Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: CRISPR-Cas

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 28 May 2022 at 01:39 Created: 


Clustered regularly interspaced short palindromic repeats (CRISPR, pronounced crisper) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to foreign DNA (e.g a virus or plasmid). The CRISPR/Cas system is a prokaryotic immune system that confers resistance to foreign genetic elements such as those present within plasmids and phages, and provides a form of acquired immunity. CRISPR associated proteins (Cas) use the CRISPR spacers to recognize and cut these exogenous genetic elements in a manner analogous to RNA interference in eukaryotic organisms. CRISPRs are found in approximately 40% of sequenced bacterial genomes and 90% of sequenced archaea. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added. The Cas9-gRNA complex corresponds with the CAS III crRNA complex in the above diagram. CRISPR/Cas genome editing techniques have many potential applications, including altering the germline of humans, animals, and food crops. The use of CRISPR Cas9-gRNA complex for genome editing was the AAAS's choice for breakthrough of the year in 2015.

Created with PubMed® Query: "CRISPR.CAS" OR "crispr/cas" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2022-05-27

Johnson MC, Hille LT, Kleinstiver BP, et al (2022)

Lack of Cas13a inhibition by anti-CRISPR proteins from Leptotrichia prophages.

Molecular cell pii:S1097-2765(22)00436-1 [Epub ahead of print].

CRISPR systems are prokaryotic adaptive immune systems that use RNA-guided Cas nucleases to recognize and destroy foreign genetic elements. To overcome CRISPR immunity, bacteriophages have evolved diverse families of anti-CRISPR proteins (Acrs). Recently, Lin et al. (2020) described the discovery and characterization of 7 Acr families (AcrVIA1-7) that inhibit type VI-A CRISPR systems. We detail several inconsistencies that question the results reported in the Lin et al. (2020) study. These include inaccurate bioinformatics analyses and bacterial strains that are impossible to construct. Published strains were provided by the authors, but MS2 bacteriophage plaque assays did not support the published results. We also independently tested the Acr sequences described in the original report, in E. coli and mammalian cells, but did not observe anti-Cas13a activity. Taken together, our data and analyses prompt us to question the claim that AcrVIA1-7 reported in Lin et al. are type VI anti-CRISPR proteins.

RevDate: 2022-05-27

Li K, Luo S, Guan S, et al (2022)

Tetrahedral framework nucleic acids linked CRISPR/Cas13a signal amplification system for rare tumor cell detection.

Talanta, 247:123531 pii:S0039-9140(22)00327-7 [Epub ahead of print].

The sensitive and accurate detection of rare tumor cells provides precise diagnosis and dynamic assessment information in various tumor spectrums. However, rare tumor cells assay is still a challenge due to the exceedingly rare presence in the blood. In this research, we develop a fluorescent approach for the identification of rare tumor cells based on a combination of immunosorbent capture and a three-step signal amplification strategy. First, rare tumor cells are captured by immunoadsorption on 96-well plates. Second, self-synthesized tetrahedral framework nucleic acids (tFNAs) spontaneously anchor into the lipid bilayer of rare tumor cells, resulting in a "one to more" amplification effect. Then, the double-stranded DNA (dsDNA) binds to the vertices of the tFNAs and generates a large amount of target RNA by T7 polymerase, which is the secondary signal amplification. Finally, the target RNA activates the collateral cleavage ability of CRISPR/Cas13a, and the reporter RNA is cleaved for third signal amplification. The detection limit of the proposed method is down to 1 cell mL-1. Furthermore, the tFNAs-Cas13a system is also shown to be capable of detecting rare tumor cells in spiked-in samples and clinical blood samples. This platform enables speedy detection of rare tumor cells with high sensitivity and good specificity, and shows great potential for tumor diagnosis.

RevDate: 2022-05-27

Akbari Kordkheyli V, Rashidi M, Shokri Y, et al (2022)

CRISPER/CAS System, a Novel Tool of Targeted Therapy of Drug-Resistant Lung Cancer.

Advanced pharmaceutical bulletin, 12(2):262-273.

Lung cancer (LC) is the most common cause of cancer-related death worldwide. Patients with LC are usually diagnosed at advanced phases. Five-year survival rate in LC patients is approximately 16%. Despite decades of research on LC treatments, clinical outcomes are still very poor, necessitating to develop novel technologies to manage the disease. Considering the role of genetic and epigenetic changes in oncogenes and tumor-suppressor genes in cancer progression, gene therapy provides a hot spot in cancer treatment research. Gene therapy offers less side effects compared to conventional methods such as chemotherapy. Unlike the traditional approaches of gene therapy that have temporary effects, using genetic modification tools can offer persistent cure. Over the past a few years, many studies have effectively used the CRISPR-Cas9 approach to modify gene expression in cells. This system is applied to induce site-specific mutagenesis and epigenetic modifications and regulate gene expression. In this review, we discuss recent applications of the CRISPR-Cas9 technology in treating LC.

RevDate: 2022-05-27
CmpDate: 2022-05-27

Del Amo VL, Juste SS, VM Gantz (2022)

A nickase Cas9 gene-drive system promotes super-Mendelian inheritance in Drosophila.

Cell reports, 39(8):110843.

CRISPR-based gene-drives have been proposed for managing insect populations, including disease-transmitting mosquitoes, due to their ability to bias their inheritance toward super-Mendelian rates (>50%). Current technologies use a Cas9 that introduces DNA double-strand breaks into the opposing wild-type allele to replace it with a copy of the gene-drive allele via DNA homology-directed repair. However, the use of different Cas9 versions is unexplored, and alternative approaches could increase the available toolkit for gene-drive designs. Here, we report a gene-drive that relies on Cas9 nickases that generate staggered paired nicks in DNA to propagate the engineered gene-drive cassette. We show that generating 5' overhangs in the system yields efficient allelic conversion. The nickase gene-drive arrangement produces large, stereotyped deletions that are advantageous to eliminate viable animals carrying small mutations when targeting essential genes. Our nickase approach should expand the repertoire for gene-drive arrangements aimed at applications in mosquitoes and beyond.

RevDate: 2022-05-26

Woodside WT, Vantsev N, Catchpole RJ, et al (2022)

Type III-A CRISPR-Cas systems as a versatile gene knockdown technology.

RNA (New York, N.Y.) pii:rna.079206.122 [Epub ahead of print].

CRISPR-Cas systems are functionally diverse prokaryotic anti-viral defense systems, which encompass six distinct types (I-VI) that each encode different effector Cas nucleases with distinct nucleic acid cleavage specificities. By harnessing the unique attributes of the various CRISPR-Cas systems, a range of innovative CRISPR-based DNA and RNA targeting tools and technologies have been developed. Here, we exploit the ability of type III-A CRISPR-Cas systems to carry out RNA-guided and sequence-specific target RNA cleavage for establishment of research tools for post-transcriptional control of gene expression. Type III-A systems from three bacterial species (L. lactis, S. epidermidis and S. thermophilus) were each expressed on a single plasmid in E. coli and the efficiency and specificity of gene knockdown was assessed by Northern blot and transcriptomic analysis. We show that engineered type III-A modules can be programmed using tailored CRISPR RNAs to efficiently knock down gene expression of both coding and non-coding RNAs in vivo. Moreover, simultaneous degradation of multiple cellular mRNA transcripts can be directed by utilizing a CRISPR array expressing corresponding gene-targeting crRNAs. Our results demonstrate the utility of distinct type III-A modules to serve as specific and effective gene knockdown platforms in heterologous cells. This transcriptome engineering technology has the potential to be further refined and exploited for key applications including gene discovery and gene pathway analyses in additional prokaryotic and perhaps eukaryotic cells and organisms.

RevDate: 2022-05-26

Omer-Javed A, Pedrazzani G, Albano L, et al (2022)

Mobilization-based chemotherapy-free engraftment of gene-edited human hematopoietic stem cells.

Cell pii:S0092-8674(22)00537-2 [Epub ahead of print].

Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) is proving successful to treat several genetic diseases. HSPCs are mobilized, harvested, genetically corrected ex vivo, and infused, after the administration of toxic myeloablative conditioning to deplete the bone marrow (BM) for the modified cells. We show that mobilizers create an opportunity for seamless engraftment of exogenous cells, which effectively outcompete those mobilized, to repopulate the depleted BM. The competitive advantage results from the rescue during ex vivo culture of a detrimental impact of mobilization on HSPCs and can be further enhanced by the transient overexpression of engraftment effectors exploiting optimized mRNA-based delivery. We show the therapeutic efficacy in a mouse model of hyper IgM syndrome and further developed it in human hematochimeric mice, showing its applicability and versatility when coupled with gene transfer and editing strategies. Overall, our findings provide a potentially valuable strategy paving the way to broader and safer use of HSPC-GT.

RevDate: 2022-05-26

González B, Vazquez-Vilar M, Sánchez-Vicente J, et al (2022)

Optimization of Vectors and Targeting Strategies Including GoldenBraid and Genome Editing Tools: GoldenBraid Assembly of Multiplex CRISPR /Cas12a Guide RNAs for Gene Editing in Nicotiana benthamiana.

Methods in molecular biology (Clifton, N.J.), 2480:193-214.

New breeding techniques, especially CRISPR/Cas, could facilitate the expansion and diversification of molecular farming crops by speeding up the introduction of new traits that improve their value as biofactories. One of the main advantages of CRISPR/Cas is its ability to target multiple loci simultaneously, a key feature known as multiplexing. This characteristic is especially relevant for polyploid species, as it is the case of Nicotiana benthamiana and other species of the same genus widely used in molecular farming. Here, we describe in detail the making of a multiplex DNA construct for genome editing in N. benthamiana using the GoldenBraid modular cloning platform. In this case, the procedure is adapted for the requirements of LbCas12a (Lachnospiraceae bacterium Cas12a), a nuclease whose cloning strategy differs from that of the more often used SpCas9 (Streptococcus pyogenes Cas9) enzyme. LbCas12a-mediated edition has several advantages, as its high editing efficiency, described for different plant species, and its T/A-rich PAM sequence, which expands the range of genomic loci that can be targeted by site-specific nucleases. The protocol also includes recommendations for the selection of protospacer sequences and indications for the analysis of editing results.

RevDate: 2022-05-26
CmpDate: 2022-05-26

Shang L, Song S, Zhang T, et al (2022)

[Propagation and phenotypic analysis of mutant rabbits with MSTN homozygous mutation].

Sheng wu gong cheng xue bao = Chinese journal of biotechnology, 38(5):1847-1858.

Myostatin gene (MSTN) encodes a negative regulator for controlling skeletal muscle growth in animals. In this study, MSTN-/- homozygous mutants with "double muscle" phenotypic traits and stable inheritance were bred on the basis of MSTN gene editing rabbits, with the aim to establish a method for breeding homozygous progeny from primary MSTN biallelic mutant rabbits. MSTN-/- primary mutant rabbits were generated by CRISPR/Cas9 gene editing technology. The primary mutant rabbits were mated with wild type rabbits to produce F1 rabbits, whereas the F2 generation homozygous rabbits were bred by half-sibling mating or backcrossing with F1 generation rabbits of the same mutant strain. Sequence analysis of PCR products and its T vector cloning were used to screen homozygous rabbits. The MSTN mutant rabbits with 14-19 week-old were weighed and the difference of gluteus maximus tissue sections and muscle fiber cross-sectional area were calculated and analyzed. Five primary rabbits with MSTN gene mutation were obtained, among which three were used for homozygous breeding. A total of 15 homozygous rabbits (5 types of mutants) were obtained (M2-a: 3; M2-b: 2; M3-a: 2; M7-a: 6; M7-b: 2). The body weight of MSTN-/- homozygous mutant rabbits aged 14-19 weeks were significantly higher than that of MSTN+/+ wild-type rabbits of the same age ((2 718±120) g vs. (1 969±53) g, P < 0.01, a 38.0% increase). The mean cross sections of gluteus maximus muscle fiber in homozygous mutant rabbits were not only significantly higher than that of wild type rabbits ((3 512.2±439.2) μm2 vs. (1 274.8±327.3) μm2, P < 0.01), but also significantly higher than that of MSTN+/- hemizygous rabbits ((3 512.2±439.2) μm2 vs. (2 610.4±604.4) μm2, P < 0.05). In summary, five homozygous mutants rabbits of MSTN-/- gene were successfully bred, which showed a clear lean phenotype. The results showed that the primary breeds were non-chimeric mutant rabbits, and the mutant traits could be inherited from the offspring. MSTN-/- homozygous mutant rabbits of F2 generation could be obtained from F1 hemizygous rabbits by inbreeding or backcrossing. The progenies of the primary biallelic mutant rabbits were separated into two single-allelic mutants, both of which showed a "double-muscle" phenotype. Thus, this study has made progress in breeding high-quality livestock breeds with gene editing technology.

RevDate: 2022-05-26
CmpDate: 2022-05-26

Zhou M, Cao Y, Sui M, et al (2022)

Dead Cas(t) light on new life: CRISPRa-mediated reprogramming of somatic cells into neurons.

Cellular and molecular life sciences : CMLS, 79(6):315.

Overexpression of exogenous lineage-specific transcription factors could directly induce terminally differentiated somatic cells into target cell types. However, the low conversion efficiency and the concern about introducing exogenous genes limit the clinical application. With the rapid progress in genome editing, the application of CRISPR/dCas9 has been expanding rapidly, including converting somatic cells into other types of cells in vivo and in vitro. Using the CRISPR/dCas9 system, direct neuronal reprogramming could be achieved by activating endogenous genes. Here, we will discuss the latest progress, new insights, and future challenges of the application of the dCas9 system in direct neuronal reprogramming.

RevDate: 2022-05-26

Parashar A, Bak K, M Murshed (2022)

Prevention of Arterial Elastocalcinosis: Differential Roles of the Conserved Glutamic Acid and Serine Residues of Matrix Gla Protein.

Arteriosclerosis, thrombosis, and vascular biology, 42(6):e155-e167.

BACKGROUND: Inactivating mutations in matrix Gla protein (MGP) lead to Keutel syndrome, a rare disease hallmarked by ectopic calcification of cartilage and vascular tissues. Although MGP acts as a strong inhibitor of arterial elastic lamina calcification (elastocalcinosis), its mode of action is unknown. Two sets of conserved residues undergoing posttranslational modifications-4 glutamic acid residues, which are γ-carboxylated by gamma-glutamyl carboxylase; and 3 serine residues, which are phosphorylated by yet unknown kinase(s)-are thought to be essential for MGP's function.

METHODS: We pursued a genetic approach to study the roles of MGP's conserved residues. First, a transgenic line (SM22a-GlamutMgp) expressing a mutant form of MGP, in which the conserved glutamic acid residues were mutated to alanine, was generated. The transgene was introduced to Mgp-/- mice to generate a compound mutant, which produced the mutated MGP only in the vascular tissues. We generated a second mouse model (MgpS3mut/S3mut) to mutate MGP's conserved serine residues to alanine. The initiation and progression of vascular calcification in these models were analyzed by alizarin red staining, histology, and micro-computed tomography imaging.

RESULTS: On a regular diet, the arterial walls in the Mgp-/-; SM22α-GlamutMgp mice were not calcified. However, on a high phosphorus diet, these mice showed wide-spread arterial calcification. In contrast, MgpS3mut/S3mut mice on a regular diet recapitulated arterial calcification traits of Mgp-/- mice, although with lesser severity.

CONCLUSIONS: For the first time, we show here that MGP's conserved serine residues are indispensable for its antimineralization function in the arterial tissues. Although the conserved glutamic acid residues are not essential for this function on a regular diet, they are needed to prevent phosphate-induced arterial elastocalcinosis.

RevDate: 2022-05-24

Sun L, Wang J, Yan F, et al (2022)

CrisprVi: a software for visualizing and analyzing CRISPR sequences of prokaryotes.

BMC bioinformatics, 23(Suppl 3):172.

BACKGROUND: Clustered regularly interspaced short palindromic repeats (CRISPR) and their spacers are important components of prokaryotic CRISPR-Cas systems. In order to analyze the CRISPR loci of multiple genomes more intuitively and comparatively, here we propose a visualization analysis tool named CrisprVi.

RESULTS: CrisprVi is a Python package consisting of a graphic user interface (GUI) for visualization, a module for commands parsing and data transmission, local SQLite and BLAST databases for data storage and a functions layer for data processing. CrisprVi can not only visually present information of CRISPR direct repeats (DRs) and spacers, such as their orders on the genome, IDs, start and end coordinates, but also provide interactive operation for users to display, label and align the CRISPR sequences, which help researchers investigate the locations, orders and components of the CRISPR sequences in a global view. In comparison to other CRISPR visualization tools such as CRISPRviz and CRISPRStudio, CrisprVi not only improves the interactivity and effects of the visualization, but also provides basic statistics of the CRISPR sequences, and the consensus sequences of DRs/spacers across the input strains can be inspected from a clustering heatmap based on the BLAST results of the CRISPR sequences hitting against the genomes.

CONCLUSIONS: CrisprVi is a convenient tool for visualizing and analyzing the CRISPR sequences and it would be helpful for users to inspect novel CRISPR-Cas systems of prokaryotes.

RevDate: 2022-05-25
CmpDate: 2022-05-25

Metzloff M, Yang E, Dhole S, et al (2022)

Experimental demonstration of tethered gene drive systems for confined population modification or suppression.

BMC biology, 20(1):119.

BACKGROUND: Homing gene drives hold great promise for the genetic control of natural populations. However, current homing systems are capable of spreading uncontrollably between populations connected by even marginal levels of migration. This could represent a substantial sociopolitical barrier to the testing or deployment of such drives and may generally be undesirable when the objective is only local population control, such as suppression of an invasive species outside of its native range. Tethered drive systems, in which a locally confined gene drive provides the CRISPR nuclease needed for a homing drive, could provide a solution to this problem, offering the power of a homing drive and confinement of the supporting drive.

RESULTS: Here, we demonstrate the engineering of a tethered drive system in Drosophila, using a regionally confined CRISPR Toxin-Antidote Recessive Embryo (TARE) drive to support modification and suppression homing drives. Each drive was able to bias inheritance in its favor, and the TARE drive was shown to spread only when released above a threshold frequency in experimental cage populations. After the TARE drive had established in the population, it facilitated the spread of a subsequently released split homing modification drive (to all individuals in the cage) and of a homing suppression drive (to its equilibrium frequency).

CONCLUSIONS: Our results show that the tethered drive strategy is a viable and easily engineered option for providing confinement of homing drives to target populations.

RevDate: 2022-05-25
CmpDate: 2022-05-25

Zeng R, Gong H, Li Y, et al (2022)

CRISPR-Cas12a-Derived Photoelectrochemical Biosensor for Point-Of-Care Diagnosis of Nucleic Acid.

Analytical chemistry, 94(20):7442-7448.

This work presented a point-of-care (POC) photoelectrochemical (PEC) biosensing for the detection of human papillomavirus-16 (HPV-16) on a portable electrochemical detection system by using CRISPR-Cas12a trans-cleaving the G-quadruplex for the biorecognition/amplification and a hollow In2O3-In2S3-modified screen-printed electrode (In2O3-In2S3/SPE) as the photoactive material. G-quadruplexes were capable of biocatalytic precipitation (H2O2-mediated 4-chloro-1-naphthol oxidation) on the In2O3-In2S3/SPE surface, resulting in a weakened photocurrent, but suffered from trans-cleavage when the CRISPR-Cas12a system specifically recognized the analyte. The photocurrent results could be directly observed with the card-sized electrochemical device via a smartphone, which displayed a high-value photocurrent for these positive samples, while a low-value photocurrent for the target-free samples. Such a system exhibited satisfying photocurrent responses toward HPV-16 within a wide working range from 5.0 to 5000 pM and allowed for detection of HPV-16 at a concentration as low as 1.2 pM. The proposed assay provided a smartphone signal readout to enable the rapid screening PEC determination of HPV-16 concentration without sophisticated instruments, thus meeting the requirements of remote areas and resource-limited settings. We envision that combining an efficient biometric PEC sensing platform with a wireless card-sized electrochemical device will enable high-throughput POC diagnostic analysis.

RevDate: 2022-05-24

Wu H, Cao X, Meng Y, et al (2022)

DropCRISPR: A LAMP-Cas12a based digital method for ultrasensitive detection of nucleic acid.

Biosensors & bioelectronics, 211:114377 pii:S0956-5663(22)00417-1 [Epub ahead of print].

Since their discovery, CRISPR/Cas systems have been extensively exploited in nucleic acid biosensing. However, the vast majority of contemporary platforms offer only qualitative detection of nucleic acid, and fail to realize ultrasensitive quantitative detection. Herein, we report a digital droplet-based platform (DropCRISPR), which combines loop-mediated isothermal amplification (LAMP) with CRISPR/Cas12a to realize ultrasensitive and quantitative detection of nucleic acids. This is achieved through a novel two-step microfluidic system which combines droplet LAMP with a picoinjector capable of injecting the required CRISPR/Cas12a reagents into each droplet. This method circumvents the temperature incompatibilities of LAMP and CRISPR/Cas12a and avoids mutual interference between amplification reaction and CRISPR detection. Ultrasensitive detection (at fM level) was achieved for a model plasmid containing the invA gene of Salmonella typhimurium (St), with detection down to 102 cfu/mL being achieved in pure bacterial culture. Additionally, we demonstrate that the DropCRISPR platform is capable of detecting St in raw milk samples without additional nucleic acid extraction. The sensitivity and robustness of the DropCRISPR further demonstrates the potential of CRISPR/Cas-based diagnostic platforms, particularly when combined with state-of-the-art microfluidic architectures.

RevDate: 2022-05-24

Zhang C, Li N, Rao L, et al (2022)

Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus Myceliophthora thermophila.

Microbiology spectrum [Epub ahead of print].

Myceliophthora thermophila is a thermophilic fungus with great potential in biorefineries and biotechnology. The base editor is an upgraded version of the clustered regularly interspaced short palindromic repeats (CRISPR)-dependent genome-editing tool that introduces precise point mutations without causing DNA double-strand breaks (DSBs) and has been used in various organisms but rarely in filamentous fungi, especially thermophilic filamentous fungi. Here, for the first time, we constructed three cytosine base editors (CBEs) in M. thermophila, namely, evolved apolipoprotein B mRNA-editing enzyme catalytic subunit 1 (APOBEC1) cytosine base editor 4 max (Mtevo-BE4max), bacteriophage Mu Gam protein cytosine base editor 4 max (MtGAM-BE4max), and evolved CDA1 deaminase cytosine base editor (Mtevo-CDA1), and efficiently inactivated genes by precisely converting three codons (CAA, CAG, and CGA) into stop codons without DSB formation. The Mtevo-CDA1 editor with up to 92.6% editing efficiency is a more suitable tool for cytosine base editing in thermophilic fungi. To investigate the function of each motif of the cellulase transcription factor M. thermophila CLR-2 (MtCLR-2), we used the Mtevo-CDA1 editor. The fungal-specific motif of MtCLR-2 was found to be strongly involved in cellulase secretion, conidium formation, hyphal branching, and colony formation. Mutation of the fungus-specific motif caused significant defects in these characteristics. Thus, we developed an efficient thermophilic fungus-compatible base-editing system that could also be used for genetic engineering in other relevant filamentous fungi. IMPORTANCE A CRISPR/Cas-based base-editing approach has been developed to introduce point mutations without inducing double-strand breaks (DSBs) and attracted substantial academic and industrial interest. Our study developed the deaminase-cytosine base-editing system to efficiently edit three target genes, amdS, cre-1, and the essential cellulase regulator gene Mtclr-2, in Myceliophthora thermophila. A variety of point mutations in the target loci of the DNA-binding domain and fungus-specific motif of M. thermophila CLR-2 (MtCLR-2) were successfully generated via our base editor Mtevo-CDA1 to elucidate its function. Here, we show that the DNA-binding domain of MtCLR-2 is important for the fungal response to cellulose conditions, while its fungus-specific motif is involved in fungal growth. These findings indicate that our base editor can be an effective tool for elucidating the functions of motifs of target genes in filamentous fungi and for metabolic engineering in the field of synthetic biology.

RevDate: 2022-05-24
CmpDate: 2022-05-24

Pan C, Li G, Malzahn AA, et al (2022)

Boosting plant genome editing with a versatile CRISPR-Combo system.

Nature plants, 8(5):513-525.

CRISPR-Cas9, its derived base editors and CRISPR activation systems have greatly aided genome engineering in plants. However, these systems are mostly used separately, leaving their combinational potential largely untapped. Here we develop a versatile CRISPR-Combo platform, based on a single Cas9 protein, for simultaneous genome editing (targeted mutagenesis or base editing) and gene activation in plants. We showcase the powerful applications of CRISPR-Combo for boosting plant genome editing. First, CRISPR-Combo is used to shorten the plant life cycle and reduce the efforts in screening transgene-free genome-edited plants by activation of a florigen gene in Arabidopsis. Next, we demonstrate accelerated regeneration and propagation of genome-edited plants by activation of morphogenic genes in poplar. Furthermore, we apply CRISPR-Combo to achieve rice regeneration without exogenous plant hormones, which is established as a new method to predominately enrich heritable targeted mutations. In conclusion, CRISPR-Combo is a versatile genome engineering tool with promising applications in crop breeding.

RevDate: 2022-05-24
CmpDate: 2022-05-24

Flegler A, A Lipski (2022)

Engineered CRISPR/Cas9 System for Transcriptional Gene Silencing in Arthrobacter Species Indicates Bacterioruberin is Indispensable for Growth at Low Temperatures.

Current microbiology, 79(7):199.

Pink-pigmented Arthrobacter species produce the rare C50 carotenoid bacterioruberin, which is suspected to be part of the cold adaptation mechanism. In silico analysis of the repertoire of genes encoded by the Arthrobacter agilis and Arthrobacter bussei genome revealed the biosynthetic pathway of bacterioruberin. Although genetic analysis is an essential tool for studying the physiology of Arthrobacter species, genetic manipulation of Arthrobacter is always time and labor intensive due to the lack of genetic engineering tools. Here we report the construction and application of a CRISPR/deadCas9 system (pCasiART) for gene silencing in Arthrobacter species. The engineered system pCasiART is suitable for the Golden Gate assembly of spacers, enabling rapid and accurate construction of adapted systems. In addition, pCasiART has been developed to provide an efficient transcription inhibition system for genome-wide gene silencing. The gene silencing of the phytoene synthase (CrtB), the first enzyme in bacterioruberin biosynthesis, suppressed bacterioruberin biosynthesis in Arthrobacter agilis and Arthrobacter bussei, resulting in a lack of pink pigmentation, reduction of biomass production, and growth rates at low temperatures.

RevDate: 2022-05-24
CmpDate: 2022-05-24

Liang Y, Xie J, Zhang Q, et al (2022)

AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns.

Nucleic acids research, 50(9):5384-5399.

Establishing saturated mutagenesis in a specific gene through gene editing is an efficient approach for identifying the relationships between mutations and the corresponding phenotypes. CRISPR/Cas9-based sgRNA library screening often creates indel mutations with multiple nucleotides. Single base editors and dual deaminase-mediated base editors can achieve only one and two types of base substitutions, respectively. A new glycosylase base editor (CGBE) system, in which the uracil glycosylase inhibitor (UGI) is replaced with uracil-DNA glycosylase (UNG), was recently reported to efficiently induce multiple base conversions, including C-to-G, C-to-T and C-to-A. In this study, we fused a CGBE with ABE to develop a new type of dual deaminase-mediated base editing system, the AGBE system, that can simultaneously introduce 4 types of base conversions (C-to-G, C-to-T, C-to-A and A-to-G) as well as indels with a single sgRNA in mammalian cells. AGBEs can be used to establish saturated mutant populations for verification of the functions and consequences of multiple gene mutation patterns, including single-nucleotide variants (SNVs) and indels, through high-throughput screening.

RevDate: 2022-05-24
CmpDate: 2022-05-24

Li Y, Yang F, Yuan R, et al (2022)

Electrochemiluminescence covalent organic framework coupling with CRISPR/Cas12a-mediated biosensor for pesticide residue detection.

Food chemistry, 389:133049.

The trace detection of pesticide residue becomes particularly important since increasing attentions have been attached to food safety. Herein, we developed an electrochemiluminescence (ECL) covalent organic framework (COF) based-biosensor for trace pesticide detection coupling with CRISPR/Cas12a-mediated signal accumulation strategy. Firstly, the target conversion was carried out with an aptamer-assembled magnetic spherical nucleic acids, which can convert acetamiprid to activator DNA, triggering the CRISPR/Cas12a to make quenching probes far away from electrode for signal accumulation. The COF with stable and strong ECL was synthesized by a condensation reaction between the perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) and melamine (MA), due to the highly ordered arrangement of the PTCDA luminescence units among COF structure and the pore confinement effect. Moreover, the designed assay method was successfully employed to detect the residual level of acetamiprid in real sample and expected to be widely used in pesticide-related food safety.

RevDate: 2022-05-24
CmpDate: 2022-05-24

Kovářová J, Novotná M, Faria J, et al (2022)

CRISPR/Cas9-based precision tagging of essential genes in bloodstream form African trypanosomes.

Molecular and biochemical parasitology, 249:111476.

Proteins of interest are frequently expressed with a fusion-tag to facilitate experimental analysis. In trypanosomatids, which are typically diploid, a tag-encoding DNA fragment is typically fused to one native allele. However, since recombinant cells represent ≪0.1% of the population following transfection, these DNA fragments also incorporate a marker cassette for positive selection. Consequently, native mRNA untranslated regions (UTRs) are replaced, potentially perturbing gene expression; in trypanosomatids, UTRs often impact gene expression in the context of widespread and constitutive polycistronic transcription. We sought to develop a tagging strategy that preserves native UTRs in bloodstream-form African trypanosomes, and here we describe a CRISPR/Cas9-based knock-in approach to drive precise and marker-free tagging of essential genes. Using simple tag-encoding amplicons, we tagged four proteins: a histone acetyltransferase, HAT2; a histone deacetylase, HDAC3; a cleavage and polyadenylation specificity factor, CPSF3; and a variant surface glycoprotein exclusion factor, VEX2. The approach maintained the native UTRs and yielded clonal strains expressing functional recombinant proteins, typically with both alleles tagged. We demonstrate utility for both immunofluorescence-based localisation and for enriching protein complexes; GFPHAT2 or GFPHDAC3 complexes in this case. This precision tagging approach facilitates the assembly of strains expressing essential recombinant genes with their native UTRs preserved.

RevDate: 2022-05-24
CmpDate: 2022-05-24

Wen W, XB Zhang (2022)

CRISPR-Cas9 gene editing induced complex on-target outcomes in human cells.

Experimental hematology, 110:13-19.

CRISPR-Cas9 is a powerful tool for editing the genome and holds great promise for gene therapy applications. Initial concerns of gene engineering focus on off-target effects. However, in addition to short indel mutations (often <50 bp), an increasing number of studies have revealed complex on-target results after double-strand break repair by CRISPR-Cas9, such as large deletions, gene rearrangement, and loss of heterozygosity. These unintended mutations are potential safety concerns in clinical gene editing. Here, in this review, we summarize the significant findings of CRISPR-Cas9-induced on-target deleterious outcomes and discuss putative ways to achieve safe gene therapy.

RevDate: 2022-05-24
CmpDate: 2022-05-24

Chae SY, Jeong E, Kang S, et al (2022)

Rationally designed nanoparticle delivery of Cas9 ribonucleoprotein for effective gene editing.

Journal of controlled release : official journal of the Controlled Release Society, 345:108-119.

Programmable endonucleases such as CRISPR/Cas9 system emerge as a promising tool to treat genetic and non-genetic diseases such as hypercholesterolemia, Duchenne muscular dystrophy, and cancer. However, the lack of safe and efficient vehicles that enable intracellular delivery of CRISPR/Cas9 endonuclease is a big hurdle for its therapeutic applications. Here, we employed porous nanoparticle for the Cas9 ribonucleoprotein (RNP) delivery and achieved efficient knockout of target genes in vitro and in vivo. The porous nanoparticle, called 'BALL', enabled safe and direct intracellular Cas9 RNP delivery by improving bioavailability and serum stability. The BALL-mediated delivery of Cas9 RNP showed superior indel efficiency of about 40% in vitro and 20% in vivo in a model system employing green fluorescent protein (GFP). More importantly, intramuscular injection of the Cas9 RNP-BALL complex targeting the myostatin (MSTN) gene which is known to suppress muscle growth achieved successful knockout of the MSTN gene, resulting in the increase of muscle and the improved motor functions. Thus, we believe that the BALL is a promising delivery system for CRISPR-based genome editing technology, which can be applied to the treatment of various genetic diseases.

RevDate: 2022-05-24
CmpDate: 2022-05-24

Paul B, Chaubet L, Verver DE, et al (2022)

Mechanics of CRISPR-Cas12a and engineered variants on λ-DNA.

Nucleic acids research, 50(9):5208-5225.

Cas12a is an RNA-guided endonuclease that is emerging as a powerful genome-editing tool. Here, we selected a target site on bacteriophage λ-DNA and used optical tweezers combined with fluorescence to provide mechanistic insight into wild type Cas12a and three engineered variants, where the specific dsDNA and the unspecific ssDNA cleavage are dissociated (M1 and M2) and a third one which nicks the target DNA (M3). At low forces wtCas12a and the variants display two main off-target binding sites, while on stretched dsDNA at higher forces numerous binding events appear driven by the mechanical distortion of the DNA and partial matches to the crRNA. The multiple binding events onto dsDNA at high tension do not lead to cleavage, which is observed on the target site at low forces when the DNA is flexible. In addition, activity assays also show that the preferential off-target sites for this crRNA are not cleaved by wtCas12a, indicating that λ-DNA is only severed at the target site. Our single molecule data indicate that the Cas12a scaffold presents singular mechanical properties, which could be used to generate new endonucleases with biomedical and biotechnological applications.

RevDate: 2022-05-24
CmpDate: 2022-05-24

Nakano K, Shimizu Y, Arai T, et al (2022)

The versatile electric condition in mouse embryos for genome editing using a three-step square-wave pulse electroporator.

Experimental animals, 71(2):214-223.

Technique for Animal Knockout system by Electroporation (TAKE) is a simple and efficient method to generate genetically modified (GM) mice using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems. To reinforce the versatility of electroporation used for gene editing in mice, the electric condition was optimized for vitrified-warmed mouse embryos, and applied to the fresh embryos from widely used inbred strains (C57BL/6NCr, BALB/cCrSlc, FVB/NJcl, and C3H/HeJJcl). The electric pulse settings (poring pulse: voltage, 150 V; pulse width, 1.0 ms; pulse interval, 50 ms; number of pulses, +4; transfer pulse: voltage, 20 V; pulse width, 50 ms; pulse interval, 50 ms; number of pulses, ±5) were optimal for vitrified-warmed mouse embryos, which could efficiently deliver the gRNA/Cas9 complex into the zygotes without zona pellucida thinning process and edit the target locus. These electric condition efficiently generated GM mice in widely used inbred mouse strains. In addition, electroporation using the electrode with a 5 mm gap could introduce more than 100 embryos within 5 min without specific pretreatment and sophisticated technical skills, such as microinjection, and exhibited a high developmental rate of embryos and genome-editing efficiency in the generated offspring, leading to the rapid and efficient generation of genome editing mice. The electric condition used in this study is highly versatile and can contribute to understanding human diseases and gene functions by generating GM mice more easily and efficiently.

RevDate: 2022-05-23

Jia HY, Zhao HL, Wang T, et al (2022)

A programmable and sensitive CRISPR/Cas12a-based MicroRNA detection platform combined with hybridization chain reaction.

Biosensors & bioelectronics, 211:114382 pii:S0956-5663(22)00422-5 [Epub ahead of print].

MicroRNAs (miRNAs) play an essential role in cancer diagnosis and prognosis. Developing a new method for sensitive detection of miRNA is constantly in demand. CRISPR/Cas12a system can nonspecifically cleave single-stranded DNA after specific recognition of target DNA, showing tremendous potential in molecular diagnostics. However, CRISPR-based detection methods require synthesizing different crRNAs for detecting different targets, which limit their widespread application. Herein, we design a versatile and sensitive miRNA detection platform based on CRISPR/Cas12a system combined with a hybridization chain reaction (HCR) circuit. In this design, the HCR circuit as the signal transducer converts each miRNA into multiple DNA duplexes, which act as the activators to activate the trans-cleavage activity of Cas12a for further signal amplification. More importantly, this platform can sensitively detect different miRNAs without changing the spacer sequence of crRNA due to the fixed activators formed by HCR. In addition, the consistency between the proposed platform and RT-qPCR in miRNA detection extracted from different cell lines validated its practicability, demonstrating the potential in clinical diagnosis of cancers and monitoring therapy.

RevDate: 2022-05-23
CmpDate: 2022-05-23

Yuan Q, X Gao (2022)

Multiplex base- and prime-editing with drive-and-process CRISPR arrays.

Nature communications, 13(1):2771.

Current base- and prime-editing technologies lack efficient strategies to edit multiple genomic loci simultaneously, limiting their applications in complex genomics and polygenic diseases. Here, we describe drive-and-process (DAP) CRISPR array architectures for multiplex base-editing (MBE) and multiplex prime-editing (MPE) in human cells. We leverage tRNA as the RNA polymerase III promoter to drive the expression of tandemly assembled tRNA-guide RNA (gRNA) arrays, of which the individual gRNAs are released by the cellular endogenous tRNA processing machinery. We engineer a 75-nt human cysteine tRNA (hCtRNA) for the DAP array, achieving up to 31-loci MBE and up to 3-loci MPE. By applying MBE or MPE elements for deliveries via adeno-associated virus (AAV) and lentivirus, we demonstrate simultaneous editing of multiple disease-relevant genomic loci. Our work streamlines the expression and processing of gRNAs on a single array and establishes efficient MBE and MPE strategies for biomedical research and therapeutic applications.

RevDate: 2022-05-23
CmpDate: 2022-05-23

Tang L (2022)

Spatial CRISPR screens in tumors.

Nature methods, 19(5):517.

RevDate: 2022-05-23
CmpDate: 2022-05-23

Liang Y, Zou L, Lin H, et al (2022)

Detection of Major SARS-CoV-2 Variants of Concern in Clinical Samples via CRISPR-Cas12a-Mediated Mutation-Specific Assay.

ACS synthetic biology, 11(5):1811-1823.

Objectives: Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants pose a great threat and burden to global public health. Here, we evaluated a clustered regularly interspaced short palindromic repeat-associated enzyme 12a (CRISPR-Cas12a)-based method for detecting major SARS-CoV-2 variants of concern (VOCs) in SARS-CoV-2 positive clinical samples. Methods: Allele-specific CRISPR RNAs (crRNAs) targeting the signature mutations in the spike protein of SARS-CoV-2 are designed. A total of 59 SARS-CoV-2 positive oropharyngeal swab specimens were used to evaluate the performance of the CRISPR-Cas12a-mediated assay to identify major SARS-CoV-2 VOCs. Results: Compared with Sanger sequencing, the eight allele-specific crRNAs analyzed can specifically identify the corresponding mutations with a positive predictive value of 83.3-100% and a negative predictive value of 85.7-100%. Our CRISPR-Cas12a-mediated assay distinguished wild-type and four major VOCs (Alpha, Beta, Delta, and Omicron) of SARS-CoV-2 with a sensitivity of 93.8-100.0% and a specificity of 100.0%. The two methods showed a concordance of 98.3% (58/59) with a κ value of 0.956-1.000, while seven (11.9%) samples were found to be positive for extra mutations by the CRISPR-based assay. Furthermore, neither virus titers nor the sequences adjacent to the signature mutations were associated with the variation of fluorescence intensity detected or the false-positive reaction observed when testing clinical samples. In addition, there was no cross-reaction observed when detecting 33 SARS-CoV-2 negative clinical samples infected with common respiratory pathogens. Conclusions: The CRISPR-Cas12a-based genotyping assay is highly sensitive and specific when detecting both the SARS-CoV-2 wild-type strain and major VOCs. It is a simple and rapid assay that can monitor and track the circulating SARS-CoV-2 variants and the dynamics of the coronavirus disease 2019 (COVID-19) pandemic and can be easily implemented in resource-limited settings.

RevDate: 2022-05-23
CmpDate: 2022-05-23

Lei R, Li L, Wu P, et al (2022)

RPA/CRISPR/Cas12a-Based On-Site and Rapid Nucleic Acid Detection of Toxoplasma gondii in the Environment.

ACS synthetic biology, 11(5):1772-1781.

Toxoplasma gondii is an opportunistic pathogen widely distributed within the world, poses a huge threat to human health, and causes significant economic losses to the livestock industry. Herein, we developed a portable one-pot detection of T. gondii by combining recombinase polymerase amplification (RPA) and a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system. A glass microfiber filter device used for the first step can efficiently extract T. gondii from low-concentration samples. The lyophilized RPA reagents and Cas12a/crRNA reagents are prestored in one Eppendorf tube, and both reactions can be performed on a low-cost thermal controller (∼37 °C), avoiding the drawbacks of the step-by-step addition of components. The developed RPA/CRISPR/Cas12a system exhibits a high selectivity toward the B1 gene amplicon of T. gondii over other parasites with a limit of detection of 3.3 copies/μL. The visual signal readout can be easily realized by a fluorometer or lateral-flow strip. A portable suitcase containing the minimum equipment and lyophilized reagents was adopted for the rapid determination of T. gondii in heavily polluted landfill leachate. This system presents rapidness, robustness and on-site features for the detection of nucleic acids of the parasite, making it a promising tool for field applications in remote areas.

RevDate: 2022-05-23
CmpDate: 2022-05-23

Zhu X, Wu Y, Lv X, et al (2022)

Combining CRISPR-Cpf1 and Recombineering Facilitates Fast and Efficient Genome Editing in Escherichia coli.

ACS synthetic biology, 11(5):1897-1907.

Clustered regularly interspaced short palindromic repeat (CRISPR)-based gene-editing technology has been widely used in various microorganisms due to its advantages of low cost, high efficiency, easy operation, and multiple functions. In this study, an efficient and fast double-plasmid gene-editing system pEcCpf1/pcrEG was constructed in Escherichia coli based on CRISPR/Cpf1. First, gene knockout and integration efficiency were verified in eight different kinds of protospacer adjacent motif (PAM) regions. Then, the transformation method was optimized, and the efficiency of gene knockout or gene integration of this system increased to nearly 100%, and the large-length fragments could be integrated into the genome in E. coli BL21 (DE3). The system was also optimized by replacing the homologous recombination system in plasmid pEcCpf1, resulting in pEcCpf1H, which could perform precise single-point mutation, terminator insertion, short-sequence insertion, or gene knockout with high efficiency using a 90 nt (nucleotide) single-stranded primer. Further, multiple genes could be edited simultaneously. Next, these two systems were demonstrated in other E. coli strains. Finally, as an application, the system was used to engineer the synthesis pathway of l-histidine in the engineered strain. The titer of l-histidine in a shake flask reached 7.16 g/L, a value increased by 84.1% compared to the starting strain. Thus, this study provided an effective tool for metabolic engineering of E. coli.

RevDate: 2022-05-23
CmpDate: 2022-05-23

Scott H, Sun D, Beal J, et al (2022)

Simulation-Based Engineering of Time-Delayed Safety Switches for Safer Gene Therapies.

ACS synthetic biology, 11(5):1782-1789.

CRISPR-based gene editing is a powerful tool with great potential for applications in the treatment of many inherited and acquired diseases. The longer that CRISPR gene therapy is maintained within a patient, however, the higher the likelihood that it will result in problematic side effects such as off-target editing or immune response. One approach to mitigating these issues is to link the operation of the therapeutic system to a safety switch that autonomously disables its operation and removes the delivered therapeutics after some amount of time. We present here a simulation-based analysis of the potential for regulating the time delay of such a safety switch using one or two transcriptional regulators and/or recombinases. Combinatorial circuit generation identifies 30 potential architectures for such circuits, which we evaluate in simulation with respect to tunability, sensitivity to parameter values, and sensitivity to cell-to-cell variation. This modeling predicts one of these circuit architectures to have the desired dynamics and robustness, which can be further tested and applied in the context of CRISPR therapeutics.

RevDate: 2022-05-23
CmpDate: 2022-05-23

Chen Y, Jong TT, Chen C, et al (2022)

CRISPR/Cas9-Based Functional Genomics in Human Induced Pluripotent Stem Cell-Derived Models: Can "the Stars Align" for Neurodegenerative Diseases?.

Movement disorders : official journal of the Movement Disorder Society, 37(5):886-890.

RevDate: 2022-05-21

Herrera-Uribe J, Zaldívar-López S, Aguilar C, et al (2022)

Study of microRNA expression in Salmonella Typhimurium-infected porcine ileum reveals miR-194a-5p as an important regulator of the TLR4-mediated inflammatory response.

Veterinary research, 53(1):35.

Infection with Salmonella Typhimurium (S. Typhimurium) is a common cause of food-borne zoonosis leading to acute gastroenteritis in humans and pigs, causing economic losses to producers and farmers, and generating a food security risk. In a previous study, we demonstrated that S. Typhimurium infection produces a severe transcriptional activation of inflammatory processes in ileum. However, little is known regarding how microRNAs regulate this response during infection. Here, small RNA sequencing was used to identify 28 miRNAs differentially expressed (DE) in ileum of S. Typhimurium-infected pigs, which potentially regulate 14 target genes involved in immune system processes such as regulation of cytokine production, monocyte chemotaxis, or cellular response to interferon gamma. Using in vitro functional and gain/loss of function (mimics/CRISPR-Cas system) approaches, we show that porcine miR-194a-5p (homologous to human miR-194-5p) regulates TLR4 gene expression, an important molecule involved in pathogen virulence, recognition and activation of innate immunity in Salmonella infection.

RevDate: 2022-05-21

Wei Y, Tao Z, Wan L, et al (2022)

Aptamer-based Cas14a1 biosensor for amplification-free live pathogenic detection.

Biosensors & bioelectronics, 211:114282 pii:S0956-5663(22)00322-0 [Epub ahead of print].

CRISPR-Cas systems have been employed to detect a large variety of pathogenic microorganisms by simply changing the guide RNA sequence. However, these platforms usually rely on nucleic acid extraction and amplification to achieve good sensitivity. Herein, we developed a new platform for the highly specific and sensitive detection of live staphylococcus aureus (S. aureus) based on an Aptamer-based Cas14a1 Biosensor (ACasB), without the need for nucleic acid extraction or amplification. First, the S. aureus specific aptamer was hybrid with a blocker DNA. After the live S. aureus was added, the blocker can be released upon bacteria-aptamer binding. Finally, the released blocker can activate Cas14a1 protein by binding with the sgRNA to generate a change of fluorescent intensity. The ACasB indicates high specificity and sensitivity: it can directly distinguish 400 CFU/ml live S. aureus cells. Comparable to qPCR, the Cas14a1-aptamer biosensor can detect S. aureus with 100% accuracy in complex samples. Therefore, this ACasB for the on-site detection of live S. aureus can broaden its applications in food safety and environmental monitoring.

RevDate: 2022-05-20

McGaw C, Garrity AJ, Munoz GZ, et al (2022)

Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing.

Nature communications, 13(1):2833.

The CRISPR-Cas type V-I is a family of Cas12i-containing programmable nuclease systems guided by a short crRNA without requirement for a tracrRNA. Here we present an engineered Type V-I CRISPR system (Cas12i), ABR-001, which utilizes a tracr-less guide RNA. The compact Cas12i effector is capable of self-processing pre-crRNA and cleaving dsDNA targets, which facilitates versatile delivery options and multiplexing, respectively. We apply an unbiased mutational scanning approach to enhance initially low editing activity of Cas12i2. The engineered variant, ABR-001, exhibits broad genome editing capability in human cell lines, primary T cells, and CD34+ hematopoietic stem and progenitor cells, with both robust efficiency and high specificity. In addition, ABR-001 achieves a high level of genome editing when delivered via AAV vector to HEK293T cells. This work establishes ABR-001 as a versatile, specific, and high-performance platform for ex vivo and in vivo gene therapy.

RevDate: 2022-05-20

Schwartz EA, McBride TM, Bravo JPK, et al (2022)

Structural rearrangements allow nucleic acid discrimination by type I-D Cascade.

Nature communications, 13(1):2829.

CRISPR-Cas systems are adaptive immune systems that protect prokaryotes from foreign nucleic acids, such as bacteriophages. Two of the most prevalent CRISPR-Cas systems include type I and type III. Interestingly, the type I-D interference proteins contain characteristic features of both type I and type III systems. Here, we present the structures of type I-D Cascade bound to both a double-stranded (ds)DNA and a single-stranded (ss)RNA target at 2.9 and 3.1 Å, respectively. We show that type I-D Cascade is capable of specifically binding ssRNA and reveal how PAM recognition of dsDNA targets initiates long-range structural rearrangements that likely primes Cas10d for Cas3' binding and subsequent non-target strand DNA cleavage. These structures allow us to model how binding of the anti-CRISPR protein AcrID1 likely blocks target dsDNA binding via competitive inhibition of the DNA substrate engagement with the Cas10d active site. This work elucidates the unique mechanisms used by type I-D Cascade for discrimination of single-stranded and double stranded targets. Thus, our data supports a model for the hybrid nature of this complex with features of type III and type I systems.

RevDate: 2022-05-20

Li L, Shen G, Wu M, et al (2022)

CRISPR-Cas-mediated diagnostics.

Trends in biotechnology pii:S0167-7799(22)00104-4 [Epub ahead of print].

An ideal molecular diagnostic method should be sensitive, specific, low cost, rapid, portable, and easy to operate. Traditional nucleic acid detection methods based mainly on PCR technology have not only high sensitivity and specificity, but also some limitations, such as the need for expensive equipment and skilled technicians, being both time and labor intensive, and difficult to implement in some regions. However, with the continuous development of CRISPR-Cas technology and its application in molecular diagnosis, new approaches have been used for the construction of molecular diagnostic systems. In this review, we discuss recent advances in CRISPR-based molecular diagnostic technologies and highlight the revolution they bring to the field of molecular diagnostics.

RevDate: 2022-05-20

Nath A, Bhattacharjee R, Nandi A, et al (2022)

Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 151:113122 pii:S0753-3322(22)00511-X [Epub ahead of print].

The Host-microbiome interactions that exist inside the gut microbiota operate in a synergistic and abnormal manner. Additionally, the normal homeostasis and functioning of gut microbiota are frequently disrupted by the intervention of Multi-Drug Resistant (MDR) pathogens. CRISPR-Cas (CRISPR-associated protein with clustered regularly interspersed short palindromic repeats) recognized as a prokaryotic immune system has emerged as an effective genome-editing tool to edit and delete specific microbial genes for the expulsion of bacteria through bactericidal action. In this review, we demonstrate many functioning CRISPR-Cas systems against the anti-microbial resistance of multiple pathogens, which infiltrate the gastrointestinal tract. Moreover, we discuss the advancement in the development of a phage-delivered CRISPR-Cas system for killing a gut MDR pathogen. We also discuss a combinatorial approach to use bacteriophage as a delivery system for the CRISPR-Cas gene for targeting a pathogenic community in the gut microbiome to resensitize the drug sensitivity. Finally, we discuss engineered phage as a plausible potential option for the CRISPR-Cas system for pathogenic killing and improvement of the efficacy of the system.

RevDate: 2022-05-20

Chen H, Neubauer M, JP Wang (2022)

Enhancing HR Frequency for Precise Genome Editing in Plants.

Frontiers in plant science, 13:883421.

Gene-editing tools, such as Zinc-fingers, TALENs, and CRISPR-Cas, have fostered a new frontier in the genetic improvement of plants across the tree of life. In eukaryotes, genome editing occurs primarily through two DNA repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ is the primary mechanism in higher plants, but it is unpredictable and often results in undesired mutations, frameshift insertions, and deletions. Homology-directed repair (HDR), which proceeds through HR, is typically the preferred editing method by genetic engineers. HR-mediated gene editing can enable error-free editing by incorporating a sequence provided by a donor template. However, the low frequency of native HR in plants is a barrier to attaining efficient plant genome engineering. This review summarizes various strategies implemented to increase the frequency of HDR in plant cells. Such strategies include methods for targeting double-strand DNA breaks, optimizing donor sequences, altering plant DNA repair machinery, and environmental factors shown to influence HR frequency in plants. Through the use and further refinement of these methods, HR-based gene editing may one day be commonplace in plants, as it is in other systems.

RevDate: 2022-05-19

Philippe C, Morency C, Plante PL, et al (2022)

A truncated anti-CRISPR protein prevents spacer acquisition but not interference.

Nature communications, 13(1):2802.

CRISPR-Cas systems in prokaryotic cells provide an adaptive immunity against invading nucleic acids. For example, phage infection leads to addition of new immunity (spacer acquisition) and DNA cleavage (interference) in the bacterial model species Streptococcus thermophilus, which primarily relies on Cas9-containing CRISPR-Cas systems. Phages can counteract this defense system through mutations in the targeted protospacers or by encoding anti-CRISPR proteins (ACRs) that block Cas9 interference activity. Here, we show that S. thermophilus can block ACR-containing phages when the CRISPR immunity specifically targets the acr gene. This in turn selects for phage mutants carrying a deletion within the acr gene. Remarkably, a truncated acrIIA allele, found in a wild-type virulent streptococcal phage, does not block the interference activity of Cas9 but still prevents the acquisition of new immunities, thereby providing an example of an ACR specifically inhibiting spacer acquisition.

RevDate: 2022-05-20
CmpDate: 2022-05-20

Osteikoetxea X, Silva A, Lázaro-Ibáñez E, et al (2022)

Engineered Cas9 extracellular vesicles as a novel gene editing tool.

Journal of extracellular vesicles, 11(5):e12225.

Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic applications require efficient cargo loading. Here, we developed new methods for CRISPR/Cas9 loading into EVs through reversible heterodimerization of Cas9-fusions with EV sorting partners. Cas9-loaded EVs were collected from engineered Expi293F cells using standard methodology, characterized using nanoparticle tracking analysis, western blotting, and transmission electron microscopy and analysed for CRISPR/Cas9-mediated functional gene editing in a Cre-reporter cellular assay. Light-induced dimerization using Cryptochrome 2 combined with CD9 or a Myristoylation-Palmitoylation-Palmitoylation lipid modification resulted in efficient loading with approximately 25 Cas9 molecules per EV and high functional delivery with 51% gene editing of the Cre reporter cassette in HEK293 and 25% in HepG2 cells, respectively. This approach was also effective for targeting knock-down of the therapeutically relevant PCSK9 gene with 6% indel efficiency in HEK293. Cas9 transfer was detergent-sensitive and associated with the EV fractions after size exclusion chromatography, indicative of EV-mediated transfer. Considering the advantages of EVs over other delivery vectors we envision that this study will prove useful for a range of therapeutic applications, including CRISPR/Cas9 mediated genome editing.

RevDate: 2022-05-20
CmpDate: 2022-05-20

Fan N, Bian X, Li M, et al (2022)

Hierarchical self-uncloaking CRISPR-Cas13a-customized RNA nanococoons for spatial-controlled genome editing and precise cancer therapy.

Science advances, 8(20):eabn7382.

CRISPR-Cas13a holds enormous potential for developing precise RNA editing. However, spatial manipulation of CRISPR-Cas13a activity remains a daunting challenge for elaborately regulating localized RNase function. Here, we designed hierarchical self-uncloaking CRISPR-Cas13a-customized RNA nanococoons (RNCOs-D), featuring tumor-specific recognition and spatial-controlled activation of Cas13a, for precise cancer synergistic therapy. RNCOs-D consists of programmable RNA nanosponges (RNSs) capable of targeted delivery and caging chemotherapeutic drug, and nanocapsules (NCs) anchored on RNSs for cloaking Cas13a/crRNA ribonucleoprotein (Cas13a RNP) activity. The acidic endo/lysosomal microenvironment stimulates the outer decomposition of NCs with concomitant Cas13a RNP activity revitalization, while the inner disassembly through trans-cleavage of RNSs initiated by cis-recognition and cleavage of EGFR variant III (EGFRvIII) mRNA. RNCOs-D demonstrates the effective EGFRvIII mRNA silencing for synergistic therapy of glioblastoma cancer cells in vitro and in vivo. The engineering of RNSs, together with efficient Cas13a activity regulation, holds immense prospect for multimodal and synergistic cancer therapy.

RevDate: 2022-05-20
CmpDate: 2022-05-20

Wen Z, Qian F, Zhang J, et al (2022)

Genome Editing of Corynebacterium glutamicum Using CRISPR-Cpf1 System.

Methods in molecular biology (Clifton, N.J.), 2479:189-206.

Corynebacterium glutamicum, as an important microbial chassis, has great potential in industrial application. However, complicated genetic modification is severely slowed by lack of efficient genome editing tools. The Streptococcus pyogenes (Sp) CRISPR-Cas9 system has been verified as a very powerful tool for mediating genome alteration in many microorganisms but cannot work well in C. glutamicum. We recently developed two Francisella novicida (Fn) CRISPR-Cpf1 assisted systems for genome editing via homologous recombination in C. glutamicum. Here, we describe the protocols and demonstrated that N iterative rounds of genome editing can be achieved in 3 N + 4 or 3 N + 2 days, respectively.

RevDate: 2022-05-20
CmpDate: 2022-05-20

Hong W, Zhang J, Cui G, et al (2022)

Highly Efficient Genome Editing in Clostridium difficile Using the CRISPR-Cpf1 System.

Methods in molecular biology (Clifton, N.J.), 2479:175-187.

Clostridium difficile is often the primary cause of nosocomial diarrhea, leading to thousands of deaths annually worldwide. The availability of an efficient genome editing tool for C. difficile is essential to understanding its pathogenic mechanism and physiological behavior. Here, we describe a streamlined CRISPR-Cpf1-based protocol to achieve precise genome editing in C. difficile with high efficiencies. Our work highlighted the first application of CRISPR-Cpf1 for genome editing in C. difficile, which are both crucial for understanding pathogenic mechanism of C. difficile and developing strategies to fight against C. difficile infection (CDI). In addition, for the DNA cloning, we developed a one-step-assembly protocol along with a Python-based algorithm for automatic primer design, shortening the time for plasmid construction to half that of conventional procedures. Approaches we developed herein are easily and broadly applicable to other microorganisms. Our results provide valuable guidance for establishing CRISPR-Cpf1 as a versatile genome engineering tool in prokaryotic cells.

RevDate: 2022-05-20
CmpDate: 2022-05-20

Wozniak KJ, LA Simmons (2022)

Genome Editing Methods for Bacillus subtilis.

Methods in molecular biology (Clifton, N.J.), 2479:159-174.

Bacillus subtilis is a widely studied Gram-positive bacterium that serves as an important model for understanding processes critical for several areas of biology including biotechnology and human health. B. subtilis has several advantages as a model organism: it is easily grown under laboratory conditions, it has a rapid doubling time, it is relatively inexpensive to maintain, and it is nonpathogenic. Over the last 50 years, advancements in genetic engineering have continued to make B. subtilis a genetic workhorse in scientific discovery. In this chapter, we describe methods for traditional gene disruptions, use of gene deletion libraries from the Bacillus Genetic Stock Center, allelic exchange, CRISPRi, and CRISPR/Cas9. Additionally, we provide general materials and equipment needed, strengths and limitations, time considerations, and troubleshooting notes to perform each method. Use of the methods outlined in this chapter will allow researchers to create gene insertions, deletions, substitutions, and RNA interference strains through a variety of methods custom to each application.

RevDate: 2022-05-20
CmpDate: 2022-05-20

Penewit K, SJ Salipante (2022)

Recombineering in Staphylococcus aureus.

Methods in molecular biology (Clifton, N.J.), 2479:135-157.

Recombineering has proven to be an extraordinarily powerful and versatile approach for the modification of bacterial genomes, but has historically not been possible in the important opportunistic pathogen Staphylococcus aureus. After evaluating the activity of various recombinases in S. aureus, we developed methods for recombineering in that organism using synthetic, single-stranded DNA oligonucleotides. This approach can be coupled to CRISPR/Cas9-mediated lethal counterselection in order to improve the efficiency with which recombinant S. aureus are recovered, which is especially useful in instances where mutants lack a selectable phenotype. These methods provide a rapid, scalable, precise, and inexpensive means to engineer point mutations, variable-length deletions, and short insertions into the S. aureus genome.

RevDate: 2022-05-20
CmpDate: 2022-05-20

Ellington AJ, CR Reisch (2022)

Generating Single Nucleotide Point Mutations in E. coli with the No-SCAR System.

Methods in molecular biology (Clifton, N.J.), 2479:119-133.

Genetic manipulation of microbial genomes is highly relevant for studying biological systems and the development of biotechnologies. In E. coli, λ-Red recombineering is one of the most widely used gene-editing methods, enabling site-specific insertions, deletions, and point mutations of any genomic locus. The no-SCAR system combines λ-Red recombineering with CRISPR/Cas9 for programmable selection of recombinant cells. Recombineering results in the transient production of heteroduplex DNA, as only one strand of DNA is initially altered, leaving the mismatched bases susceptible to repair by the host methyl-directed mismatch repair (MMR) system and reduces the efficiency of generating single nucleotide point mutations. Here we describe a method, where expression of cas9 and the MMR-inhibiting mutLE32K variant are independently controlled by anhydrotetracycline- and cumate-inducible promoters from the pCas9CyMutL plasmid. Thus, MMR is selectively inhibited until recombinant cells have undergone replication and the desired mutation is permanently incorporated. By transiently inhibiting MMR, the accumulation of off-target mutations typically associated with MMR-deficient cell types is minimized. Methods for designing the editing template and sgRNA, cloning of the sgRNA, induction of λ-Red and MutLE32K, the transformation of editing oligo, and induction of Cas9 for mutant selection are detailed within.

RevDate: 2022-05-20
CmpDate: 2022-05-20

Wang Z, Wang Y, Q Ji (2022)

Genome Editing in Klebsiella pneumoniae Using CRISPR/Cas9 Technology.

Methods in molecular biology (Clifton, N.J.), 2479:105-117.

CRISPR/Cas9 systems have been widely adopted for genetic manipulation in diverse biological systems owing to the ease of use and high efficiency. We have recently developed a CRISPR/Cas9-based genome editing system (pCasKP-pSGKP) by coupling a CRISPR/Cas9 system with the lambda Red recombination system as well as a cytidine deaminase-mediated base editing system (pBECKP) in Klebsiella pneumoniae, enabling rapid, scarless, and efficient genetic manipulation in diverse K. pneumoniae strains. In this chapter, we introduce the detailed procedures of using these two tools for genome editing in K. pneumoniae.

RevDate: 2022-05-20
CmpDate: 2022-05-20

Hobbs SJ, Wein T, Lu A, et al (2022)

Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity.

Nature, 605(7910):522-526.

The cyclic oligonucleotide-based antiphage signalling system (CBASS) and the pyrimidine cyclase system for antiphage resistance (Pycsar) are antiphage defence systems in diverse bacteria that use cyclic nucleotide signals to induce cell death and prevent viral propagation1,2. Phages use several strategies to defeat host CRISPR and restriction-modification systems3-10, but no mechanisms are known to evade CBASS and Pycsar immunity. Here we show that phages encode anti-CBASS (Acb) and anti-Pycsar (Apyc) proteins that counteract defence by specifically degrading cyclic nucleotide signals that activate host immunity. Using a biochemical screen of 57 phages in Escherichia coli and Bacillus subtilis, we discover Acb1 from phage T4 and Apyc1 from phage SBSphiJ as founding members of distinct families of immune evasion proteins. Crystal structures of Acb1 in complex with 3'3'-cyclic GMP-AMP define a mechanism of metal-independent hydrolysis 3' of adenosine bases, enabling broad recognition and degradation of cyclic dinucleotide and trinucleotide CBASS signals. Structures of Apyc1 reveal a metal-dependent cyclic NMP phosphodiesterase that uses relaxed specificity to target Pycsar cyclic pyrimidine mononucleotide signals. We show that Acb1 and Apyc1 block downstream effector activation and protect from CBASS and Pycsar defence in vivo. Active Acb1 and Apyc1 enzymes are conserved in phylogenetically diverse phages, demonstrating that cleavage of host cyclic nucleotide signals is a key strategy of immune evasion in phage biology.

RevDate: 2022-05-19

Kumar G, Jagadeeshwari U, Sreya P, et al (2022)

A genomic overview including polyphasic taxonomy of Thalassoroseus pseudoceratinae gen. nov., sp. nov. isolated from a marine sponge, Pseudoceratina sp.

Antonie van Leeuwenhoek [Epub ahead of print].

A pink-coloured, salt- and alkali-tolerant planctomycetal strain (JC658T) with oval to pear-shaped, motile, aerobic, Gram-negative stained cells was isolated from a marine sponge, Pseudoceratina sp. Strain JC658T shares the highest 16S rRNA gene sequence identity with Maioricimonas rarisocia Mal4T (< 89.2%) in the family Planctomycetaceae. The genomic analysis of the new strain indicates its biotechnological potential for the production of various industrially important enzymes, notably sulfatases and carbohydrate-active enzymes (CAZymes), and also potential antimicrobial compounds. Several genes encoding restriction-modification (RM) and CRISPR-CAS systems are also present. NaCl is obligate for growth, of which strain JC658T can tolerate a concentration up to 6% (w/v). Optimum pH and temperature for growth are 8.0 (range 7.0-9.0) and 25 ºC (range 10-40 °C), respectively. The major respiratory quinone of strain JC658T is MK6. Major fatty acids are C16:1ω7c/C16:1ω6c, C18:0 and C16:0. Major polar lipids are phosphatidylcholine, phosphatidyl-dimethylethanolamine and phosphatidyl-monomethylethanolamine. The genomic size of strain JC658T is 7.36 Mb with a DNA G + C content of 54.6 mol%. Based on phylogenetic, genomic (ANI, AAI, POCP, dDDH), chemotaxonomic, physiological and biochemical characteristics, we conclude that strain JC658T belongs to a novel genus and constitutes a novel species within the family Planctomycetaceae, for which we propose the name Thalassoroseus pseudoceratinae gen. nov., sp. nov. The novel species is represented by the type strain JC658T (= KCTC 72881 T = NBRC 114371 T).

RevDate: 2022-05-19

Van Vu T, Das S, Hensel G, et al (2022)

Genome editing and beyond: what does it mean for the future of plant breeding?.

Planta, 255(6):130.

MAIN CONCLUSION: Genome editing offers revolutionized solutions for plant breeding to sustain food production to feed the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and community adoption. The world population and food production are disproportionally growing in a manner that would have never matched each other under the current agricultural practices. The emerging crisis is more evident with the subtle changes in climate and the running-off of natural genetic resources that could be easily used in breeding in conventional ways. Under these circumstances, affordable CRISPR-Cas-based gene-editing technologies have brought hope and charged the old plant breeding machine with the most energetic and powerful fuel to address the challenges involved in feeding the world. What makes CRISPR-Cas the most powerful gene-editing technology? What are the differences between it and the other genetic engineering/breeding techniques? Would its products be labeled as "conventional" or "GMO"? There are so many questions to be answered, or that cannot be answered within the limitations of our current understanding. Therefore, we would like to discuss and answer some of the mentioned questions regarding recent progress in technology development. We hope this review will offer another view on the role of CRISPR-Cas technology in future of plant breeding for food production and beyond.

RevDate: 2022-05-19

Yin T, Luo J, Huang D, et al (2022)

Current Progress of Mitochondrial Genome Editing by CRISPR.

Frontiers in physiology, 13:883459 pii:883459.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Perdigoto CN (2022)

TALEDs complete the toolkit for editing human mitochondrial DNA.

Nature structural & molecular biology, 29(5):415.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Wu X, Wang S, Li C, et al (2022)

CRISPR/Cas9-Mediated Knockout of the Dicer and Ago2 Genes in BHK-21 Cell Promoted Seneca Virus A Replication and Enhanced Autophagy.

Frontiers in cellular and infection microbiology, 12:865744.

RNA interference (RNAi) is a major form of antiviral defense in host cells, and Ago2 and Dicer are the major proteins of RNAi. The Senecavirus A (SVA) is a reemerging virus, resulting in vesicular lesions in sows and a sharp decline in neonatal piglet production. In this study, CRISPR/Cas9 technology was used to knock out Ago2 and Dicer genes in BHK-21 cell lines used for SVA vaccine production. Cell clones with homozygous frameshift mutations of Ago2 and Dicer genes were successfully identified. The two knockout cell lines were named BHK-DicerΔ- and BHK-Ago2Δ-. Results showed that the two genes' knockout cell lines were capable of stable passage and the cell growth rate did not change significantly. The replication rate and virus titers of SVA were significantly increased in knockout cell lines, indicating that RNAi could inhibit SVA replication. In addition, compared with normal cells, autophagy was significantly enhanced after SVA-infected knockout cell lines, while there was no significant difference in autophagy between the knockout and normal cell lines without SVA. The results confirmed that SVA could enhance the autophagy in knockout cells and promote viral replication. The two knockout cell lines can obtain viruses with high viral titers and have good application prospects in the production of SVA vaccine. At the same time, the RNAi knockout cell lines provide convenience for further studies on RNAi and SVA resistance to RNAi, and it lays a foundation for further study of SVA infection characteristics and screening of new therapeutic drugs and drug targets.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Feng X, Tang M, Dede M, et al (2022)

Genome-wide CRISPR screens using isogenic cells reveal vulnerabilities conferred by loss of tumor suppressors.

Science advances, 8(19):eabm6638.

Exploiting cancer vulnerabilities is critical for the discovery of anticancer drugs. However, tumor suppressors cannot be directly targeted because of their loss of function. To uncover specific vulnerabilities for cells with deficiency in any given tumor suppressor(s), we performed genome-scale CRISPR loss-of-function screens using a panel of isogenic knockout cells we generated for 12 common tumor suppressors. Here, we provide a comprehensive and comparative dataset for genetic interactions between the whole-genome protein-coding genes and a panel of tumor suppressor genes, which allows us to uncover known and new high-confidence synthetic lethal interactions. Mining this dataset, we uncover essential paralog gene pairs, which could be a common mechanism for interpreting synthetic lethality. Moreover, we propose that some tumor suppressors could be targeted to suppress proliferation of cells with deficiency in other tumor suppressors. This dataset provides valuable information that can be further exploited for targeted cancer therapy.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Eisenstein M (2022)

Base editing marches on the clinic.

Nature biotechnology, 40(5):623-625.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Park H, Osman EA, Cromwell CR, et al (2022)

CRISPR-Click Enables Dual-Gene Editing with Modular Synthetic sgRNAs.

Bioconjugate chemistry, 33(5):858-868.

Gene-editing systems such as CRISPR-Cas9 readily enable individual gene phenotypes to be studied through loss of function. However, in certain instances, gene compensation can obfuscate the results of these studies, necessitating the editing of multiple genes to properly identify biological pathways and protein function. Performing multiple genetic modifications in cells remains difficult due to the requirement for multiple rounds of gene editing. While fluorescently labeled guide RNAs (gRNAs) are routinely used in laboratories for targeting CRISPR-Cas9 to disrupt individual loci, technical limitations in single gRNA (sgRNA) synthesis hinder the expansion of this approach to multicolor cell sorting. Here, we describe a modular strategy for synthesizing sgRNAs where each target sequence is conjugated to a unique fluorescent label, which enables fluorescence-activated cell sorting (FACS) to isolate cells that incorporate the desired combination of gene-editing constructs. We demonstrate that three short strands of RNA functionalized with strategically placed 5'-azide and 3'-alkyne terminal deoxyribonucleotides can be assembled in a one-step, template-assisted, copper-catalyzed alkyne-azide cycloaddition to generate fully functional, fluorophore-modified sgRNAs. Using these synthetic sgRNAs in combination with FACS, we achieved selective cleavage of two targeted genes, either separately as a single-color experiment or in combination as a dual-color experiment. These data indicate that our strategy for generating double-clicked sgRNA allows for Cas9 activity in cells. By minimizing the size of each RNA fragment to 41 nucleotides or less, this strategy is well suited for custom, scalable synthesis of sgRNAs.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Avci-Adali M, H A Santos (2022)

Current trends in delivery of non-viral nucleic acid-based therapeutics for improved efficacy.

Advanced drug delivery reviews, 185:114297.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Anonymous (2022)

Forum: CRISPR screening roundtable with Stegmaier and Doench.

Nature biotechnology, 40(5):655.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Wasala NB, Million ED, Watkins TB, et al (2022)

The gRNA Vector Level Determines the Outcome of Systemic AAV CRISPR Therapy for Duchenne Muscular Dystrophy.

Human gene therapy, 33(9-10):518-528.

Adeno-associated virus (AAV)-mediated clustered regularly interspaced short palindromic repeats (CRISPR) editing holds promise to restore missing dystrophin in Duchenne muscular dystrophy (DMD). Intramuscular coinjection of CRISPR-associated protein 9 (Cas9) and guide RNA (gRNA) vectors resulted in robust dystrophin restoration in short-term studies in the mdx mouse model of DMD. Intriguingly, this strategy failed to yield efficient dystrophin rescue in muscle in a long-term (18-month) systemic injection study. In-depth analyses revealed a selective loss of the gRNA vector after long-term systemic, but not short-term local injection. To determine whether preferential gRNA vector depletion is due to the mode of delivery (local vs. systemic) or the duration of the study (short term vs. long term), we conducted a short-term systemic injection study. The gRNA (4e12 vg/mouse in the 1:1 group or 1.2e13 vg/mouse in the 3:1 group) and Cas9 (4e12 vg/mouse) vectors were coinjected intravenously into 4-week-old mdx mice. The ratio of the gRNA to Cas9 vector genome copy dropped from 1:1 and 3:1 at injection to 0.4:1 and 1:1 at harvest 3 months later, suggesting that the route of administration, rather than the experimental duration, determines preferential gRNA vector loss. Consistent with our long-term systemic injection study, the vector ratio did not influence Cas9 expression. However, the 3:1 group showed significantly higher dystrophin expression and genome editing, better myofiber size distribution, and a more pronounced improvement in muscle function and electrocardiography. Our data suggest that the gRNA vector dose determines the outcome of systemic AAV CRISPR therapy for DMD.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Zhang C, Ren H, Liu G, et al (2022)

Effective Genome Editing Using CRISPR-Cas9 Nanoflowers.

Advanced healthcare materials, 11(10):e2102365.

CRISPR-Cas9 as a powerful gene-editing tool has tremendous potential for the treatment of genetic diseases. Herein, a new mesoporous nanoflower (NF)-like delivery nanoplatform termed Cas9-NF is reported by crosslinking Cas9 and polymeric micelles that enables efficient intracellular delivery and controlled release of Cas9 in response to reductive microenvironment in tumor cells. The flower morphology is flexibly tunable by the protein concentration and different types of crosslinkers. Cas9 protein, embedded between polymeric micelles and protected by Cas9-NF, remains stable even under extreme pH conditions. Responsive cleavage of crosslinkers in tumor cells, leads to the traceless release of Cas9 for efficient gene knockout in nucleus. This crosslinked nanoparticle exhibits excellent capability of downregulating oncogene expression and inhibiting tumor growth in a murine tumor model. Taken together, these findings pave a new pathway toward the application of the protein-micelle crosslinked nanoflower for protein delivery, which warrants further investigations for gene regulation and cancer treatment.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Anzalone AV, Gao XD, Podracky CJ, et al (2022)

Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing.

Nature biotechnology, 40(5):731-740.

The targeted deletion, replacement, integration or inversion of genomic sequences could be used to study or treat human genetic diseases, but existing methods typically require double-strand DNA breaks (DSBs) that lead to undesired consequences, including uncontrolled indel mixtures and chromosomal abnormalities. Here we describe twin prime editing (twinPE), a DSB-independent method that uses a prime editor protein and two prime editing guide RNAs (pegRNAs) for the programmable replacement or excision of DNA sequences at endogenous human genomic sites. The two pegRNAs template the synthesis of complementary DNA flaps on opposing strands of genomic DNA, which replace the endogenous DNA sequence between the prime-editor-induced nick sites. When combined with a site-specific serine recombinase, twinPE enabled targeted integration of gene-sized DNA plasmids (>5,000 bp) and targeted sequence inversions of 40 kb in human cells. TwinPE expands the capabilities of precision gene editing and might synergize with other tools for the correction or complementation of large or complex human pathogenic alleles.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Zocca VFB, Corrêa GG, Lins MRDCR, et al (2022)

The CRISPR toolbox for the gram-positive model bacterium Bacillus subtilis.

Critical reviews in biotechnology, 42(6):813-826.

CRISPR has revolutionized the way we engineer genomes. Its simplicity and modularity have enabled the development of a great number of tools to edit genomes and to control gene expression. This powerful technology was first adapted to Bacillus subtilis in 2016 and has been intensely upgraded since then. Many tools have been successfully developed to build a CRISPR toolbox for this Gram-positive model and important industrial chassis. The toolbox includes tools, such as double-strand and single-strand cutting CRISPR for point mutation, gene insertion, and gene deletion up to 38 kb. Moreover, catalytic dead Cas proteins have been used for base editing, as well as for the control of gene expression (CRISPRi and CRISPRa). Many of these tools have been used for multiplex CRISPR with the most successful one targeting up to six loci simultaneously for point mutation. However, tools for efficient multiplex CRISPR for other functionalities are still missing in the toolbox. CRISPR engineering has already resulted in efficient protein and metabolite-producing strains, demonstrating its great potential. In this review, we cover all the important additions made to the B. subtilis CRISPR toolbox since 2016, and strain developments fomented by the technology.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Gao C, Wu P, Yu L, et al (2022)

The application of CRISPR/Cas9 system in cervical carcinogenesis.

Cancer gene therapy, 29(5):466-474.

Integration of high-risk HPV genomes into cellular chromatin has been confirmed to promote cervical carcinogenesis, with HPV16 being the most prevalent high-risk type. Herein, we evaluated the therapeutic effect of the CRISPR/Cas9 system in cervical carcinogenesis, especially for cervical precancerous lesions. In cervical cancer/pre-cancer cell lines, we transfected the HPV16 E7 targeted CRISPR/Cas9, TALEN, ZFN plasmids, respectively. Compared to previous established ZFN and TALEN systems, CRISPR/Cas9 has shown comparable efficiency and specificity in inhibiting cell growth and colony formation and inducing apoptosis in cervical cancer/pre-cancer cell lines, which seemed to be more pronounced in the S12 cell line derived from the low-grade cervical lesion. Furthermore, in xenograft formation assays, CRISPR/Cas9 inhibited tumor formation of the S12 cell line in vivo and affected the corresponding protein expression. In the K14-HPV16 transgenic mice model of HPV-driven spontaneous cervical carcinogenesis, cervical application of CRISPR/Cas9 treatment caused mutations of the E7 gene and restored the expression of RB, E2F1, and CDK2, thereby reversing the cervical carcinogenesis phenotype. In this study, we have demonstrated that CRISPR/Cas9 targeting HPV16 E7 could effectively revert the HPV-related cervical carcinogenesis in vitro, as well as in K14-HPV16 transgenic mice, which has shown great potential in clinical treatment for cervical precancerous lesions.

RevDate: 2022-05-19
CmpDate: 2022-05-19

Marayati R, Stafman LL, Williams AP, et al (2022)

CRISPR/Cas9-mediated knockout of PIM3 suppresses tumorigenesis and cancer cell stemness in human hepatoblastoma cells.

Cancer gene therapy, 29(5):558-572.

Hepatoblastoma remains one of the most difficult childhood tumors to treat and is alarmingly understudied. We previously demonstrated that Proviral Insertion site in Maloney murine leukemia virus (PIM) kinases, specifically PIM3, are overexpressed in human hepatoblastoma cells and function to promote tumorigenesis. We aimed to use CRISPR/Cas9 gene editing with dual gRNAs to introduce large inactivating deletions in the PIM3 gene and achieve stable PIM3 knockout in the human hepatoblastoma cell line, HuH6. PIM3 knockout of hepatoblastoma cells led to significantly decreased proliferation, viability, and motility, inhibited cell-cycle progression, decreased tumor growth in a xenograft murine model, and increased animal survival. Analysis of RNA sequencing data revealed that PIM3 knockout downregulated expression of pro-migratory and pro-invasive genes and upregulated expression of genes involved in apoptosis and differentiation. Furthermore, PIM3 knockout decreased hepatoblastoma cancer cell stemness as evidenced by decreased tumorsphere formation, decreased mRNA abundance of stemness markers, and decreased cell surface expression of CD133, a marker of hepatoblastoma stem cell-like cancer cells. Reintroduction of PIM3 into PIM3 knockout cells rescued the malignant phenotype. Successful CRISPR/Cas9 knockout of PIM3 kinase in human hepatoblastoma cells confirmed the role of PIM3 in promoting hepatoblastoma tumorigenesis and cancer cell stemness.

RevDate: 2022-05-18

Lee HJ, Kim HJ, Park YJ, et al (2022)

Efficient Single-Nucleotide Microbial Genome Editing Achieved Using CRISPR/Cpf1 with Maximally 3'-End-Truncated crRNAs.

ACS synthetic biology [Epub ahead of print].

Mismatch tolerance, a cause of the off-target effect, impedes accurate genome editing with the CRISPR/Cas system. Herein, we observed that oligonucleotide-directed single-base substitutions could be rarely introduced in the microbial genome using CRISPR/Cpf1-mediated negative selection. Because crRNAs have the ability to recognize and discriminate among specific target DNA sequences, we systematically compared the effects of modified crRNAs with 3'-end nucleotide truncations and a single mismatch on the genomic cleavage activity of FnCpf1 inEscherichia coli. Five nucleotides could be maximally truncated at the crRNA 3'-end for the efficient cleavage of the DNA targets of galK and xylB in the cells. However, target cleavage in the genome was inefficient when a single mismatch was simultaneously introduced in the maximally 3'-end-truncated crRNA. Based on these results, we assumed that the maximally truncated crRNA-Cpf1 complex can distinguish between single-base-edited and unedited targets in vivo. Compared to other crRNAs with shorter truncations, maximally 3'-end-truncated crRNAs showed highly efficient single-base substitutions (>80%) in the DNA targets of galK and xylB. Furthermore, the editing efficiency for the 24 bases in both galK and xylB showed success rates of 79 and 50%, respectively. We successfully introduced single-nucleotide indels in galK and xylB with editing efficiencies of 79 and 62%, respectively. Collectively, the maximally truncated crRNA-Cpf1 complex could perform efficient base and nucleotide editing regardless of the target base location or mutation type; this system is a simple and efficient tool for microbial genome editing, including indel correction, at the single-nucleotide resolution.

RevDate: 2022-05-18

Vento JM, CL Beisel (2022)

Genome Editing with Cas9 in Lactobacilli.

Methods in molecular biology (Clifton, N.J.), 2479:245-261.

The bacterial genus Lactobacillus comprises a vast range of strains with varying metabolic and probiotic traits, with genome editing representing an essential tool to probe genotype-phenotype relationships and enhance their beneficial properties. Currently, one of the most effective means of genome editing in bacteria couples low-efficiency recombineering with high-efficiency counterselection by nucleases from CRISPR-Cas systems. In lactobacilli, several CRISPR-based genome editing methods exist that have shown varying success in different strains. Here, we detail a fast and simple approach using two shuttle vectors encoding a recombineering template as well as the Streptococcus pyogenes Cas9, a trans-activating RNA, and a CRISPR array. We provide a step-by-step procedure for cloning the shuttle vectors, sequentially transforming the vectors into lactobacilli, screening for the desired edit, and finally clearing the shuttle vectors from the mutant strain. As CRISPR-based genome editing in bacteria can fail for various reasons, we also lay out instructions for probing mechanisms of escape. Finally, we include practical notes along the way to facilitate each stage of genome editing, and we illustrate the technique using a representative edit in a strain of Lactobacillus plantarum. Overall, this method should serve as a complete guide to performing genome editing in lactobacilli.

RevDate: 2022-05-18

Xu T, Tao X, Kempher ML, et al (2022)

Cas9 Nickase-Based Genome Editing in Clostridium cellulolyticum.

Methods in molecular biology (Clifton, N.J.), 2479:227-243.

Clostridium cellulolyticum is a model mesophilic, cellulolytic bacterium, with the potential to produce biofuels from lignocellulose. However, the natural cellulose utilization efficiency is quite low and, therefore, metabolically engineered strains with increased efficiency can decrease both the overall cost and time required for biofuel production. Traditional genetic tools are inefficient, expensive, and time-consuming, but recent developments in the use of CRISPR-Cas genetic editing systems have greatly expanded our ability to reprogram cells. Here we describe an established protocol enabling one-step versatile genome editing in C. cellulolyticum. It integrates Cas9 nickase (Cas9n) which introduces a single nick that triggers repair via homologous recombination (SNHR) to edit genomic loci with high efficiency and accuracy. This one-step editing is achieved by transforming an all-in-one vector to coexpress Cas9n and a single guide RNA (gRNA) and carries a user-defined homologous donor template to promote SNHR at a desired target site. Additionally, this system has high specificity and allows for various types of genomic editing, including markerless insertions, deletions, substitutions, and even multiplex editing.

RevDate: 2022-05-18

Tan LL, Heng E, Zulkarnain N, et al (2022)

CRISPR/Cas-Mediated Genome Editing of Streptomyces.

Methods in molecular biology (Clifton, N.J.), 2479:207-225.

Streptomyces are an important source and reservoir of natural products with diverse applications in medicine, agriculture, and food. Engineered Streptomyces strains have also proven to be functional chassis for the discovery and production of bioactive compounds and enzymes. However, genetic engineering of Streptomyces is often laborious and time-consuming. Here we describe protocols for CRISPR/Cas-mediated genome editing of Streptomyces. Starting from the design and assembly of all-in-one CRISPR/Cas constructs for efficient double-strand break-mediated genome editing, we also present protocols for intergeneric conjugation, CRISPR/Cas plasmid curing, and validation of edited strains.

RevDate: 2022-05-18

Luo G, Najafi J, Correia PMP, et al (2022)

Accelerated Domestication of New Crops: Yield is Key.

Plant & cell physiology pii:6588025 [Epub ahead of print].

Sustainable agriculture in the future will depend on crops that are tolerant to biotic and abiotic stresses, require minimal input of water and nutrients, and can be cultivated with a minimal carbon footprint. Wild plants that fulfil these requirements abound in nature but are typically low yielding. Thus, replacing current high-yielding crops with less productive but resilient species will require the intractable trade-off of increasing land area under cultivation to produce the same yield. Cultivating more land reduces natural resources, reduces biodiversity, and increases our carbon footprint. Sustainable intensification can be achieved by increasing yield in underutilized or wild plant species that are already resilient but achieving this goal by conventional breeding programs may be a long-term prospect. De novo domestication of orphan or crop wild relatives using mutagenesis is an alternative and fast approach to achieve resilient crops with high yield. With new precise molecular techniques it should be possible to reach economically sustainable yields in a much shorter period of time than ever before in the history of agriculture.

RevDate: 2022-05-17

Sansbury BM, Hewes AM, Tharp OM, et al (2022)

Homology directed correction, a new pathway model for point mutation repair catalyzed by CRISPR-Cas.

Scientific reports, 12(1):8132.

Gene correction is often referred to as the gold standard for precise gene editing and while CRISPR-Cas systems continue to expand the toolbox for clinically relevant genetic repair, mechanistic hurdles still hinder widespread implementation. One of the most prominent challenges to precise CRISPR-directed point mutation repair centers on the prevalence of on-site mutagenesis, wherein insertions and deletions appear at the targeted site following correction. Here, we introduce a pathway model for Homology Directed Correction, specifically point mutation repair, which enables a foundational analysis of genetic tools and factors influencing precise gene editing. To do this, we modified an in vitro gene editing system which utilizes a cell-free extract, CRISPR-Cas RNP and donor DNA template to catalyze point mutation repair. We successfully direct correction of four unique point mutations which include two unique nucleotide mutations at two separate targeted sites and visualize the repair profiles resulting from these reactions. This extension of the cell-free gene editing system to model point mutation repair may provide insight for understanding the factors influencing precise point mutation correction.

RevDate: 2022-05-17

Zhang L, Zhao X, Hu X, et al (2022)

Probing low abundant DNA methylation by CRISPR-Cas12a-assisted cascade exponential amplification.

The Analyst [Epub ahead of print].

Aberrant DNA methylation plays a pivotal role in tumor development and metastasis, and is regarded as a valuable non-invasive cancer biomarker. However, the sensitive and accurate quantification of DNA methylation from clinical samples remains a challenge. Herein, we propose an easy-to-operate Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system Assisted Methylation (CAM) approach for the sensitive detection of DNA methylation through the integration of rolling circle amplification and CRISPR-Cas12a-assisted cascade amplification. Briefly, bisulfite was employed to prepare the clinical samples so that the methylated DNA sequences trigger the subsequent triple signal amplifications, whilst the normal counterparts do not. The triple signal amplification procedure consists of methylated DNA sequence-based rolling circle amplification for a preliminary signal enhancement, a nicking enzyme-initiated target cleavage for a secondary amplification, and CRISPR-Cas12a enzyme-mediated trans-cleavage for a tertiary signal enhancement. This proposed approach reveals high sensitivity, which can even distinguish as low as 0.01% methylation levels from mixtures, paving the way towards the acceleration of methylation-based cancer diagnostics and management.

RevDate: 2022-05-16

Panda G, A Ray (2022)

Decrypting the mechanistic basis of CRISPR/Cas9 protein.

Progress in biophysics and molecular biology pii:S0079-6107(22)00046-3 [Epub ahead of print].

CRISPR/Cas system, a newly but extensively investigated genome-editing method, harbors practical solutions for various genetic problems. It relies on short guide RNAs (gRNAs) to recruit the Cas9 protein, a DNA cleaving enzyme, to its genomic target DNAs. The Cas9 enzyme exhibits some unique properties, like the ability to differentiate self vs. non-self - DNA strands using the base-pairing potential of crRNA, i.e., only CRISPR DNA is entirely complementary to the CRISPR repeat sequences at the crRNA whereas the presence of mismatches in the upstream region of the spacer permit CRISPR interference which is inhibited in case of CRISPR-DNA, allosteric regulation in its domains, and domain reorientation on sgRNA binding. Several groups have contributed their efforts in understanding the functioning of the CRISPR/Cas system, but even then, there is a lot more to explore in this area. The structural and sequence-based understanding of the whole CRISPR-associated bacterial ortholog family landscape is still ambiguous. A better understanding of the underlying energetics of the CRISPR/Cas9 system should reveal critical parameters to design better CRISPR/Cas9s.

RevDate: 2022-05-17
CmpDate: 2022-05-17

Shankar C, Vasudevan K, Jacob JJ, et al (2022)

Hybrid Plasmids Encoding Antimicrobial Resistance and Virulence Traits Among Hypervirulent Klebsiella pneumoniae ST2096 in India.

Frontiers in cellular and infection microbiology, 12:875116.

Background: Hypervirulent variants of Klebsiella pneumoniae (HvKp) were typically associated with a broadly antimicrobial susceptible clone of sequence type (ST) 23 at the time of its emergence. Concerningly, HvKp is now also emerging within multidrug-resistant (MDR) clones, including ST11, ST15, and ST147. MDR-HvKp either carry both the virulence and resistance plasmids or carry a large hybrid plasmid coding for both virulence and resistance determinants. Here, we aimed to genetically characterize a collection of MDR-HvKp ST2096 isolates haboring hybrid plasmids carrying both antimicrobial resistance (AMR) and virulence genes.

Methods: Nine K. pneumoniae ST2096 isolated over 1 year from the blood sample of hospitalized patients in southern India that were MDR and suspected to be HvKp were selected. All nine isolates were subjected to short-read whole-genome sequencing; a subset (n = 4) was additionally subjected to long-read sequencing to obtain complete genomes for characterization. Mucoviscosity assay was also performed for phenotypic assessment.

Results: Among the nine isolates, seven were carbapenem-resistant, two of which carried bla NDM-5 on an IncFII plasmid and five carried bla OXA-232 on a ColKP3 plasmid. The organisms were confirmed as HvKp, with characteristic virulence genes (rmpA2, iutA, and iucABCD) carried on a large (~320 kbp) IncFIB-IncHI1B co-integrate. This hybrid plasmid also carried the aadA2, armA, bla OXA-1, msrE, mphE, sul1, and dfrA14 AMR genes in addition to the heavy-metal resistance genes. The hybrid plasmid showed about 60% similarity to the IncHI1B virulence plasmid of K. pneumoniae SGH10 and ~70% sequence identity with the first identified IncHI1B pNDM-MAR plasmid. Notably, the hybrid plasmid carried its type IV-A3 CRISPR-Cas system which harbored spacer regions against traL of IncF plasmids, thereby preventing their acquisition.

Conclusion: The convergence of virulence and AMR is clinically concerning in K. pneumoniae. Our data highlight the role of hybrid plasmids carrying both AMR and virulence genes in K. pneumoniae ST2096, suggesting that MDR-HvKp is not confined to selected clones; we highlight the continued emergence of such genotypes across the species. The convergence is occurring globally amidst several clones and is of great concern to public health.

RevDate: 2022-05-16

Kath J, Du W, Pruene A, et al (2022)

Pharmacological interventions enhance virus-free generation of TRAC-replaced CAR T cells.

Molecular therapy. Methods & clinical development, 25:311-330 pii:S2329-0501(22)00051-1.

Chimeric antigen receptor (CAR) redirected T cells are potent therapeutic options against hematological malignancies. The current dominant manufacturing approach for CAR T cells depends on retroviral transduction. With the advent of gene editing, insertion of a CD19-CAR into the T cell receptor (TCR) alpha constant (TRAC) locus using adeno-associated viruses for gene transfer was demonstrated, and these CD19-CAR T cells showed improved functionality over their retrovirally transduced counterparts. However, clinical-grade production of viruses is complex and associated with extensive costs. Here, we optimized a virus-free genome-editing method for efficient CAR insertion into the TRAC locus of primary human T cells via nuclease-assisted homology-directed repair (HDR) using CRISPR-Cas and double-stranded template DNA (dsDNA). We evaluated DNA-sensor inhibition and HDR enhancement as two pharmacological interventions to improve cell viability and relative CAR knockin rates, respectively. While the toxicity of transfected dsDNA was not fully prevented, the combination of both interventions significantly increased CAR knockin rates and CAR T cell yield. Resulting TRAC-replaced CD19-CAR T cells showed antigen-specific cytotoxicity and cytokine production in vitro and slowed leukemia progression in a xenograft mouse model. Amplicon sequencing did not reveal significant indel formation at potential off-target sites with or without exposure to DNA-repair-modulating small molecules. With TRAC-integrated CAR+ T cell frequencies exceeding 50%, this study opens new perspectives to exploit pharmacological interventions to improve non-viral gene editing in T cells.

RevDate: 2022-05-16

Abdullah M, Okemo P, Furtado A, et al (2022)

Potential of Genome Editing to Capture Diversity From Australian Wild Rice Relatives.

Frontiers in genome editing, 4:875243 pii:875243.

Rice, a staple food worldwide and a model crop, could benefit from the introduction of novel genetics from wild relatives. Wild rice in the AA genome group closely related to domesticated rice is found across the tropical world. Due to their locality outside the range of domesticated rice, Australian wild rice populations are a potential source of unique traits for rice breeding. These rice species provide a diverse gene pool for improvement that could be utilized for desirable traits such as stress resistance, disease tolerance, and nutritional qualities. However, they remain poorly characterized. The CRISPR/Cas system has revolutionized gene editing and has improved our understanding of gene functions. Coupled with the increasing availability of genomic information on the species, genes in Australian wild rice could be modified through genome editing technologies to produce new domesticates. Alternatively, beneficial alleles from these rice species could be incorporated into cultivated rice to improve critical traits. Here, we summarize the beneficial traits in Australian wild rice, the available genomic information and the potential of gene editing to discover and understand the functions of novel alleles. Moreover, we discuss the potential domestication of these wild rice species for health and economic benefits to rice production globally.

RevDate: 2022-05-16

Nieland L, van Solinge TS, Cheah PS, et al (2022)

CRISPR-Cas knockout of miR21 reduces glioma growth.

Molecular therapy oncolytics, 25:121-136 pii:S2372-7705(22)00053-5.

Non-coding RNAs, including microRNAs (miRNAs), support the progression of glioma. miR-21 is a small, non-coding transcript involved in regulating gene expression in multiple cellular pathways, including the regulation of proliferation. High expression of miR-21 has been shown to be a major driver of glioma growth. Manipulating the expression of miRNAs is a novel strategy in the development of therapeutics in cancer. In this study we aimed to target miR-21. Using CRISPR genome-editing technology, we disrupted the miR-21 coding sequences in glioma cells. Depletion of this miRNA resulted in the upregulation of many downstream miR-21 target mRNAs involved in proliferation. Phenotypically, CRISPR-edited glioma cells showed reduced migration, invasion, and proliferation in vitro. In immunocompetent mouse models, miR-21 knockout tumors showed reduced growth resulting in an increased overall survival. In summary, we show that by knocking out a key miRNA in glioma, these cells have decreased proliferation capacity both in vitro and in vivo. Overall, we identified miR-21 as a potential target for CRISPR-based therapeutics in glioma.

RevDate: 2022-05-16

Christian A (2022)

Addressing Conflicts of Interest and Conflicts of Commitment in Public Advocacy and Policy Making on CRISPR/Cas-Based Human Genome Editing.

Frontiers in research metrics and analytics, 7:775336.

Leading experts on CRISPR/Cas-based genome editing-such as 2020 Nobel laureates Jennifer Doudna and Emmanuelle Charpentier-are not only renowned specialists in their fields, but also public advocates for upcoming regulatory frameworks on CRISPR/Cas. These frameworks will affect large portions of biomedical research on human genome editing. In advocating for particular ways of handling the risks and prospects of this technology, high-profile scientists not only serve as scientific experts, but also as moral advisers. The majority of them currently intend to bring about a "responsible pathway" toward human genome interventions in clinical therapy. Engaging in advocacy for such a pathway, they issue moral judgments on the risks and benefits of this new technology. They declare that there actually is a responsible pathway, they draft resolutions on temporary moratoria, they make judgments on which groups and individuals are credible and should participate in public and semi-public debates, so they also set the standards for deciding who counts as well-informed, as well as the standards of evidence for adopting or rejecting research policies. This degree of influence on public debates and policy making is, at the very least, noteworthy. This contribution sounds a note of caution with regard to the endeavor of a responsible pathway to human genome editing and in particular scrutinizes the legitimacy of expert-driven research policies given commercial conflicts of interest and conflicts of commitment among first-rank scholars.

RevDate: 2022-05-15

Islam MM, D Koirala (2022)

Toward a next-generation diagnostic tool: A review on emerging isothermal nucleic acid amplification techniques for the detection of SARS-CoV-2 and other infectious viruses.

Analytica chimica acta, 1209:339338.

As the COVID-19 pandemic continues to affect human health across the globe rapid, simple, point-of-care (POC) diagnosis of infectious viruses such as SARS-CoV-2 remains challenging. Polymerase chain reaction (PCR)-based diagnosis has risen to meet these demands and despite its high-throughput and accuracy, it has failed to gain traction in the rapid, low-cost, point-of-test settings. In contrast, different emerging isothermal amplification-based detection methods show promise in the rapid point-of-test market. In this comprehensive study of the literature, several promising isothermal amplification methods for the detection of SARS-CoV-2 are critically reviewed that can also be applied to other infectious viruses detection. Starting with a brief discussion on the SARS-CoV-2 structure, its genomic features, and the epidemiology of the current pandemic, this review focuses on different emerging isothermal methods and their advancement. The potential of isothermal amplification combined with the revolutionary CRISPR/Cas system for a more powerful detection tool is also critically reviewed. Additionally, the commercial success of several isothermal methods in the pandemic are highlighted. Different variants of SARS-CoV-2 and their implication on isothermal amplifications are also discussed. Furthermore, three most crucial aspects in achieving a simple, fast, and multiplexable platform are addressed.

RevDate: 2022-05-18
CmpDate: 2022-05-18

Cai P, Han M, Zhang R, et al (2022)

SynBioStrainFinder: A microbial strain database of manually curated CRISPR/Cas genetic manipulation system information for biomanufacturing.

Microbial cell factories, 21(1):87.

BACKGROUND: Microbial strain information databases provide valuable data for microbial basic research and applications. However, they rarely contain information on the genetic operating system of microbial strains.

RESULTS: We established a comprehensive microbial strain database, SynBioStrainFinder, by integrating CRISPR/Cas gene-editing system information with cultivation methods, genome sequence data, and compound-related information. It is presented through three modules, Strain2Gms/PredStrain2Gms, Strain2BasicInfo, and Strain2Compd, which combine to form a rapid strain information query system conveniently curated, integrated, and accessible on a single platform. To date, 1426 CRISPR/Cas gene-editing records of 157 microbial strains have been manually extracted from the literature in the Strain2Gms module. For strains without established CRISPR/Cas systems, the PredStrain2Gms module recommends the system of the most closely related strain as a reference to facilitate the construction of a new CRISPR/Cas gene-editing system. The database contains 139,499 records of strain cultivation and genome sequences, and 773,298 records of strain-related compounds. To facilitate simple and intuitive data application, all microbial strains are also labeled with stars based on the order and availability of strain information. SynBioStrainFinder provides a user-friendly interface for querying, browsing, and visualizing detailed information on microbial strains, and it is publicly available at .

CONCLUSION: SynBioStrainFinder is the first microbial strain database with manually curated information on the strain CRISPR/Cas system as well as other microbial strain information. It also provides reference information for the construction of new CRISPR/Cas systems. SynBioStrainFinder will serve as a useful resource to extend microbial strain research and application for biomanufacturing.

RevDate: 2022-05-14

Chaudhary M, Mukherjee TK, Singh R, et al (2022)

CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update.

Molecular biology reports [Epub ahead of print].

BACKGROUND: The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system was initially identified in bacteria and archaea as a defense mechanism to confer immunity against phages. Later on, it was developed as a gene editing tool for both prokaryotic and eukaryotic cells including plant cells.

METHODS AND RESULTS: CRISPR/Cas9 approach has wider applications in reverse genetics as well as in crop improvement. Various characters involved in enhancing economic value and crop sustainability against biotic/abiotic stresses can be targeted through this tool. Currently, CRISPR/Cas9 gene editing mechanism has been applied on around 20 crop species for improvement in several traits including yield enhancement and resistance against biotic and abiotic stresses. In the last five years, maximum genome editing research has been validated in rice, wheat, maize and soybean. Genes targeted in these plants has been involved in causing male sterility, conferring resistance against pathogens or having certain nutritional value.

CONCLUSIONS: Current review summarizes various applications of CRISPR/Cas system and its future prospects in plant biotechnology targeting crop improvement with higher yield, disease tolerance and enhanced nutritional value.

RevDate: 2022-05-18
CmpDate: 2022-05-17

Quéré M, Alberto JM, Broly F, et al (2022)

ALDH1L2 Knockout in U251 Glioblastoma Cells Reduces Tumor Sphere Formation by Increasing Oxidative Stress and Suppressing Methionine Dependency.

Nutrients, 14(9):.

Previously, the in vitro growth of cancer stem cells in the form of tumor spheres from five different brain cancer cell lines was found to be methionine-dependent. As this earlier work indicated that ALDH1L2, a folate-dependent mitochondria aldehyde dehydrogenase gene, is upregulated in glioblastoma stem cells, we invalidated this gene using CRISPR-cas 9 technique in this present work. We reported here that this invalidation was effective in U251 glioblastoma cells, and no cas9 off target site could be detected by genome sequencing of the two independent knockout targeting either exon I or exon III. The knockout of ALDH1L2 gene in U251 cells rendered the growth of the cancer stem cells of U251 methionine independent. In addition, a much higher ROS (reactive oxygen radicals) level can be detected in the knockout cells compared to the wild type cells. Our evidence here linked the excessive ROS level of the knockout cells to reduced total cellular NADPH. Our evidence suggested also that the cause of the slower growth of the knockout turmor sphere may be related to its partial differentiation.

RevDate: 2022-05-18
CmpDate: 2022-05-17

Gómez-García F, Martínez-Pulleiro R, Carrera N, et al (2022)

Genetic Kidney Diseases (GKDs) Modeling Using Genome Editing Technologies.

Cells, 11(9):.

Genetic kidney diseases (GKDs) are a group of rare diseases, affecting approximately about 60 to 80 per 100,000 individuals, for which there is currently no treatment that can cure them (in many cases). GKDs usually leads to early-onset chronic kidney disease, which results in patients having to undergo dialysis or kidney transplant. Here, we briefly describe genetic causes and phenotypic effects of six GKDs representative of different ranges of prevalence and renal involvement (ciliopathy, glomerulopathy, and tubulopathy). One of the shared characteristics of GKDs is that most of them are monogenic. This characteristic makes it possible to use site-specific nuclease systems to edit the genes that cause GKDs and generate in vitro and in vivo models that reflect the genetic abnormalities of GKDs. We describe and compare these site-specific nuclease systems (zinc finger nucleases (ZFNs), transcription activator-like effect nucleases (TALENs) and regularly clustered short palindromic repeat-associated protein (CRISPR-Cas9)) and review how these systems have allowed the generation of cellular and animal GKDs models and how they have contributed to shed light on many still unknown fields in GKDs. We also indicate the main obstacles limiting the application of these systems in a more efficient way. The information provided here will be useful to gain an accurate understanding of the technological advances in the field of genome editing for GKDs, as well as to serve as a guide for the selection of both the genome editing tool and the gene delivery method most suitable for the successful development of GKDs models.

RevDate: 2022-05-18
CmpDate: 2022-05-17

Feser CJ, Lees CJ, Lammers DT, et al (2022)

Engineering CRISPR/Cas9 for Multiplexed Recombinant Coagulation Factor Production.

International journal of molecular sciences, 23(9):.

Current hemostatic agents are obtained from pooled plasma from multiple donors requiring costly pathogen screening and processing. Recombinant DNA-based production represents an engineering solution that could improve supply, uniformity, and safety. Current approaches are typically for single gene candidate peptides and often employ non-human cells. We devised an approach where multiple gene products could be produced from a single population of cells. We identified gene specific Synergistic Activation Mediators (SAM) from the CRISPR/Cas9 system for targeted overexpression of coagulation factors II, VII, IX, X, and fibrinogen. The components of the CRISPR-SAM system were expressed in Human Embryonic Kidney Cells (HEK293), and single (singleplex) or multi-gene (multiplex) upregulation was assessed by quantitative RT-PCR (qRT-PCR) and protein expression by ELISA analysis. Factor II, VII, IX, and X singleplex and multiplex activation resulted in 120-4700-fold and 60-680-fold increases in gene expression, respectively. Fibrinogen sub-unit gene activation resulted in a 1700-92,000-fold increases and 80-5500-fold increases in singleplex or multiplex approaches, respectively. ELISA analysis showed a concomitant upregulation of candidate gene products. Our findings demonstrate the capability of CRISPR/Cas9 SAMs for single or multi-agent production in human cells and represent an engineering advance that augments current recombinant peptide production techniques.

RevDate: 2022-05-18
CmpDate: 2022-05-17

Shin NR, Shin YH, Kim HS, et al (2022)

Function Analysis of the PR55/B Gene Related to Self-Incompatibility in Chinese Cabbage Using CRISPR/Cas9.

International journal of molecular sciences, 23(9):.

Chinese cabbage, a major crop in Korea, shows self-incompatibility (SI). SI is controlled by the type 2A serine/threonine protein phosphatases (PP2As). The PP2A gene is controlled by regulatory subunits that comprise a 36 kDa catalyst C subunit, a 65 kDa regulatory A subunit, and a variety of regulatory B subunits (50-70 kDa). Among them, the PP2A 55 kDa B regulatory subunit (PR55/B) gene located in the A05 chromosome has 13 exons spanning 2.9 kb, and two homologous genes, Bra018924 and Bra014296, were found to be present on the A06 and A08 chromosome, respectively. In this study, we performed a functional analysis of the PR55/B gene using clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9 (CRISPR/Cas9)-mediated gene mutagenesis. CRISPR/Cas9 technology can be used to easily introduce mutations in the target gene. Tentative gene-edited lines were generated by the Agrobacterium-mediated transfer and were selected by PCR and Southern hybridization analysis. Furthermore, pods were confirmed to be formed in flower pollination (FP) as well as bud pollination (BP) in some gene-edited lines. Seed fertility of gene-edited lines indicated that the PR55/B gene plays a key role in SI. Finally, self-compatible T-DNA-free T2 gene-edited plants and edited sequences of target genes were secured. The self-compatible Chinese cabbage developed in this study is expected to contribute to Chinese cabbage breeding.

RevDate: 2022-05-18
CmpDate: 2022-05-17

Fischer B, Schmidt V, Ly TD, et al (2022)

First Characterization of Human Dermal Fibroblasts Showing a Decreased Xylosyltransferase-I Expression Induced by the CRISPR/Cas9 System.

International journal of molecular sciences, 23(9):.

BACKGROUND: Xylosyltransferases-I and II (XT-I and XT-II) catalyze the initial and rate limiting step of the proteoglycan (PG) biosynthesis and therefore have an import impact on the homeostasis of the extracellular matrix (ECM). The reason for the occurrence of two XT-isoforms in all higher organisms remains unknown and targeted genome-editing strategies could shed light on this issue.

METHODS: XT-I deficient neonatal normal human dermal fibroblasts were generated by using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated proteins (Cas) 9 system. We analyzed if a reduced XT-I activity leads to abnormalities regarding ECM-composition, myofibroblast differentiation, cellular senescence and skeletal and cartilage tissue homeostasis.

RESULTS: We successfully introduced compound heterozygous deletions within exon 9 of the XYLT1 gene. Beside XYLT1, we detected altered gene-expression levels of further, inter alia ECM-related, genes. Our data further reveal a dramatically reduced XT-I protein activity. Abnormal myofibroblast-differentiation was demonstrated by elevated alpha-smooth muscle actin expression on both, mRNA- and protein level. In addition, wound-healing capability was slightly delayed. Furthermore, we observed an increased cellular-senescence of knockout cells and an altered expression of target genes knowing to be involved in skeletonization.

CONCLUSION: Our data show the tremendous relevance of the XT-I isoform concerning myofibroblast-differentiation and ECM-homeostasis as well as the pathophysiology of skeletal disorders.

RevDate: 2022-05-18
CmpDate: 2022-05-17

Yao M, Ren T, Pan Y, et al (2022)

A New Generation of Lineage Tracing Dynamically Records Cell Fate Choices.

International journal of molecular sciences, 23(9):.

Reconstructing the development of lineage relationships and cell fate mapping has been a fundamental problem in biology. Using advanced molecular biology and single-cell RNA sequencing, we have profiled transcriptomes at the single-cell level and mapped cell fates during development. Recently, CRISPR/Cas9 barcode editing for large-scale lineage tracing has been used to reconstruct the pseudotime trajectory of cells and improve lineage tracing accuracy. This review presents the progress of the latest CbLT (CRISPR-based Lineage Tracing) and discusses the current limitations and potential technical pitfalls in their application and other emerging concepts.

RevDate: 2022-05-18
CmpDate: 2022-05-17

Moniruzzaman M, Zhong Y, Huang Z, et al (2022)

Having a Same Type IIS Enzyme's Restriction Site on Guide RNA Sequence Does Not Affect Golden Gate (GG) Cloning and Subsequent CRISPR/Cas Mutagenesis.

International journal of molecular sciences, 23(9):.

Golden gate/modular cloning facilitates faster and more efficient cloning by utilizing the unique features of the type IIS restriction enzymes. However, it is known that targeted insertion of DNA fragment(s) must not include internal type IIS restriction recognition sites. In the case of cloning CRISPR constructs by using golden gate (GG) cloning, this narrows down the scope of guide RNA (gRNA) picks because the selection of a good gRNA for successful genome editing requires some obligation of fulfillment, and it is unwanted if a good gRNA candidate cannot be picked only because it has an internal type IIS restriction recognition site. In this article, we have shown that the presence of a type IIS restriction recognition site in a gRNA does not affect cloning and subsequent genome editing. After each step of GG reactions, correct insertions of gRNAs were verified by colony color and restriction digestion and were further confirmed by sequencing. Finally, the final vector containing a Cas12a nuclease and four gRNAs was used for Agrobacterium-mediated citrus cell transformation. Sequencing of PCR amplicons flanking gRNA-2 showed a substitution (C to T) mutation in transgenic plants. The knowledge derived from this study could widen the scope of GG cloning, particularly of gRNAs selection for GG-mediated cloning into CRISPR vectors.

RevDate: 2022-05-18
CmpDate: 2022-05-17

Tian J, Xing B, Li M, et al (2022)

Efficient Large-Scale and Scarless Genome Engineering Enables the Construction and Screening of Bacillus subtilis Biofuel Overproducers.

International journal of molecular sciences, 23(9):.

Bacillus subtilis is a versatile microbial cell factory that can produce valuable proteins and value-added chemicals. Long fragment editing techniques are of great importance for accelerating bacterial genome engineering to obtain desirable and genetically stable host strains. Herein, we develop an efficient CRISPR-Cas9 method for large-scale and scarless genome engineering in the Bacillus subtilis genome, which can delete up to 134.3 kb DNA fragments, 3.5 times as long as the previous report, with a positivity rate of 100%. The effects of using a heterologous NHEJ system, linear donor DNA, and various donor DNA length on the engineering efficiencies were also investigated. The CRISPR-Cas9 method was then utilized for Bacillus subtilis genome simplification and construction of a series of individual and cumulative deletion mutants, which are further screened for overproducer of isobutanol, a new generation biofuel. These results suggest that the method is a powerful genome engineering tool for constructing and screening engineered host strains with enhanced capabilities, highlighting the potential for synthetic biology and metabolic engineering.

RevDate: 2022-05-18
CmpDate: 2022-05-17

Toinga-Villafuerte S, Vales MI, Awika JM, et al (2022)

CRISPR/Cas9-Mediated Mutagenesis of the Granule-Bound Starch Synthase Gene in the Potato Variety Yukon Gold to Obtain Amylose-Free Starch in Tubers.

International journal of molecular sciences, 23(9):.

Potato (Solanum tuberosum L.) is the third most important food crop after rice and wheat. Its tubers are a rich source of dietary carbohydrates in the form of starch, which has many industrial applications. Starch is composed of two polysaccharides, amylose and amylopectin, and their ratios determine different properties and functionalities. Potato varieties with higher amylopectin have many food processing and industrial applications. Using Agrobacterium-mediated transformation, we delivered Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) reagents to potato (variety Yukon Gold) cells to disrupt the granule-bound starch synthase (gbssI) gene with the aim of eliminating the amylose component of starch. Lugol-Iodine staining of the tubers showed a reduction or complete elimination of amylose in some of the edited events. These results were further confirmed by the perchloric acid and enzymatic methods. One event (T2-7) showed mutations in all four gbss alleles and total elimination of amylose from the tubers. Viscosity profiles of the tuber starch from six different knockout events were determined using a Rapid Visco Analyzer (RVA), and the values reflected the amylopectin/amylose ratio. Follow-up studies will focus on eliminating the CRISPR components from the events and on evaluating the potential of clones with various amylose/amylopectin ratios for food processing and other industrial applications.

RevDate: 2022-05-18
CmpDate: 2022-05-17

Wang YY, Hsu SH, Tsai HY, et al (2022)

Transcriptomic and Proteomic Analysis of CRISPR/Cas9-Mediated ARC-Knockout HEK293 Cells.

International journal of molecular sciences, 23(9):.

Arc/Arg3.1 (activity-regulated cytoskeletal-associated protein (ARC)) is a critical regulator of long-term synaptic plasticity and is involved in the pathophysiology of schizophrenia. The functions and mechanisms of human ARC action are poorly understood and worthy of further investigation. To investigate the function of the ARC gene in vitro, we generated an ARC-knockout (KO) HEK293 cell line via CRISPR/Cas9-mediated gene editing and conducted RNA sequencing and label-free LC-MS/MS analysis to identify the differentially expressed genes and proteins in isogenic ARC-KO HEK293 cells. Furthermore, we used bioluminescence resonance energy transfer (BRET) assays to detect interactions between the ARC protein and differentially expressed proteins. Genetic deletion of ARC disturbed multiple genes involved in the extracellular matrix and synaptic membrane. Seven proteins (HSPA1A, ENO1, VCP, HMGCS1, ALDH1B1, FSCN1, and HINT2) were found to be differentially expressed between ARC-KO cells and ARC wild-type cells. BRET assay results showed that ARC interacted with PSD95 and HSPA1A. Overall, we found that ARC regulates the differential expression of genes involved in the extracellular matrix, synaptic membrane, and heat shock protein family. The transcriptomic and proteomic profiles of ARC-KO HEK293 cells presented here provide new evidence for the mechanisms underlying the effects of ARC and molecular pathways involved in schizophrenia pathophysiology.

RevDate: 2022-05-13

Wang JY, Pausch P, JA Doudna (2022)

Structural biology of CRISPR-Cas immunity and genome editing enzymes.

Nature reviews. Microbiology [Epub ahead of print].

CRISPR-Cas systems provide resistance against foreign mobile genetic elements and have a wide range of genome editing and biotechnological applications. In this Review, we examine recent advances in understanding the molecular structures and mechanisms of enzymes comprising bacterial RNA-guided CRISPR-Cas immune systems and deployed for wide-ranging genome editing applications. We explore the adaptive and interference aspects of CRISPR-Cas function as well as open questions about the molecular mechanisms responsible for genome targeting. These structural insights reflect close evolutionary links between CRISPR-Cas systems and mobile genetic elements, including the origins and evolution of CRISPR-Cas systems from DNA transposons, retrotransposons and toxin-antitoxin modules. We discuss how the evolution and structural diversity of CRISPR-Cas systems explain their functional complexity and utility as genome editing tools.

RevDate: 2022-05-13

Worthington AK, EC Forsberg (2022)

A CRISPR View of Hematopoietic Stem Cells: Moving Innovative Bioengineering into the Clinic.

American journal of hematology [Epub ahead of print].

CRISPR/Cas genome engineering has emerged as a powerful tool to modify precise genomic sequences with unparalleled accuracy and efficiency. Major advances in CRISPR technologies over the last five years have fueled the development of novel techniques in hematopoiesis research to interrogate the complexities of hematopoietic stem cell (HSC) biology. In particular, high throughput CRISPR based screens using various "flavors" of Cas coupled with sequencing and/or functional outputs are becoming increasingly efficient and accessible. In this review, we discuss recent achievements in CRISPR-mediated genomic engineering and how these new tools have advanced the understanding of HSC heterogeneity and function throughout life. Additionally, we highlight how these techniques can be used to answer previously inaccessible questions and the challenges to implement them. Finally, we focus on their translational potential to both model and treat hematological diseases in the clinic. This article is protected by copyright. All rights reserved.

RevDate: 2022-05-16

Mandal S, Ghorai M, Anand U, et al (2022)

Cytokinins: A Genetic Target for Increasing Yield Potential in the CRISPR Era.

Frontiers in genetics, 13:883930.

Over the last decade, remarkable progress has been made in our understanding the phytohormones, cytokinin's (CKs) biosynthesis, perception, and signalling pathways. Additionally, it became apparent that interfering with any of these steps has a significant effect on all stages of plant growth and development. As a result of their complex regulatory and cross-talk interactions with other hormones and signalling networks, they influence and control a wide range of biological activities, from cellular to organismal levels. In agriculture, CKs are extensively used for yield improvement and management because of their wide-ranging effects on plant growth, development and physiology. One of the primary targets in this regard is cytokinin oxidase/dehydrogenase (CKO/CKX), which is encoded by CKX gene, which catalyses the irreversible degradation of cytokinin. The previous studies on various agronomically important crops indicated that plant breeders have targeted CKX directly. In recent years, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been increasingly used in editing the CKO/CKX gene and phenomenal results have been achieved. This review provides an updated information on the applications of CRISPR-based gene-editing tools in manipulating cytokinin metabolism at the genetic level for yield improvement. Furthermore, we summarized the current developments of RNP-mediated DNA/transgene-free genomic editing of plants which would broaden the application of this technology. The current review will advance our understanding of cytokinins and their role in sustainably increase crop production through CRISPR/Cas genome editing tool.

RevDate: 2022-05-16

Rahman F, Mishra A, Gupta A, et al (2022)

Spatiotemporal Regulation of CRISPR/Cas9 Enables Efficient, Precise, and Heritable Edits in Plant Genomes.

Frontiers in genome editing, 4:870108.

CRISPR/Cas-mediated editing has revolutionized crop engineering. Due to the broad scope and potential of this technology, many studies have been carried out in the past decade towards optimizing genome editing constructs. Clearly, the choice of the promoter used to drive gRNA and Cas9 expression is critical to achieving high editing efficiency, precision, and heritability. While some important considerations for choosing a promoter include the number and nature of targets, host organism, mode of transformation and goal of the experiment, spatiotemporal regulation of Cas9 expression using tissue-specific or inducible promoters enables higher heritability and efficiency of targeted mutagenesis with reduced off-target effects. In this review, we discuss specific studies that highlight the prospects and trade-offs associated with the choice of promoters on genome editing and emphasize the need for inductive exploration and discovery to further advance this area of research in crop plants.

RevDate: 2022-05-16

Ye J, Xi H, Chen Y, et al (2022)

Can SpRY recognize any PAM in human cells?.

Journal of Zhejiang University. Science. B, 23(5):382-391.

The application of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) can be limited due to a lack of compatible protospacer adjacent motif (PAM) sequences in the DNA regions of interest. Recently, SpRY, a variant of Streptococcus pyogenes Cas9 (SpCas9), was reported, which nearly completely fulfils the PAM requirement. Meanwhile, PAMs for SpRY have not been well addressed. In our previous study, we developed the PAM Definition by Observable Sequence Excision (PAM-DOSE) and green fluorescent protein (GFP)‍-reporter systems to study PAMs in human cells. Herein, we endeavored to identify the PAMs of SpRY with these two methods. The results indicated that 5'-NRN-3', 5'-NTA-3', and 5'-NCK-3' could be considered as canonical PAMs. 5'-NCA-3' and 5'-NTK-3' may serve as non-priority PAMs. At the same time, PAM of 5'-NYC-3' is not recommended for human cells. These findings provide further insights into the application of SpRY for human genome editing.

RevDate: 2022-05-17
CmpDate: 2022-05-17

Vicencio J, Sánchez-Bolaños C, Moreno-Sánchez I, et al (2022)

Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes.

Nature communications, 13(1):2601.

The requirement for Cas nucleases to recognize a specific PAM is a major restriction for genome editing. SpCas9 variants SpG and SpRY, recognizing NGN and NRN PAMs, respectively, have contributed to increase the number of editable genomic sites in cell cultures and plants. However, their use has not been demonstrated in animals. Here we study the nuclease activity of SpG and SpRY by targeting 40 sites in zebrafish and C. elegans. Delivered as mRNA-gRNA or ribonucleoprotein (RNP) complexes, SpG and SpRY were able to induce mutations in vivo, albeit at a lower rate than SpCas9 in equivalent formulations. This lower activity was overcome by optimizing mRNA-gRNA or RNP concentration, leading to mutagenesis at regions inaccessible to SpCas9. We also found that the CRISPRscan algorithm could help to predict SpG and SpRY targets with high activity in vivo. Finally, we applied SpG and SpRY to generate knock-ins by homology-directed repair. Altogether, our results expand the CRISPR-Cas targeting genomic landscape in animals.

RevDate: 2022-05-13

Zhang D, Wang G, Yu X, et al (2022)

Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy.

Nature nanotechnology [Epub ahead of print].

Genome editing holds great potential for cancer treatment due to the ability to precisely inactivate or repair cancer-related genes. However, delivery of CRISPR/Cas to solid tumours for efficient cancer therapy remains challenging. Here we targeted tumour tissue mechanics via a multiplexed dendrimer lipid nanoparticle (LNP) approach involving co-delivery of focal adhesion kinase (FAK) siRNA, Cas9 mRNA and sgRNA (siFAK + CRISPR-LNPs) to enable tumour delivery and enhance gene-editing efficacy. We show that gene editing was enhanced >10-fold in tumour spheroids due to increased cellular uptake and tumour penetration of nanoparticles mediated by FAK-knockdown. siFAK + CRISPR-PD-L1-LNPs reduced extracellular matrix stiffness and efficiently disrupted PD-L1 expression by CRISPR/Cas gene editing, which significantly inhibited tumour growth and metastasis in four mouse models of cancer. Overall, we provide evidence that modulating the stiffness of tumour tissue can enhance gene editing in tumours, which offers a new strategy for synergistic LNPs and other nanoparticle systems to treat cancer using gene editing.

RevDate: 2022-05-13

Li Y, Mensah EO, Fordjour E, et al (2022)

Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries.

Biotechnology advances pii:S0734-9750(22)00066-0 [Epub ahead of print].

The preparation of genetic libraries is an essential step to evolve microorganisms and study genotype-phenotype relationships by high-throughput screening/selection. As the large-scale synthesis of oligonucleotides becomes easy, cheap, and high-throughput, numerous novel strategies have been developed in recent years to construct high-quality oligo-mediated libraries, leveraging state-of-art molecular biology tools for genome editing and gene regulation. This review presents an overview of recent advances in creating and characterizing in vitro and in vivo genetic libraries, based on CRISPR/Cas, regulatory RNAs, and recombineering, primarily for Escherichia coli and Saccharomyces cerevisiae. These libraries' applications in high-throughput metabolic engineering, strain evolution and protein engineering are also discussed.

RevDate: 2022-05-17
CmpDate: 2022-05-17

Mesa V, Monot M, Ferraris L, et al (2022)

Core-, pan- and accessory genome analyses of Clostridium neonatale: insights into genetic diversity.

Microbial genomics, 8(5):.

Clostridium neonatale is a potential opportunistic pathogen recovered from faecal samples in cases of necrotizing enterocolitis (NEC), a gastrointestinal disease affecting preterm neonates. Although the C. neonatale species description and name validation were published in 2018, comparative genomics are lacking. In the present study, we provide the closed genome assembly of the C. neonatale ATCC BAA-265T (=250.09) reference strain with a manually curated functional annotation of the coding sequences. Pan-, core- and accessory genome analyses were performed using the complete 250.09 genome (4.7 Mb), three new assemblies (4.6-5.6 Mb), and five publicly available draft genome assemblies (4.6-4.7 Mb). The C. neonatale pan-genome contains 6840 genes, while the core-genome has 3387 genes. Pan-genome analysis revealed an 'open' state and genomic diversity. The strain-specific gene families ranged from five to 742 genes. Multiple mobile genetic elements were predicted, including a total of 201 genomic islands, 13 insertion sequence families, one CRISPR-Cas type I-B system and 15 predicted intact prophage signatures. Primary virulence classes including offensive, defensive, regulation of virulence-associated genes and non-specific virulence factors were identified. The presence of a tet(W/N/W) gene encoding a tetracycline resistance ribosomal protection protein and a 23S rRNA methyltransferase ermQ gene were identified in two different strains. Together, our results revealed a genetic diversity and plasticity of C. neonatale genomes and provide a comprehensive view of this species genomic features, paving the way for the characterization of its biological capabilities.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

SUPPORT ESP: Click Covers to Order from Amazon
The ESP project will earn a commission.


By delivering the Cas9 nuclease, complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be precisely cut at any desired location, allowing existing genes to be removed and/or new ones added. That is, the CRISPR-Cas system provides a tool for the cut-and-paste editing of genomes. Welcome to the brave new world of genome editing. R. Robbins

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )