MENU
The Electronic Scholarly Publishing Project: Providing access to classic scientific papers and other scholarly materials, since 1993. More About: ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT
Comparative Timelines
The ESP Timeline (one of the site's most popular features) has been completely updated to allow the user to select (using the timeline controls above each column) different topics for the left and right sides of the display.
Select:
New Left Column
New Left Column
Dates
Decade
New Right Column
New Right Column
(no entry for this year)
1880
Throughout the decade of 1880-1890, Walther Flemming, Eduard Strasburger, Edouard van Beneden, and others elucidate the essential facts of cell division and stressed the importance of the qualitative and quantitative equality of chromosome distribution to daughter cells.
Charles Darwin and his son Francis publish the results of their studies on plant responses to light, explaining that phototropism (bending toward the light) results from light reaching the top of a plant's shoot.
Pierre Curie discovers the piezoelectric effect: certain substances produce an electric current when they are physically distorted, and conversely they are physically distorted when an electric current is applied to them. This effect has many applications, including, in the 21st century, the construction of high-end tweeters in stereo systems.
(no entry for this year)
1881
Hermann Ludwig von Helmholtz shows that the electrical charges in atoms are divided into definite integral portions, suggesting the idea that there is a smallest unit of electricity.
(no entry for this year)
1882
Walther Flemming publishes accurate depictions of cell division (mitosis) in Zellsubstanz, Kern und Zelltheilung.
Eduard Strasburger coins the terms CYTOPLASM and NUCLEOPLASM.
W. Flemming discovers lampbrush chromosomes and coins the term MITOSIS.
Karl Alfred von Zittel describes an exceptionally well-preserved pterosaur wing showing flight membranes in detail.
Charles Darwin publishes his final letter to Nature, on the dispersal of freshwater bivalves. His obituary appears the same month. In this paper, Darwin acknowledges the assistance of W. D. Crick or Northampton. Later, Crick's grandson — Francis Crick — will be one of the co- discoverers of the structure of DNA.
John William Strutt, Lord Rayleigh, discovers that the ratio of the atomic mass of oxygen to that of hydrogen is not 16 exactly, as had been assumed, but 15.882.
(no entry for this year)
1883
August Weismann points out the distinction in animals between the somatic cell line and the germ cells, stressing that only changes in germ cells are transmitted to further generations.
Edouard van Beneden announced the principles of genetic continuity of chromosomes and reported the occurrence of chromosome reduction at germ cell formation. The sperm and egg are haploid and fertilization restores the diploid chromosome number.
Wilhelm Roux offers a possible explanation for the function of mitosis.
William Keith Brooks, a professor at The Johns Hopkins University, publishes The Law of Heredity: A Study of the Cause of Variation and the Origin of Living Organisms. Although this speculative work did not significantly advance the understanding of heredity, brooks' thinking is important because during his career he provided instruction to and supervised the early research of Thomas H. Morgan, Edmund Beecher Wilson, and William Bateson — ultimately some of the most important contributors to the new science of genetics.
Pierre Émile Duclaux introduces the custom of designating an enzyme by the by the name of the substrate on which its action was first reported and adding the suffix -ase.
Geologist James Hall names Cryptozoon, based on cabbagelike rocks up to meter across. Although Hall's biologic interpretation of these structures will be heavily criticized, it will ultimately prove correct.
(no entry for this year)
1884
During 1884-88, identification of the cell nucleus as the basis for inheritance was independently reported by Oscar Hertwig, Eduard Strasburger, Albrecht von Kölliker, and August Weismann.
Gregor Mendel dies on January 6th, without ever knowing that his work on peas would lead to the transformation of biological research.
Walther Flemming, Eduard Strasburger and Edouard van Beneden demonstrate that chromosome doubling occurs by a process of longitudinal splitting. Strasburger describes and names the PROPHASE, METAPHASE, and ANAPHASEstages of chromosomal division.
(no entry for this year)
1885
August Weismann formulates the germ-plasm theory which held that the germ plasm was separate from the somatoplasm and was continuous from generation to generation.
Carl Rabl theorized the individuality of chromosomes in all stages of the cell cycle.
Walther Flemming observed sister chromatids passing to opposite poles of the cell during mitosis.
Johann Jakob Balmer discovers the formula for the hydrogen spectrum that will later inspire Niels Bohr to develop his model of the atom.
(no entry for this year)
1886
Francis Galton devised a new useful statistical tool, the correlation table.
Hugo de Vries (Holland) discovers aberrant evening primrose plants at Hilversum, Holland. Experiments with these extending over 15 years formed the basis for his mutation theory of evolution.
A. Ficatier publishes an account of the discovery of a trilobite perforated with two holes (perhaps to hang on a thread) at a Magdalenian- age site in France. The fossil lends the site its name of La Grotte du Trilobite.
John Bell Hatcher develops the "ant hill method of collecting minute fossils," collecting hundreds of tiny fossil teeth and jaws pushed to the surface by ants. He even carries shovelfuls of ants and sediment to other fossil localities in need of excavation by the arthropods.
William Crookes proposes that atomic weights measured by chemists are averages of the weights of different kinds of atoms of the same element (although it will not be until 1910 that Frederick Soddy identifies these different kinds of atoms as isotopes).
(no entry for this year)
1887
Worthington George Smith excavates a Bronze Age grave of a mother and child, surrounded by at least 200 fossil sea urchins, on Dunstable Downs. He nicknames the mother Maud.
August Weismann elaborated an all-encompassing theory of chromosome behavior during cell division and fertilization and predicted the occurrence of a reduction division (meiosis) in all sexual organisms.
Edouard van Beneden demonstrated chromosome reduction in gamete maturation, thereby confirming August Weismann's predictions.
Wilhelm Roux put forth the suggestion that the linearly arranged qualities of the chromosomes were equally transmitted to both daughter cells at meiosis.
Harry Govier Seeley determines that dinosaurs consist of "lizard- hipped" (saurischian) and "bird-hipped" (ornithischian) branches.
Albert Michelson and Edward Morley measure the velocity of light in two directions, attempting to detect the proper motion of Earth through the ether (a hypothesized fluid that was assumed to fill all space, providing a medium for the transport of electromagnetic waves). The Michelson Morley experiment reveals no evidence of motion.
Ernst Mach notes that airflow becomes disturbed at the speed of sound.
(no entry for this year)
1888
German anatomist W. von Waldeyer names chromosomes.
Heinrich Wilhelm Gottfried von Waldeyer names the CHROMOSOME.
Theodor Boveri verifies August Weismann's predictions of chromosome reduction by direct observation in Ascaris.
Heinrich Rudolf Hertz produces and detects radio waves for the first time. Radio waves will be called Hertzian waves until renamed by Marconi, who calls them radiotelegraphy waves.
(no entry for this year)
1889
Francis Galton publishes Natural Inheritance. In it he describes the quantitative measurement of metric traits in populations. He thus founds biometry and the statistical study of variation. Ultimately, he formulates the Law of Ancestral Inheritance, a statistical description of the relative contributions to heredity made by one's ancestors.
George Francis Fitzgerald formulates the principle that objects shrink slightly in the direction they are traveling, now known as the Fitzgerald-Lorenz contraction, since Hendrik Antoon Lorentz reaches the same conclusion a few years later.
ESP Quick Facts
ESP Origins
In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.
ESP Support
In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.
ESP Rationale
Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.
ESP Goal
In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.
ESP Usage
Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.
ESP Content
When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.
ESP Help
Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.
ESP Plans
With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.
ESP Picks from Around the Web (updated 06 MAR 2017 )
Old Science
Weird Science
Treating Disease with Fecal Transplantation
Fossils of miniature humans (hobbits) discovered in Indonesia
Dinosaur tail, complete with feathers, found preserved in amber.
Astronomy
Mysterious fast radio burst (FRB) detected in the distant universe.