as an open-sourced software at: and is also available as a containerized application that can be run on any platform.

SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

RevDate: 2022-04-01

Galan S, Serra F, MA Marti-Renom (2022)

Identification of chromatin loops from Hi-C interaction matrices by CTCF-CTCF topology classification.

NAR genomics and bioinformatics, 4(1):lqac021.

Genome-wide profiling of long-range interactions has revealed that the CCCTC-Binding factor (CTCF) often anchors chromatin loops and is enriched at boundaries of the so-called Topologically Associating Domains, which suggests that CTCF is essential in the 3D organization of chromatin. However, the systematic topological classification of pairwise CTCF-CTCF interactions has not been yet explored. Here, we developed a computational pipeline able to classify all CTCF-CTCF pairs according to their chromatin interactions from Hi-C experiments. The interaction profiles of all CTCF-CTCF pairs were further structurally clustered using self-organizing feature maps and their functionality characterized by their epigenetic states. The resulting clusters were then input to a convolutional neural network aiming at the de novo detecting chromatin loops from Hi-C interaction matrices. Our new method, called LOOPbit, is able to automatically detect significant interactions with a higher proportion of enhancer-promoter loops compared to other callers. Our highly specific loop caller adds a new layer of detail to the link between chromatin structure and function.

RevDate: 2022-03-11
CmpDate: 2022-03-04

Mourad R (2022)

TADreg: a versatile regression framework for TAD identification, differential analysis and rearranged 3D genome prediction.

BMC bioinformatics, 23(1):82.

BACKGROUND/AIM: In higher eukaryotes, the three-dimensional (3D) organization of the genome is intimately related to numerous key biological functions including gene expression, DNA repair and DNA replication regulations. Alteration of 3D organization, in particular topologically associating domains (TADs), is detrimental to the organism and can give rise to a broad range of diseases such as cancers.

METHODS: Here, we propose a versatile regression framework which not only identifies TADs in a fast and accurate manner, but also detects differential TAD borders across conditions for which few methods exist, and predicts 3D genome reorganization after chromosomal rearrangement. Moreover, the framework is biologically meaningful, has an intuitive interpretation and is easy to visualize.

RESULT AND CONCLUSION: The novel regression ranks among top TAD callers. Moreover, it identifies new features of the genome we called TAD facilitators, and that are enriched with specific transcription factors. It also unveils the importance of cell-type specific transcription factors in establishing novel TAD borders during neuronal differentiation. Lastly, it compares favorably with the state-of-the-art method for predicting rearranged 3D genome.

RevDate: 2022-10-13
CmpDate: 2022-05-27

Pommier Y, Nussenzweig A, Takeda S, et al (2022)

Human topoisomerases and their roles in genome stability and organization.

Nature reviews. Molecular cell biology, 23(6):407-427.

Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA-protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer.

RevDate: 2022-10-09
CmpDate: 2022-04-12

Franke M, Daly AF, Palmeira L, et al (2022)

Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism.

American journal of human genetics, 109(4):553-570.

X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.

RevDate: 2022-04-11
CmpDate: 2022-04-11

Wu H, Zhang P, Ai Z, et al (2022)

StackTADB: a stacking-based ensemble learning model for predicting the boundaries of topologically associating domains (TADs) accurately in fruit flies.

Briefings in bioinformatics, 23(2):.

Chromosome is composed of many distinct chromatin domains, referred to variably as topological domains or topologically associating domains (TADs). The domains are stable across different cell types and highly conserved across species, thus these chromatin domains have been considered as the basic units of chromosome folding and regarded as an important secondary structure in chromosome organization. However, the identification of TAD boundaries is still a great challenge due to the high cost and low resolution of Hi-C data or experiments. In this study, we propose a novel ensemble learning framework, termed as StackTADB, for predicting the boundaries of TADs. StackTADB integrates four base classifiers including Random Forest, Logistic Regression, K-NearestNeighbor and Support Vector Machine. From the analysis of a series of examinations on the data set in the previous study, it is concluded that StackTADB has optimal performance in six metrics, AUC, Accuracy, MCC, Precision, Recall and F1 score, and it is superior to the existing methods. In addition, the comparison of the performance of multiple features shows that Kmers-based features play an essential role in predicting TADs boundaries of fruit flies, and we also apply the SHapley Additive exPlanations (SHAP) framework to interpret the predictions of StackTADB to identify the reason why Kmers-based features are vital. The experimental results show that the subsequences matching the BEAF-32 motif play a crucial role in predicting the boundaries of TADs. The source code is freely available at and the webserver of StackTADB is freely available at

RevDate: 2022-05-31
CmpDate: 2022-05-02

Osman N, Shawky AE, M Brylinski (2022)

Exploring the effects of genetic variation on gene regulation in cancer in the context of 3D genome structure.

BMC genomic data, 23(1):13.

BACKGROUND: Numerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging.

RESULTS: In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants.

CONCLUSIONS: Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression.

RevDate: 2022-05-04
CmpDate: 2022-04-15

Ilyin AA, Kononkova AD, Golova AV, et al (2022)

Comparison of genome architecture at two stages of male germline cell differentiation in Drosophila.

Nucleic acids research, 50(6):3203-3225.

Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis - in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs). We found that initiation of SpC-specific transcription correlates with promoters' detachment from the NL and with local spatial insulation of adjacent regions. However, this insulation does not result in the partitioning of inactive TADs into sub-TADs. We also revealed an increased contact frequency between SpC-specific genes in SpCs implying their de novo gathering into transcription factories. In addition, we uncovered the specific X chromosome organization in the male germline. In SpG and SpCs, a single X chromosome is stronger associated with the NL than autosomes. Nevertheless, active chromatin regions in the X chromosome interact with each other more frequently than in autosomes. Moreover, despite the absence of dosage compensation complex in the male germline, randomly inserted SpG-specific reporter is expressed higher in the X chromosome than in autosomes, thus evidencing that non-canonical dosage compensation operates in SpG.

RevDate: 2022-07-25
CmpDate: 2022-02-25

Ortabozkoyun H, Huang PY, Cho H, et al (2022)

CRISPR and biochemical screens identify MAZ as a cofactor in CTCF-mediated insulation at Hox clusters.

Nature genetics, 54(2):202-212.

CCCTC-binding factor (CTCF) is critical to three-dimensional genome organization. Upon differentiation, CTCF insulates active and repressed genes within Hox gene clusters. We conducted a genome-wide CRISPR knockout (KO) screen to identify genes required for CTCF-boundary activity at the HoxA cluster, complemented by biochemical approaches. Among the candidates, we identified Myc-associated zinc-finger protein (MAZ) as a cofactor in CTCF insulation. MAZ colocalizes with CTCF at chromatin borders and, similar to CTCF, interacts with the cohesin subunit RAD21. MAZ KO disrupts gene expression and local contacts within topologically associating domains. Similar to CTCF motif deletions, MAZ motif deletions lead to derepression of posterior Hox genes immediately after CTCF boundaries upon differentiation, giving rise to homeotic transformations in mouse. Thus, MAZ is a factor contributing to appropriate insulation, gene expression and genomic architecture during development.

RevDate: 2022-02-16
CmpDate: 2022-02-14

Chang JM, Weng YF, Chang WT, et al (2022)

HiCmapTools: a tool to access HiC contact maps.

BMC bioinformatics, 23(1):64.

BACKGROUND: With the development of HiC technology, more and more HiC sequencing data have been produced. Although there are dozens of packages that can turn sequencing data into contact maps, there is no appropriate tool to query contact maps in order to extract biological information from HiC datasets.

RESULTS: We present HiCmapTools, a tool for biologists to efficiently calculate and analyze HiC maps. The complete program provides multi-query modes and analysis tools. We have validated its utility on two real biological questions: TAD loop and TAD intra-density.

CONCLUSIONS: HiCmapTools supports seven access options so that biologists can quantify contact frequency of the interest sites. The tool has been implemented in C++ and R and is freely available at and documented at .

RevDate: 2022-03-10
CmpDate: 2022-03-07

Owens DDG, Anselmi G, Oudelaar AM, et al (2022)

Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development.

Nature communications, 13(1):773.

The transcription factor RUNX1 is a critical regulator of developmental hematopoiesis and is frequently disrupted in leukemia. Runx1 is a large, complex gene that is expressed from two alternative promoters under the spatiotemporal control of multiple hematopoietic enhancers. To dissect the dynamic regulation of Runx1 in hematopoietic development, we analyzed its three-dimensional chromatin conformation in mouse embryonic stem cell (ESC) differentiation cultures. Runx1 resides in a 1.1 Mb topologically associating domain (TAD) demarcated by convergent CTCF motifs. As ESCs differentiate to mesoderm, chromatin accessibility, Runx1 enhancer-promoter (E-P) interactions, and CTCF-CTCF interactions increase in the TAD, along with initiation of Runx1 expression from the P2 promoter. Differentiation to hematopoietic progenitor cells is associated with the formation of tissue-specific sub-TADs over Runx1, a shift in E-P interactions, P1 promoter demethylation, and robust expression from both Runx1 promoters. Deletion of promoter-proximal CTCF sites at the sub-TAD boundaries has no obvious effects on E-P interactions but leads to partial loss of domain structure, mildly affects gene expression, and delays hematopoietic development. Together, our analysis of gene regulation at a large multi-promoter developmental gene reveals that dynamic sub-TAD chromatin boundaries play a role in establishing TAD structure and coordinated gene expression.

RevDate: 2022-04-05
CmpDate: 2022-04-04

Pei L, Huang X, Liu Z, et al (2022)

Dynamic 3D genome architecture of cotton fiber reveals subgenome-coordinated chromatin topology for 4-staged single-cell differentiation.

Genome biology, 23(1):45.

BACKGROUND: Despite remarkable advances in our knowledge of epigenetically mediated transcriptional programming of cell differentiation in plants, little is known about chromatin topology and its functional implications in this process.

RESULTS: To interrogate its significance, we establish the dynamic three-dimensional (3D) genome architecture of the allotetraploid cotton fiber, representing a typical single cell undergoing staged development in plants. We show that the subgenome-relayed switching of the chromatin compartment from active to inactive is coupled with the silencing of developmentally repressed genes, pinpointing subgenome-coordinated contribution to fiber development. We identify 10,571 topologically associating domain-like (TAD-like) structures, of which 25.6% are specifically organized in different stages and 75.23% are subject to partition or fusion between two subgenomes. Notably, dissolution of intricate TAD-like structure cliques showing long-range interactions represents a prominent characteristic at the later developmental stage. Dynamic chromatin loops are found to mediate the rewiring of gene regulatory networks that exhibit a significant difference between the two subgenomes, implicating expression bias of homologous genes.

CONCLUSIONS: This study sheds light on the spatial-temporal asymmetric chromatin structures of two subgenomes in the cotton fiber and offers a new insight into the regulatory orchestration of cell differentiation in plants.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )