Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: CRISPR-Cas

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 16 Dec 2025 at 01:47 Created: 

CRISPR-Cas

Clustered regularly interspaced short palindromic repeats (CRISPR, pronounced crisper) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to foreign DNA (e.g a virus or plasmid). The CRISPR/Cas system is a prokaryotic immune system that confers resistance to foreign genetic elements such as those present within plasmids and phages, and provides a form of acquired immunity. CRISPR associated proteins (Cas) use the CRISPR spacers to recognize and cut these exogenous genetic elements in a manner analogous to RNA interference in eukaryotic organisms. CRISPRs are found in approximately 40% of sequenced bacterial genomes and 90% of sequenced archaea. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added. The Cas9-gRNA complex corresponds with the CAS III crRNA complex in the above diagram. CRISPR/Cas genome editing techniques have many potential applications, including altering the germline of humans, animals, and food crops. The use of CRISPR Cas9-gRNA complex for genome editing was the AAAS's choice for breakthrough of the year in 2015.

Created with PubMed® Query: ( "CRISPR.CAS" OR "crispr/cas" ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2025-12-12
CmpDate: 2025-12-12

Fu YZ, Luo FF, Yang L, et al (2025)

SPNS1 is an essential cellular factor for EV-A71 by acting as a transporter of viral pocket factor.

Proceedings of the National Academy of Sciences of the United States of America, 122(50):e2510020122.

Human enterovirus A71 (EV-A71) is a major cause of hand, foot and mouth disease. Cellular factors critical for EV-A71 infection remain enigmatic. Here, we performed CRISPR/Cas9 screens and identified sphingolipid transporter 1 (SPNS1) as an essential factor for EV-A71. SPNS1 deficiency inhibits infection of EV-A71 and 9 of 11 examined enteroviruses. Mechanistically, the endo/lysosomal localization of SPNS1 and the acidification of the endo/lysosomes are essential for SPNS1 to support EV-A71 infection. SPNS1 deficiency inhibits EV-A71 genomic RNA replication, but barely affects replication of EV-A71 RNA directly transfected into the cytoplasm. SPNS1 interacts with the EV-A71 capsid protein VP1 and entry receptor SCARB2 in the endo/lysosomes, where it acts as a transporter to release the viral pocket factor into the cytosol, leading to uncoating. Animal experiments show that SPNS1 deficiency results in reduced viral loads, pathological effects, and lethality following EV-A71 infection. Our findings collectively identified SPNS1 as a transporter of the EV-A71 viral pocket factor.

RevDate: 2025-12-15
CmpDate: 2025-12-12

Zahm AM, Cranney CW, Gormick AN, et al (2025)

ConSeqUMI, an error-free nanopore sequencing pipeline to identify and extract individual nucleic acid molecules from heterogeneous samples.

Nucleic acids research, 53(22):.

Nanopore sequencing has revolutionized genetic analysis by offering linkage information across megabase-scale genomes. However, the high intrinsic error rate of nanopore sequencing impedes the analysis of complex heterogeneous samples, such as viruses, bacteria, complex libraries, and edited cell lines. Achieving high accuracy in single-molecule sequence identification would significantly advance the study of diverse genomic populations, where clonal isolation is traditionally employed for complete genomic frequency analysis. Here, we introduce ConSeqUMI, an innovative experimental and analytical pipeline designed to address long-read sequencing error rates using unique molecular indices for precise consensus sequence determination. ConSeqUMI processes nanopore sequencing data without the need for reference sequences, enabling accurate assembly of individual molecular sequences from complex mixtures. We establish robust benchmarking criteria for this platform's performance and demonstrate its utility across diverse experimental contexts, including mixed plasmid pools, recombinant adeno-associated virus genome integrity, and CRISPR/Cas9-induced genomic alterations. Furthermore, ConSeqUMI enables detailed profiling of human pathogenic infections, as shown by our analysis of severe acute respiratory syndrome coronavirus 2 spike protein variants, revealing substantial intra-patient genetic heterogeneity. Lastly, we demonstrate how individual clonal isolates can be extracted directly from sequencing libraries at low cost, allowing for post-sequencing identification and validation of observed variants. Our findings highlight the robustness of ConSeqUMI in processing sequencing data from UMI-labeled molecules, offering a critical tool for advancing genomic research.

RevDate: 2025-12-15
CmpDate: 2025-12-12

Zhang J, Liu J, A Bayani (2025)

Phage therapy and the microbiome in hematologic malignancies: opportunities, mechanisms, and early evidence.

Journal of cancer research and clinical oncology, 152(1):8.

Hematologic malignancies remain among the most difficult cancers to treat, challenged by profound heterogeneity, treatment-induced immune dysfunction, and the frequent emergence of drug resistance. Beyond tumor-intrinsic mechanisms, dysbiosis of the gut microbiome is increasingly recognized as a critical determinant of therapeutic outcomes, shaping hematopoiesis, immune responses, and drug metabolism. Bacteriophage (phage) therapy has re-emerged as a precision tool capable of selectively eradicating pathogenic taxa while preserving commensal short-chain fatty acid-producing communities. Preclinical and early human studies demonstrate that phages can recalibrate microbial ecosystems, disrupt antibiotic-tolerant biofilms, and enrich metabolites such as butyrate that support mucosal integrity and immune balance. Mechanistically, phage DNA enriched with CpG motifs engages Toll-like receptor 9, activating dendritic cells and enhancing cytotoxic T lymphocyte responses, suggesting dual benefits in infection control and anti-tumor immunity. Emerging applications extend further, with engineered phages serving as vectors for CRISPR-Cas gene editing, targeted cytokine delivery, and nanocarrier platforms for leukemia therapy. Despite translational promise, major hurdles persist, including immunogenicity, horizontal gene transfer, resistance evolution, and regulatory uncertainty. Addressing these challenges through GMP-compliant manufacturing, metagenomics-guided personalization, and AI-optimized cocktail design could establish phage therapy as a microbiome-informed adjunct to overcome drug resistance in blood cancers. However, direct clinical evidence of phage therapy efficacy in hematologic malignancies remains limited, and current data are largely derived from preclinical and compassionate-use contexts.

RevDate: 2025-12-11
CmpDate: 2025-12-11

Yousuf F, Solanki M, Singh SS, et al (2025)

Tissue culture optimization and genome editing for yield improvement of an Indian rice landrace Chittimuthyalu.

Transgenic research, 34(1):54.

Chittimuthyalu, a rice landrace from Southern India, is known for its pleasant aroma, rich nutritive value, and excellent cooking qualities. However, it has a poor plant type (tall and weak stem prone to lodging) and is low yielding. The efforts to improve such valuable rice accessions with existing cross-breeding or random mutagenesis often result in undesirable traits due to linkage drag or untargeted mutations in large numbers. Genome editing, the most precise breeding tool, offers a viable solution to address such issues. In this study, we developed an efficient tissue culture protocol for callus induction, transformation, and regeneration of Chittimuthyalu. The highest callus induction frequency was achieved on L3 basal media enriched with 2.5 mg/l 2,4-Dichlorophenoxyacetic acid (2,4-D) and 600 mg/l of both proline and glutamine. For regeneration, a combination of Thidiazuron (TDZ), 6-Benzylaminopurine (BAP), and kinetin yielded an optimal regeneration frequency. The optimized tissue culture protocol was utilized to transform a multiplex gene editing construct developed by combining the four guide RNAs designed from yield and disease resistance-associated genes OsDEP1, OsTB1, OsCKX2, and OsSWEET14. The OsDEP1genome-edited rice plants exhibit thicker culm, enhanced grain size, ~ 100% increase in the thousand-grain weight, and ~ 50% increase in total grain yield per plant. The optimized tissue culture protocol and development of further edits in the remaining genes will pave the way for improving the agronomic traits of Chittimuthyalu. This study also highlights much-needed efforts to develop efficient tissue culture and genome editing methods for wild rice species and landraces, which will help bring these hardy, climate-resilient, and nutrient-rich accessions into mainstream cultivation.

RevDate: 2025-12-15
CmpDate: 2025-12-11

Lane KR, Jones SE, Osborne TH, et al (2025)

Bioleaching Microbial Community Metabolism and Composition Driven by Copper Sulphide Mineral Type.

Environmental microbiology reports, 17(6):e70261.

Copper bioleaching is a green technology for the recovery of copper from chalcopyrite (CuFeS2) and chalcocite (Cu2S) ores. Much remains to be learned about how mineral type and surface chemistry influence microbial community composition. Here, we established a microbial consortium from a copper bioleaching column in Cyprus on chalcopyrite and then sub-cultured it to chalcocite to investigate how the community composition shifts due to changes in mineral structure and the absence of mineral-derived Fe. The solution chemistry was determined and microbial communities characterised by genome-resolved metagenomics after 4 and 8 weeks of cultivation. Acidithiobacillus species and strains, a Rhodospirilales, Leptospirillum ferrodiazotrophum and Thermoplasmatales archaea dominated all enrichments, and trends in abundance patterns were observed with mineralogy and surface-attached versus planktonic conditions. Many bacteria had associated plasmids, some of which encoded metal resistance pathways, sulphur metabolic capacities and CRISPR-Cas loci. CRISPR spacers on an Acidithiobacillus plasmid targeted plasmid-borne conjugal transfer genes found in the same genus, likely belonging to another plasmid, evidence of intra-plasmid competition. We conclude that the structure and composition of metal sulphide minerals select for distinct consortia and associated mobile elements, some of which have the potential to impact microbial activity during sulphide ore dissolution.

RevDate: 2025-12-11

Roy S, Nandy S, Morita D, et al (2025)

Genomic analysis of a novel high-risk ST5217/ExoU+/O11 clone of carbapenem-resistant OXA-181- and VIM-2-producing Pseudomonas aeruginosa in India.

Journal of global antimicrobial resistance pii:S2213-7165(25)00270-X [Epub ahead of print].

OBJECTIVES: Studies of carbapenem-resistant Pseudomonas aeruginosa (CRPA)-harbouring OXA-48-like carbapenemases are rare. The study aimed to report the emergence and characterization of a novel high-risk clone of CRPA-harbouring OXA-48-like from India.

METHODS: Identification, AST, phenotypic detection of carbapenemases and WGS using Ion-Torrent-S5 platform were carried out. Analyses included ResFinder, VFDB, MLST, PAst, Phastest and CRISPR/Cas. SNP-based phylogenetic analysis with global OXA-48-like-harbouring CRPA genomes was carried out by CSI Phylogeny and iTOL for visualization.

RESULTS: The clinical strain of CRPA AMRIR00655 belonged to a novel sequence type ST5217 and serotype O11. The strain was MDR. Phenotypic tests followed by WGS revealed the presence of dual carbapenemases, OXA-181 (serine-carbapenemase) and VIM-2 (zinc-carbapenemase), both located on chromosome. 4,261 bp of blaOXA-181-bearing contig-DNA showed 100% homology to K. pneumoniae plasmid pKP3-A. ISEcp1 was present on upstream and on downstream, △lysR, △ereA and repA genes were detected. blaVIM-2 was located within class 1 integron along with aacC6-II, dfrB5, aac(3)-Id, tniC in surrounding regions. Presence of other ARGs (blaPAO, blaOXA-488,aph(3'')-Ib, aph(6)-Id, crpP, catB7, fosA, sul2) and efflux-pump genes might explain its MDR phenotype. Virulence factors including T3SS (PscF, PopB, PopD, PcrV) and its effectors (ExoT, ExoU, ExoY) indicated the pathogenic potential of ST5217. Core genome analysis showed that ST5217 was closest with other high-risk clones ST1339 and ST773-harbouring blaOXA-48-like.

CONCLUSIONS: To the best of our knowledge, this is the first report of blaOXA-181-harbouring novel high-risk clone of CRPA ST5217/ExoU+/O11 in India which emphasises the spread of OXA-181 among bacteria other than Enterobacteriaceae-family and warrant close monitoring.

RevDate: 2025-12-13
CmpDate: 2025-12-11

Abedin ZU, Waggan AI, Khan E, et al (2025)

Letter to the Editor: CRISPR-based gene editing for cardiac protection in Barth syndrome.

Annals of medicine and surgery (2012), 87(12):9163-9164.

Barth syndrome is a rare X-linked mitochondrial disorder caused by mutations in the Tafazzin (TAZ) gene. These mutations make it hard for cardiolipin to remodel and mitochondria to work properly. This condition is characterized by growth retardation, neutropenia, skeletal myopathy, and dilated cardiomyopathy, frequently leading to significant morbidity and mortality, with numerous patients necessitating heart transplants. There are no treatments available at this time to fix the genetic problem. Recent progress in gene editing, especially CRISPR-based methods, holds great promise for fixing TAZ mutations. Research utilizing patient-derived cardiomyocytes has demonstrated that the rectification of TAZ mutations reinstates mitochondrial efficiency and enhances cellular functionality. Animal models, including TAZ-knockout mice, have exhibited substantial enhancements in cardiac function, survival rates, and diminished fibrosis subsequent to gene replacement therapy.

RevDate: 2025-12-15
CmpDate: 2025-12-15

Munusamy S, Jahani R, Zheng H, et al (2025)

Enhanced CRISPR-Cas12a Fluorescent Assay for Detecting Trace Levels of Procalcitonin.

ACS applied bio materials, 8(12):10818-10826.

Rapid and accurate detection of procalcitonin (PCT), a major biomarker for bacterial infections and sepsis, remains a pressing need in clinical diagnostics because sepsis progresses rapidly and may initially present with nonspecific or even subtle symptoms. Herein, we report a CRISPR-Cas12a-based fluorescence biosensing platform for ultrasensitive detection of PCT. The platform employs antibody-functionalized magnetic beads (MBs) for specific protein enrichment and antibody- and oligonucleotide- dual-functionalized gold nanoparticles (AuNPs) for high-density DNA payload. After sandwich complex formation with the target PCT, a programmed ssDNA strand is released by thermal denaturation, which then activates Cas12a collateral cleavage, thereby generating a fluorescence signal. Thorough physicochemical characterizations, including zeta potential, dynamic light scattering, UV-vis spectroscopy, and TEM, were carried out to confirm the successful functionalization of MBs and AuNPs. The developed PCT sensor was highly sensitive with a limit of detection (LOD) reaching 3 pg/mL. Moreover, the biosensor exhibited an excellent specificity toward PCT against clinically relevant interferents such as C-reactive protein (CRP), interleukin-2β (IL-2β), interleukin-6 (IL-6), human serum albumin (HSA), and bovine serum albumin (BSA), and simulated serum sample analysis was successfully carried out with the recoveries ranging from 108 to 122%. The PCT sensing technique developed in this work offers the potential to be expanded to construct a multiplexing platform for simultaneous detection of multiple biomarker species for early and accurate disease diagnosis.

RevDate: 2025-12-15
CmpDate: 2025-12-15

Salvador PJ, Lin S, Chinn MM, et al (2025)

Discovery and Tuning of RNA Editing Guides via High-Throughput Screening and Chemical Modification.

Chembiochem : a European journal of chemical biology, 26(24):e202500735.

Adenosine deaminases acting on RNA (ADAR) catalyze the deamination of adenosine to inosine in double-stranded RNA. Because inosine is read as guanosine during translation, this process enables programmable A-to-G recoding at the transcript level. ADARs can be harnessed for therapeutic correction of pathogenic mutations through site-directed RNA editing with guide RNAs. To expand the design space of editing-enabling guides, we applied EMERGe, a high-throughput screening platform, to identify motifs targeting a premature termination codon in the MeCP2 transcript associated with Rett syndrome. This uncovered a guide RNA motif that supported efficient ADAR2-mediated editing in vitro, featuring a 5'-GUG-3' sequence predicted to form an asymmetric loop. To enable therapeutic application, structure-activity relationship studies and chemical optimization were performed, yielding a fully modified guide RNA with 2'-O-methyl, 2'-fluoro, and phosphorothioate linkages. This stabilized guide retained the activity of unmodified RNA and showed enhanced nuclease resistance. The optimized guide induces dose-dependent editing at two MECP2 loci in reporter assays in HEK293T cells, demonstrating that EMERGe-selected motifs can be rendered viable in cells through targeted chemical modification. These findings highlight the utility of EMERGe as a discovery platform and establish a pipeline for identifying and optimizing editing-enabling guide RNA features beyond traditional design rules.

RevDate: 2025-12-15
CmpDate: 2025-12-15

Giddins M, Kratz AF, De Los Santos MB, et al (2025)

Combinatorial protein engineering identifies potent CRISPR activators with reduced toxicity.

Nature communications, 16(1):11114.

Current protein engineering methods are inadequate to explore the combinatorial potential offered by nature's vast repertoire of protein domains-limiting our ability to create optimal synthetic tools. To overcome this barrier, we develop an approach to create and test thousands of chimeric proteins and employ it to probe an expansive combinatorial landscape of over 15,000 multi-domain CRISPR activators. Our findings indicate that many activators produce substantial cellular toxicity, often unrelated to their capacity to regulate gene expression. We also explore the biochemical features of activation domains and determine how their combinatorial interactions shape activator behavior. Finally, we identify two potent CRISPR activators, MHV and MMH, and demonstrate their enhanced activity across diverse targets and cell types compared to the gold-standard MCP activator, synergistic activation mediator (SAM).

RevDate: 2025-12-15
CmpDate: 2025-12-15

Li X, Lv H, Wu C, et al (2025)

Corynebacterium pseudotuberculosis phospholipase D targets mitochondrial sphingomyelin and induces NLRP3-GSDMD axis-mediated pyroptosis in macrophages to promote infection.

Veterinary research, 56(1):198.

Infection by Corynebacterium pseudotuberculosis (Cp), a facultative intracellular bacterium, causes mainly purulent inflammation and chronic granulomas in animals and humans. Pyroptosis is a proinflammatory form of programmed cell death that is important in response to pathogen infection. The role of pyroptosis in Cp infection and the related mechanisms are still unclear. Here, we reveal that Cp infection induces pyroptosis in macrophages. The inhibition of pyroptosis by disulfiram (DSF) or dimethyl fumarate (DMF) decreases the pathogenicity of Cp in mice and prevents the escape of this pathogen from infected macrophages. In contrast, LPS treatment achieves the opposite results in mice and macrophages infected with Cp. In addition, we revealed that phospholipase D (PLD) is a key virulence factor that induces pyroptosis and subsequently promotes Cp escape and spread in macrophages and confirmed that mutation of the enzyme active site at D66S, G80I, K114N, and G242P weakens PLD-induced pyroptosis. Furthermore, the indispensable role of the NLRP3-GSDMD axis in PLD-induced pyroptosis was confirmed using Nlrp3 knockout (Nlrp3[-/-]) and Gsdmd knockout (Gsdmd[-/-]) macrophages. Mechanistically, the PLD of Cp targets mitochondrial sphingomyelins within macrophages, induces cardiolipin externalization to the outer mitochondrial membrane, and releases mtROS, leading to pyroptosis. In conclusion, our data indicate that Cp infection induces mitochondrial dysfunction in macrophages through the secretion of PLD, which targets mitochondrial sphingomyelins and induces NLRP3-GSDMD axis-dependent pyroptosis. Inducing pyroptosis is one of the mechanisms underlying the pathogenesis and transmission of Cp, and inhibiting pyroptosis may be an important strategy for controlling this pathogen.

RevDate: 2025-12-15
CmpDate: 2025-12-15

Karimzadeh A, Kim R, Garcia V, et al (2025)

In situ gene editing of hematopoietic stem cells via AAV-delivered CRISPR guide RNAs.

Blood advances, 9(24):6563-6574.

Hematopoietic stem cells (HSCs) are self-renewing, multipotent, and engraftable precursors of all blood cells. Efficient delivery of therapeutic gene products and gene editing machinery to correct disease-causing gene variants in endogenous HSCs while they remain in the body holds exciting potential to leverage HSC potency for the treatment of monogenic blood disorders. Toward this goal, we used adeno-associated virus (AAV) to deliver CRISPR guide RNAs (gRNAs) to edit HSC genomes in situ in Ai9;SpCas9-EGFP transgenic mice carrying a Cas9-activatable Lox-STOP-Lox-tdTomato reporter cassette together with a constitutive SpCas9-2A-EGFP. Using a variety of conditions and vector designs, we tested whether systemic administration to these mice of AAVs carrying SpCas9-compatible gRNAs designed to cut DNA upstream and downstream of the STOP cassette would induce tdTomato expression in HSCs. Our findings identify self-complementary AAVs (scAAVs) and increased ratio of guide to Cas9 as parameters facilitating higher editing efficiency. Of note, we find preserved multilineage output and engraftability of HSCs upon scAAV-gRNA editing. In an example application of this technology, we explore the potential for in situ HSC gene editing by dual AAV-CRISPR delivery and demonstrate robust gene modification, concurrent with induction of therapeutic fetal hemoglobin, in a sickle cell disease mouse model modified to express SpCas9. In summary, this work offers a sensitive and adaptable platform that allows robust modification of HSC genomes in situ.

RevDate: 2025-12-16
CmpDate: 2025-12-16

Wu X, Luo S, Guo C, et al (2025)

LbuCas13a directly targets DNA and elicits strong trans-cleavage activity.

Nature biomedical engineering, 9(12):2141-2154.

Traditionally perceived as an RNA-specific nuclease, Cas13a has been used primarily for RNA detection. We discover the ability of Leptotrichia buccalis Cas13a (LbuCas13a) to directly target DNA without the restrictions of protospacer flanking sequence and protospacer adjacent motif sequences, coupled with robust trans-cleavage activity. Contrary to conventional understanding, LbuCas13a does not degrade DNA targets. Our study reveals an enhancement in the single-nucleotide specificity of LbuCas13a against DNA compared to RNA. This heightened specificity is attributed to the lower affinity of CRISPR RNA (crRNA) towards DNA, raising the crRNA-DNA binding energy barrier. We introduce a molecular diagnostic platform called superior universal rapid enhanced specificity test with LbuCas13a (SUREST) for high-resolution genotyping. SUREST is capable of detecting DNA concentrations of CYP2C19 (rs4986893) as minute as 0.3 aM (0.18 cps µl[-1]). We also apply SUREST to human genotyping scenarios, indicating that SUREST performs well across a broad range of mutations and sequence contexts. SUREST represents an advancement in real-time nucleic acid detection, making it a useful tool for pathogen identification and mutation analysis in clinical diagnostics.

RevDate: 2025-12-14
CmpDate: 2025-12-11

Lai CM, Xiao XS, Liu LW, et al (2025)

Nanotechnology Strategies in Plant Genetic Engineering: Intelligent Delivery and Precision Editing.

Plants (Basel, Switzerland), 14(23):.

Plant genetic engineering is crucial for enhancing crop yield, quality, and resilience to both abiotic and biotic stresses, thereby promoting sustainable agriculture. Agrobacterium-mediated, biolistic bombardment, electroporation, and poly (ethylene glycol) (PEG)-mediated genetic transformation systems are widely applied in plant genetic engineering. However, these systems have limitations, including species dependency, destruction of plant tissues, low transformation efficiency, and high cost. Recently, gene-delivery methods based on nanotechnology have been developed for plant genetic transformation. This nanostrategy demonstrates remarkable transformation efficiency, excellent biocompatibility, effective protection of exogenous nucleic acids, and the potential for plant regeneration. However, the application of nanomaterial-mediated gene-delivery systems in plants is still in its early stages and faces numerous challenges for widespread adoption. Herein, the conventional genetic transformation techniques utilized in plants are succinctly examined. Subsequently, the advancements in nanomaterial-based gene-delivery systems are reviewed. The applications of CRISPR-Cas-mediated genome editing and its integration with plant nanotechnology are also examined. The innovations, methods, and practical applications of nanomaterial-mediated genetic transformation summarized herein are expected to facilitate the progress of plant genetic engineering in modern agriculture.

RevDate: 2025-12-14
CmpDate: 2025-12-11

Li W, Shi Y, Li D, et al (2025)

A CRISPR Powered Immobilization-Free, Amplification-Free Carbon-Nanotube Field-Effect Transistor (FET) Sensor for Influenza A Virus (IAV).

Molecules (Basel, Switzerland), 30(23):.

The epidemic of infectious diseases, such as influenza A, has imposed a severe health burden on the population. Early detection, diagnosis, reporting, isolation, and treatment are crucial for the prevention, control, and management of infectious diseases. Nucleic acid testing represents a vital approach for the rapid diagnosis of pathogenic microorganism types. However, current nucleic acid detection methods face notable bottlenecks: traditional CRISPR fluorescence assays require time-consuming pre-amplification of target nucleic acids, while existing carbon-nanotube field-effect transistor (FET)-based platforms, though amplification-free, often necessitate complex chip surface modification and probe immobilization, and suffer from non-reusable chips, all limiting their utility in point-of-care testing (POCT) and large-scale screening. This study reports a CRISPR-based amplification-free RNA detection platform (CRISPR-FET) for the rapid identification of influenza A virus. The CRISPR-FET platform described herein enables the detection of viral RNA without amplification within 20 min, with a limit of detection as low as 1 copy/μL. Secondly, a reporter RNA conjugated with gold particles is used to achieve signal amplification in FET detection; meanwhile, the method eliminates probe immobilization, thereby omitting this step and simplifying chip modification to reduce complex work-flows and pre-treatment costs. The chip's reusability further enhances cost-effectiveness. Additionally, streptavidin-modified magnetic bead adsorption minimizes background errors from excessive reporter RNA and non-target nucleic acids. Finally, validation with 24 clinical samples confirmed the platform's efficacy. By integrating rapidity, simplicity, and high sensitivity, alongside cost advantages from reusable chips, this CRISPR-FET platform meets the critical need for early influenza A diagnosis and holds promise for advancing POCT and large-scale epidemiological screening.

RevDate: 2025-12-14
CmpDate: 2025-12-14

Park H, Yu S, T Koo (2025)

Gene editing in cancer therapy: overcoming drug resistance and enhancing precision medicine.

Cancer gene therapy, 32(12):1293-1302.

The CRISPR system has revolutionized cancer gene therapy, offering unparalleled precision in genetic manipulation for targeted oncogene disruption, mutation correction, and immune system modulation. This breakthrough tool has demonstrated remarkable potential in overcoming drug resistance, enhancing chemotherapy sensitivity, and improving immunotherapy strategies such as CRISPR-engineered CAR-T cells. Additionally, oncolytic virus-mediated CRISPR delivery has emerged as a novel approach for tumor-specific gene editing, minimizing off-target effects. The rapid transition of CRISPR-based cancer therapeutics from preclinical research to clinical trials underscores its therapeutic potential. This review explores the latest advancements in CRISPR applications for cancer therapy, including gene knockout, base editing for mutation correction, and integration with immune and viral therapies. Despite significant progress, challenges such as off-target effects, immune responses, and delivery limitations remain key hurdles. We discuss current strategies to enhance CRISPR safety and efficacy, emphasizing its potential for personalized cancer treatment.

RevDate: 2025-12-14
CmpDate: 2025-12-14

Behrouzian Fard G, Ahmadi MH, Gholamin M, et al (2025)

CRISPR-Cas9: a prominent genome editing tool in the management of inherited blood disorders and hematological malignancies.

Current research in translational medicine, 73(4):103531.

Several hematologic diseases with genetic defects, like sickle cell disease and β-thalassemia can be treated with allogeneic hematopoietic stem cell transplantation (HSCT) from healthy donors. However, suitable tissue-matched donors are often unavailable, and HSCT involves risks such as graft-versus-host disease and potential disease relapse. Due to the genetic heterogeneity of blood disorders and the complexity of the hematopoietic system, identifying effective genes for managing and treating both benign and malignant conditions remains a significant challenge. The genome editing field is rapidly expanding and is essential for identifying genetic factors in pathological processes. These developments highlight the importance of using ex vivo gene therapy approaches for autologous hematopoietic stem cells. Also, gene editing technologies are gaining significant interest in engineered cell therapies for hematological malignancies . Today, various programmable nucleases are available for genome editing, with the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system standing out due to its high efficiency, low cytotoxicity, cost-effectiveness, and precision. This system can serve as a genomic modification tool for treating blood disorders, including hereditary diseases and immunotherapy for cancer using chimeric antigen receptor T cells (CAR-T cells). Advancements in CRISPR-Cas9 are expected to significantly impact medical research and clinical applications. However, challenges such as off-target effects and immunogenicity must be addressed. This review summarizes the mechanism and delivery strategies of CRISPR-Cas9, discusses its applications in treating inherited blood disorders such as sickle cell disease, β-thalassemia, and fanconi anemia, as well as hematological malignancies, and highlights the associated challenges.

RevDate: 2025-12-13
CmpDate: 2025-12-11

Sambo CN, Skepu A, Nxumalo NP, et al (2025)

Diagnostic Advances and Public Health Challenges for Monkeypox Virus: Clade-Specific Insight and the Urgent Need for Rapid Testing in Africa.

Diagnostics (Basel, Switzerland), 15(23):.

Background: Monkeypox (MPX), caused by the Monkeypox virus (MPOX) of the Orthopoxvirus genus, has re-emerged as a significant global health threat. Once confined to Central and West Africa, the 2022-2025 multi-country outbreaks, predominantly caused by Clade IIb, demonstrated sustained human-to-human transmission and global spread. Objective: This review summarizes current knowledge on MPX virology, epidemiology, clinical presentation, and diagnostic technologies, with a focus on innovations supporting rapid and field-deployable detection in resource-limited settings. Methods: The recent literature (2019-2025), including peer-reviewed studies, WHO and Africa CDC reports, and clinical guidelines, was critically reviewed. Data were synthesized to outline key developments in diagnostic methodologies and surveillance approaches. Results: MPX comprises two genetic clades: Clade I (Congo Basin) and Clade II (West African), which differ in virulence and transmission. Clade IIb is associated with sexual and close-contact transmission during recent outbreaks. Clinical manifestations have shifted from classic disseminated rash to localized anogenital lesions and atypical or subclinical infections. RT-PCR remains the diagnostic gold standard, while emerging assays such as loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and CRISPR/Cas-based platforms show promise for rapid point-of-care (POC) testing. Complementary serological tools, including ELISA and lateral flow assays, enhance surveillance and immune profiling. Conclusions: The resurgence of MPX highlights the urgent need for accessible, sensitive, and specific diagnostic platforms to strengthen surveillance and outbreak control, especially in endemic and resource-constrained regions.

RevDate: 2025-12-13
CmpDate: 2025-12-13

Schwämmle T, Noviello G, Kanata E, et al (2025)

Reporter CRISPR screens decipher cis-regulatory and trans-regulatory principles at the Xist locus.

Nature structural & molecular biology, 32(12):2465-2475.

Developmental genes are controlled by an ensemble of cis-acting regulatory elements (REs), which in turn respond to multiple trans-acting transcription factors (TFs). Understanding how a cis-regulatory landscape integrates information from many dynamically expressed TFs has remained a challenge. Here we develop a combined CRISPR screening approach using endogenous RNA and RE reporters as readouts. Applied to the murine Xist locus, which is crucial for X-chromosome inactivation in females, this method allows us to comprehensively identify Xist-controlling TFs and map their TF-RE wiring. We find a group of transiently upregulated TFs, including ZIC3, that regulate proximal REs, driving the binary activation of Xist expression. These basal activators are more highly expressed in cells with two X chromosomes, potentially governing female-specific Xist upregulation. A second set of developmental TFs that include OTX2 is upregulated later during differentiation and targets distal REs. This regulatory axis is crucial to achieve high levels of Xist RNA, which is necessary for X-chromosome inactivation. OCT4 emerges as the strongest activator overall, regulating both proximal and distal elements. Our findings support a model for developmental gene regulation, in which factors targeting proximal REs drive binary on-off decisions, whereas factors interacting with distal REs control the transcription output.

RevDate: 2025-12-13
CmpDate: 2025-12-13

Tabibian M, Motevaseli E, S Ghafouri-Fard (2025)

CRISPR-mediated modulation of EGFR signaling in lung cancer.

Cancer treatment and research communications, 45:100992.

Lung cancer is among the most common cancers and the leading source of cancer death. Inhibition of EGFR signaling by small-molecule tyrosine kinase inhibitors and monoclonal antibodies has provided new opportunities for treatment of this type of cancer. However, prognosis remained unfavorable due to the incidence of intrinsic or attained resistance. The advent of CRISPR/Cas9 technology has offered additional chances for cancer genome editing. This technology has been applied in the context of lung cancer research in order to minimize the effects of activating EGFR mutations. In the current manuscript, we address the application of CRISPR/Cas9 method in the modulation of EGFR signaling and its consequence in the treatment of lung cancer.

RevDate: 2025-12-13
CmpDate: 2025-12-13

Watts A, Raipuria RK, Chauhan M, et al (2025)

CRISPR/Cas9-mediated knockout of TRANSPARENT TESTA 8 downregulates flavonoid biosynthetic pathway in seeds of Brassica juncea.

Plant physiology and biochemistry : PPB, 229(Pt A):110330.

Accumulation of proanthocyanidin (PA) in the seed coat determines black to brown seed color in Brassicaceae members. Consequently, yellow-seed coat results from mutation in the regulatory or biosynthetic genes of the flavonoid pathway which perturb PA accumulation. We identified two homeologs of Transparent Testa 8 (BjTT8) gene in the allotetraploid genome of Brassica juncea with BjTT8A homeolog exhibiting higher expression than BjTT8B. To investigate whether targeted knockout of BjTT8 can result into yellow seed coat color, a CRISPR/Cas9-based genome editing vector was constructed using the binary vector pORE O4 backbone. A single-guide RNA (sgRNA) was designed to precisely target the second exon of both the BjTT8 homeologs. Successful knockout of both BjTT8A and BjTT8B genes deploying pORE O4-CRISPR/Cas9 vector resulted in yellow seed coat color. The mutations were stably inherited over the successive generations, giving consistent yellow seed color including in the lines segregated free from T-DNA bound CRISPR/Cas9 cassette. Comparative transcriptome and gene expression analysis revealed that, a subset of flavonoid pathway genes was downregulated in the Bjtt8 edited lines. Flavonoid profiling demonstrated that, the flavan-3-ol monomer (viz., catechin/epicatechin), the precursor of PA biosynthesis was completely absent in the Bjtt8 edited lines. More significantly, the seeds of Bjtt8 edited lines exhibited higher oil content as compared to their parental Varuna line. In this study, we developed a new yellow-seeded line through CRISPR/Cas9-mediated knockout of BjTT8 genes, providing molecular insights of seed coat color regulation in B. juncea.

RevDate: 2025-12-13
CmpDate: 2025-12-13

Xia C, Colognori D, Jiang XS, et al (2025)

Single-molecule live-cell RNA imaging with CRISPR-Csm.

Nature biotechnology, 43(12):2023-2030.

Understanding the diverse dynamic behaviors of individual RNA molecules in single cells requires visualizing them at high resolution in real time. However, single-molecule live-cell imaging of unmodified endogenous RNA has not yet been achieved in a generalizable manner. Here, we present single-molecule live-cell fluorescence in situ hybridization (smLiveFISH), a robust approach that combines the programmable RNA-guided, RNA-targeting CRISPR-Csm complex with multiplexed guide RNAs for direct and efficient visualization of single RNA molecules in a range of cell types, including primary cells. Using smLiveFISH, we track individual native NOTCH2 and MAP1B transcripts in living cells and identify two distinct localization mechanisms including the cotranslational translocation of NOTCH2 mRNA at the endoplasmic reticulum and directional transport of MAP1B mRNA toward the cell periphery. This method has the potential to unlock principles governing the spatiotemporal organization of native transcripts in health and disease.

RevDate: 2025-12-13
CmpDate: 2025-12-13

Zhang F, Chow RD, He E, et al (2025)

Multiplexed inhibition of immunosuppressive genes with Cas13d for combinatorial cancer immunotherapy.

Nature biotechnology, 43(12):2054-2067.

The complex nature of the immunosuppressive tumor microenvironment (TME) requires multi-agent combinations for optimal immunotherapy. Here we describe multiplex universal combinatorial immunotherapy via gene silencing (MUCIG), which uses CRISPR-Cas13d to silence multiple endogenous immunosuppressive genes in the TME, promoting TME remodeling and enhancing antitumor immunity. MUCIG vectors targeting four genes delivered by adeno-associated virus (AAV) (Cd274/Pdl1, Lgals9/Galectin9, Lgals3/Galectin3 and Cd47; AAV-Cas13d-PGGC) demonstrate significant antitumor efficacy across multiple syngeneic tumor models, remodeling the TME by increasing CD8[+] T-cell infiltration while reducing neutrophils. Whole transcriptome profiling validates the on-target knockdown of the four target genes and shows limited potential off-target or downstream gene alterations. AAV-Cas13d-PGGC outperforms corresponding shRNA treatments and individual gene knockdown. We further optimize MUCIG by employing high-fidelity Cas13d (hfCas13d), which similarly showed potent gene silencing and in vivo antitumor efficacy, without weight loss or liver toxicity. MUCIG represents a universal method to silence multiple immune genes in vivo in a programmable manner, offering broad efficacy across multiple tumor types.

RevDate: 2025-12-11
CmpDate: 2025-12-11

Petrova IO, SA Smirnikhina (2025)

Ex Vivo Gene and Cell Therapy in Hematopoietic Stem Cells.

International journal of molecular sciences, 26(23):.

Ex vivo cell and gene therapy is a prospective approach to treatment of genetic diseases. To date, one of the most prevalent examples of genetically engineered cell therapies is hematopoietic stem/progenitor cells (HSPCs). This mini review is focused on HSPC therapy methods that have been approved for medical use. Most gene therapy methods rely on the lentiviral integration of the gene into the target cell genome, as lentiviruses are extremely effective, particularly in transduction of non-dividing cells. In this constantly evolving field, it is important to find the balance between safety concerns and efficiency. Analyzing cases of several diseases, for which ex vivo gene therapy was developed, we strive to understand which factors are crucial to success and what the potential drawbacks are. Although in general, viral gene integration demonstrates a considerable therapeutic effect, it has oncogenic potential. Development of self-inactivating vectors was a breakthrough in regard to safety, but the possibility of oncogenesis remains, and strict analysis of integration sites is required.

RevDate: 2025-12-11
CmpDate: 2025-12-11

Koller F (2025)

The Potential of NGTs to Overcome Constraints in Plant Breeding and Their Regulatory Implications.

International journal of molecular sciences, 26(23):.

Conventional plant breeding relies on the occurrence of chromosomal crossover and spontaneous or non-targeted mutations in the genome induced by physical or chemical stressors. However, constraints exist concerning the number and variation of genotypes that can be achieved in this way, as the occurrence and combination of mutations are not equally distributed across the genome. The underlying mechanisms and causes of reproductive constraints can be considered the result of evolution to maintain the genomic stability of a species while at the same time allowing necessary adaptations. A continuous horizon scan was carried out to identify plants derived from new genomic techniques (NGTs), which show that CRISPR/Cas is able to circumvent at least some of these mechanisms and constraints. The reason for this is the specific mode of action: While physico-chemical mutagens such as radiation or chemicals merely cause a break in DNA, recombinant enzymatic mutagens (REMs), such as CRISPR/Cas, additionally interfere with cellular repair mechanisms. More recently developed REMs even expand the capabilities of NGTs to introduce new genetic variations within the target sequences. Thus, NGTs introduce genetic changes and combinations that are unknown in the current breeding pool and that are also unlikely to occur as a result of any previously used breeding methods. The resulting genotypes may need to be considered as 'new to the environment'. The technical potential of NGTs should also be taken into account in regulatory provisions. Previously unknown genotypes and phenotypes may negatively impact plant health, ecosystems, biodiversity, and plant breeding. It must further be acknowledged that the different outcomes of NGTs and conventional breeding are not always evident at first sight. As a starting point, within a process-oriented approval process, molecular characterization can inform the following steps in risk assessment and guide requests for further data.

RevDate: 2025-12-10
CmpDate: 2025-12-11

Song J, Yang D, Kong L, et al (2025)

Development of a high-yield Rabbit line for enhanced animal pharming.

Biological research, 58(1):73.

Animal pharming involves producing recombinant protein drugs using transgenic animals. The United States Food and Drug Administration (FDA) has approved certain drugs produced in the milk of transgenic Rabbits. Traditionally, these pharming Rabbits have been developed using conventional transgenic technology, which often results in an unpredictable success rate, uncontrollable transgene insertion sites, varying copy numbers, and generally low recombinant protein yields, typically 1-2 g/L or lower. We hypothesized that utilizing the promoter of a native major milk protein gene to drive transgene expression could significantly enhance yield. To test this, we developed a rabbit line that expresses tdTomato under the control of the CSN2 gene promoter, responsible for encoding β-casein, the most abundant protein in Rabbit milk. We successfully generated knock-in founder Rabbits using CRISPR/Cas9-mediated knock-in technology, augmented by the homology-directed repair (HDR)-promoting small molecule RS-1. These founder Rabbits were able to transmit the knock-in allele to their offspring, producing both heterozygous and homozygous tdTomato knock-in Rabbits. Remarkably, the recombinant protein yield reached 15-20 g/L in the milk of homozygous animals. Our work demonstrates a promising strategy to enhance recombinant protein production in Rabbit pharming.

RevDate: 2025-12-11
CmpDate: 2025-12-11

Macak D, Kanis P, S Riesenberg (2025)

Repurposing clinically safe drugs for DNA repair pathway choice in CRISPR genome editing and synthetic lethality.

Nature communications, 16(1):11077.

We evaluate the effect of most FDA-approved drugs (>7,000 conditions) on double-strand DNA break repair pathways by analyzing mutational outcomes in human induced pluripotent stem cells. We identify drugs that can be repurposed as inhibitors and enhancers of repair outcomes attributed to non-homologous and microhomology-mediated end joining (NHEJ, MMEJ), and homology-directed repair (HDR). We also identify functions of the proteins estrogen receptor 2 (ESR2) and aldehyde oxidase 1 (AOX1), affecting several key DNA repair proteins, such as ATM and 53BP1. Silencing of ESR2 can have a synergistic effect on increasing HDR when combined with NHEJ inhibition (mean 4.6-fold increase). We further identify drugs that induce synthetic lethality when NHEJ or HDR is blocked and may therefore be candidates for precision medicine. We anticipate that the ability to modulate the DNA repair outcomes with clinically safe drugs will help disease modeling, gene therapy, chimeric antigen receptor immunotherapy, and cancer treatment.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Landi E, Zondag R, Dehnen JA, et al (2025)

Biallelic excision of the CTG18.1 expansion in two Fuchs endothelial corneal dystrophy-derived iPSC lines and one control (SCTCi046-A-1, SCTCi047-A-1 and SCTCi041-A-1) using an episomal vector-based CRISPR/Cas9 approach.

Stem cell research, 89:103881.

An expanded CTG repeat in intron 2 of the transcription factor 4 (TCF4) gene is the main cause of Fuchs endothelial corneal dystrophy (FECD), a complex corneal disease. The prevailing paradigm is that the expanded repeat exerts toxic effects, resulting in corneal endothelium degeneration. Here we explored the use of CRISPR/Cas9-mediated, non-homologous end-joining (NHEJ) for disease-modeling purposes, by performing a biallelic excision of the CTG18.1 expansion in two FECD- and one control-derived induced pluripotent stem cell lines (iPSCs). The three Δ/Δ CTG18.1 lines generated by this study provide a platform to investigate the CTG18.1 contribution to FECD pathogenesis.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Macklin BL, Runyon WV, Feliciano CM, et al (2025)

Generation of WTD, a control human iPSC line for genetic research.

Stem cell research, 89:103872.

The establishment of well characterized control iPSC lines is essential for robust, reproducible research across laboratories. We used CRISPR/Cas9 to derive an isogeneic control line from a patient-derived iPSC line carrying a mutation in the NEFL gene (E396K). After correction of the E396K mutation, UCSFi003-A (WTD) exhibits multi-lineage differentiation potential, a normal karyotype, no large genomic abnormalities, and has consents for public distribution of cells and genomic data.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Downton P, Bates N, Woods S, et al (2025)

Genome editing of a low-penetrance albinism-associated variant in TYR in patient-derived pluripotent stem cells.

Stem cell research, 89:103855.

TYR encodes tyrosinase, the enzyme catalysing the initial steps of melanin biosynthesis in melanocytes and retinal pigment epithelia (RPE). TYR c.1205G>A (p.Arg402Gln) is a common genetic variant associated with several pigmentation traits. Notably, when this variant is encountered in specific haplotypic backgrounds in the homozygous state, it predisposes to albinism. We generated an induced pluripotent stem cell (iPSC) line from an affected individual carrying such a homozygous genotype (UMANi255-A), and then used CRISPR-Cas9 to correct the TYR c.1205G>A variant (UMANi255-A-1). The resulting iPSC lines demonstrate capacity for multi-lineage differentiation, providing a useful in vitro model for studying pigmentation biology.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Zhang Z, Zhang T, Li Z, et al (2026)

CRISPR/Cas13a-based colorimetric biosensing platform for point-of-care detection of viral nucleic acids.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 348(Pt 1):127221.

Rapid and accurate diagnosis is important in preventing and effectively combating infectious disease outbreaks. The CRISPR/Cas13a-based Specific High-sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) platform possesses the advantages of high efficiency, good specificity and sensitivity, and it has been widely adopted in molecular diagnostics. However, the traditional SHERLOCK platform requires dual-labeled RNA probes for fluorescence detection or lateral flow assay, which entail tedious modification procedures and sophisticated optical instruments, limiting its broad applications. Herein, we developed a rapid, sensitive, and label-free point-of-care (POC) platform for colorimetric assays of dengue virus (DV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the SHERLOCK method. The adoption of the SHERLOCK-mediated guanine-quadruplex (G4)/hemin DNAzyme-based colorimetric strategy produced cascade signal amplification detection with improved analytical performance. Moreover, it exhibited high sensitivity and specificity for detection in cell-cultured DV samples, and DV and SARS-CoV-2 clinical samples, as well as accurate identification of the four DV serotypes. Hence, the proposed colorimetric biosensing platform has great potential for rapid, accurate, and specific POC detection of viral infections in field-deployable assay.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Papadopoulou M, Ramachandran H, Binder S, et al (2025)

CRISPR/Cas9-mediated editing of XPA in induced pluripotent stem cells: A model for investigating Xeroderma Pigmentosum and NER dysfunction.

Stem cell research, 89:103869.

Xeroderma pigmentosum group A (XPA) is caused by defects in the nucleotide excision repair (NER) pathway, which is essential for repairing UV-induced DNA damage. Mutations in XPA impair lesion recognition and repair, resulting in mutation accumulation, genomic instability, and a high risk of skin cancers. In this study, we generated a CRISPR/Cas9-engineered human induced pluripotent stem cell (iPSC) line, WTSIi018-B-30, carrying a homozygous single nucleotide variant in exon 3 of XPA. The edited iPSCs retained normal morphology, expressed pluripotency markers, and differentiated into all three germ layers. This mutant iPSC line provides a robust isogenic model to dissect the molecular consequences of XPA deficiency and to explore therapeutic strategies for XPA-associated diseases.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Gao Y, Dong P, Lin H, et al (2026)

A circular crRNA-triggered CRISPR/Cas12a fluorescent platform for detection of myeloperoxidase activity.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 348(Pt 1):127149.

Myeloperoxidase (MPO) is a key enzymatic biomarker for the diagnosis and therapeutic monitoring of acute leukemia. Here, we developed a CRISPR/Cas12a-based fluorescent sensing platform using a circular phosphorothioate-modified crRNA (crRNA-PS) for selective MPO activity detection. In this system, MPO catalyzes hypochlorous acid (HClO) generation, which oxidizes and linearizes the circular crRNA-PS, activating Cas12a-mediated trans-cleavage of a fluorescent reporter. The assay exhibited high sensitivity with detection limits of 0.79 ng/mL for MPO and 0.21 μM for HClO, along with excellent selectivity against reactive oxygen/nitrogen species and biomolecular interferents. Reliable performance was achieved in 1 % fetal bovine serum with recoveries of 92.87-112.54 %. The sensor also maintained stable responses over 8 weeks, indicating strong structural integrity of the circular crRNA-PS. Furthermore, the system was applied for inhibitor screening, yielding IC50 values of 127.2 μM for SHA and 0.81 μM for 4-ABAH. This strategy provides a rapid, sensitive, and robust platform for MPO detection with promising clinical potential.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Zhang Z, Tang D, Dong L, et al (2026)

Functional divergence of Msp porins in substrate uptake and stress resistance in Mycobacterium smegmatis.

Microbial pathogenesis, 210:108185.

Mycobacterium smegmatis acquires external nutrients primarily through its outer membrane porins, notably the Msp proteins. Although the bacterium encodes four Msp porins (MspA, MspB, MspC, and MspD), previous work has identified MspA as the most abundant and functionally dominant porin, while regarding others as backup porins sharing considerable functional redundancy with MspA; however, their specific physiological roles and transcriptional dynamics remain poorly characterized. To dissect the individual function of each porin, we constructed a precise M. smegmatis Msp quadruple mutant using CRISPR-Cas9, and subsequently generated a panel of isogenic strains expressing individual porins at controlled levels. These strains were assessed in growth assays for their capacity to utilize various nutrients, including carbon sources, amino acids, and ions, as well as for their resistance to antibiotics, low pH, and lysozyme. We also employed Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) to examine the transcriptional responses of each msp gene in the wild-type strain under the tested conditions. Our results demonstrated distinct substrate preferences among the four Msp porins and revealed their differential contributions to resistance against environmental stressors; the transcriptional changes of each Msp porin in the wild-type strain correlated well with their expected roles. Furthermore, the engineered M. smegmatis quadruple mutant provides a robust platform for investigating the functions of other channel proteins in mycobacteria.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Luo N, Li X, Tian S, et al (2026)

Label-free fluorescent aptasensor for sensitive detection of oxytetracycline based on CRISPR/Cas12a and G-quadruplex DNAzyme with rhodamine B reporting.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 348(Pt 2):127141.

Oxytetracycline (OTC), a widely used broad-spectrum antibiotic, frequently persists in food and the environment due to overuse, posing risks of resistance, allergy, and toxicity. The World Health Organization has set strict limits for OTC residues, highlighting the need for rapid and reliable detection. Conventional assays, though accurate, remain costly and technically demanding, underscoring demand for simpler alternatives. We report a label-free fluorescent aptasensor integrating CRISPR/Cas12a with G-quadruplex (G4) DNAzyme catalysis, using rhodamine B (RhB) as a reporter. In the absence of OTC, the aptamer binds the activator strand, allowing G4 DNAzyme formation that quenches RhB fluorescence. OTC binding liberates the activator, triggering Cas12a cleavage of G4 DNA, thereby preventing DNAzyme formation and preserving fluorescence. This switch provides efficient signal amplification with low background. The assay achieved a detection limit of 0.3 nM and enabled accurate quantification of OTC in river water and milk samples. This platform offers a cost-effective, label-free strategy for antibiotic residue monitoring, eliminating dependence on nanomaterials or external labeling. Its validated sensitivity and robustness in real samples underscore its potential for practical applications in food safety and environmental surveillance.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Raabe J, Fuchs S, Augustin C, et al (2025)

Generation of a NRAP-overexpressing mutant from a human iPSC line.

Stem cell research, 89:103863.

Cardiomyopathies are a major contributor to cardiovascular mortality and are frequently linked to abnormalities in intercalated discs, which coordinate mechanical and electrical signaling between cardiomyocytes. The Nebulin-Related Anchoring Protein (NRAP), a key component of these structures, is essential for myofibril formation and force transmission. In various cardiac diseases such as cardiomyopathies with differing genetic mutations, NRAP protein abundance is increased, yet the functional consequences of this expression change remain insufficiently characterized. To investigate the outcome of NRAP-overexpression (NRAP-OE) on cardiac development and disease, we established a human induced pluripotent stem cell (hiPSC) line with stable and specific NRAP-OE in cardiomyocytes using CRISPR-Cas9-based genome editing. The resulting line was rigorously validated for chromosomal integrity, pluripotency markers, absence of off-target effects and mycoplasma contamination, as well as its capacity for trilineage differentiation. This NRAP-OE model offers a novel platform for investigating how increased NRAP levels influence cardiomyocyte structure and function, and may provide insight into its role in the pathogenesis of cardiomyopathy.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Masser-Mitchell BE, HS McLoughlin (2025)

Generation of an ITPR1[+/-] and isogenic control induced pluripotent stem cell line for SCA15/16 model development.

Stem cell research, 89:103858.

Spinocerebellar ataxia type 15/16 (SCA15/16) is a rare neurodegenerative disorder caused by heterozygous deletions of ITPR1, leading to haploinsufficiency of the encoded endoplasmic reticulum membrane calcium channel. Patients present with progressive gait disturbances, abnormal eye movements, difficulties with speech and swallowing, and tremors associated with atrophy of the cerebellum. Using CRISPR/Cas9 technology, we generated ITPR1[+/-] and isogenic control induced pluripotent stem cell (iPSC) lines from PGP1 iPSCs for SCA15/16 model development. The clones were genotyped, karyotyped, and assessed for pluripotency and differentiation potential.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Wei S, Ma R, Zhang T, et al (2025)

Targeted large-fragment genomic deletion in human pluripotent stem cells (hPSCs) via CRISPR/Cas9.

Stem cell research, 89:103859.

Large genomic deletions are increasingly recognized as contributors to human disease. Here, we describe a CRISPR/Cas9-based protocol to induce targeted large-fragment deletions in human pluripotent stem cells (hPSCs). Two sgRNAs flanking the target region were designed, synthesized, and co-delivered with Cas9 protein into single-cell hPSCs via electroporation. Deletions were identified using junction PCR. Successfully edited cell pools were expanded as single-cell colonies and assessed for genomic deletion, stem cell identity, karyotype integrity, and tri-lineage differentiation capacity. This approach provides a robust method for modeling genomic deletions in hPSCs for disease research and functional genomics.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Marteau S, Duboscq-Bidot L, Aizawa T, et al (2025)

Generation of a FAM189A2/ENTREP1 knockout human induced pluripotent stem cell line using CRISPR/Cas9 technology.

Stem cell research, 89:103857.

FAM189A2/ENTREP1 encodes a transmembrane protein, EREP1, ubiquitously expressed, with higher levels in thyroid gland, skeletal muscle, heart and glial cells, suggesting tissue-specific roles. It is regulated in various cancers and genetic studies suggested that it could be associated with cardiac and cardiometabolic diseases. EREP1 was reported to activate ITCH, an E3 ubiquitin ligase, involved in endosomal dynamics and protein trafficking. We generated by CRISPR/Cas9 technology a human induced pluripotent stem cells (hiPSCs) line carrying two compound heterozygous deletions leading to gene invalidation, with the aim of further exploring the poorly understood function of this protein.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Li C, Meng C, Wang X, et al (2025)

CRISPR/Cas9-targeted mutagenesis of the PpTCP4 gene increased tiller number in Poa pratensis.

Plant physiology and biochemistry : PPB, 229(Pt C):110588.

Poa pratensis, commonly known as Kentucky bluegrass, is a widely used cool-season grass species for turf in lawns and recreational areas worldwide. However, the lack of genome editing platforms has impeded research into enhancing forage crops suitable for land unsuitable for other crops. In this study, we successfully established an Agrobacterium-mediated genetic transformation system for P. pratensis. Furthermore, we successfully produced PpTCP4-edited plants using the CRISPR/Cas9 system. This research represents a significant advancement in the genetic transformation and gene editing of P. pratensis, providing a foundational technology for future investigations into gene function and breeding in P. pratensis.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Rhode J, Hagenau L, Edwards S, et al (2025)

Three modified human IPSC lines containing mutations in the distal DEHMBA associated locus of the SRCAP gene.

Stem cell research, 89:103847.

We modified an existing human iPSC line (MHHi001-A), using CRISPR/Cas9, to introduce heterozygous frameshift mutations in a locus of the SRCAP gene that is associated with the DEHMBA disease (OMIM 619595). The modified iPSCs express several stem cell markers and are able to differentiate into cells originating from all three embryonic germ layers. No additional modifications or chromosomal defects were detected. The modified cells can serve as a model for the investigation of the involvement of SRCAP in DEHMBA (Developmental delay, Hypotonia, Musculoskeletal defects, and Behavioral Abnormalities) disease and/or its molecular functions in different cell types.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Shibuya K, Nomizu T, Morimoto H, et al (2025)

CRISPR/Cas9-mediated LhNAP mutagenesis extends flower longevity in lily.

Plant physiology and biochemistry : PPB, 229(Pt C):110551.

Flower longevity is an important trait determining the ornamental plant quality. NAM/ATAF1,2/CUC2 (NAC) transcription factors regulate leaf and petal senescence in several plants. To extend the longevity of lily flowers, in this study we used the CRISPR/Cas9 technology for the targeted mutagenesis of LhNAP encoding the NAC transcription factor in the Oriental hybrid lily (Lilium spp.) 'Acapulco'. Filament-derived calli were transformed with binary vectors containing guide RNA expression cassettes targeting one or two regions of LhNAP and the codon-optimized Cas9 for Oryza sativa driven by Zea mays ubiquitin promoter. Mutant lines harbouring biallelic mutations at the LhNAP locus exhibited clearly delayed tepal senescence and abscission compared to the wild-type plants. Overall, our results highlight the potential of LhNAP-targeted genome editing to produce lilies with extended flower longevity and reveal the crucial role of LhNAP in regulating tepal senescence and abscission in lilies.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Park S, Lee H, Song J, et al (2025)

Redirecting flavonoid flux in purple Chinese cabbage via Cas9-mediated BrDFR knockout.

Plant physiology and biochemistry : PPB, 229(Pt B):110534.

Purple varieties of Chinese cabbage (Brassica rapa subsp. pekinensis) predominantly accumulate cyanidin-based anthocyanins. Although dihydroflavonol 4-reductase (DFR) is a key enzyme in anthocyanin biosynthesis, the function of the putative B. rapa DFR gene (Bra027457) remained unverified. We isolated and sequenced the coding region of Bra027457 from four B. rapa inbred lines with either green or purple phenotypes and detected no sequence variation. Bra027457 expression correlated with anthocyanin accumulation, and in vitro assays confirmed its ability to reduce all three dihydroflavonol substrates. Using CRISPR/Cas9, we knocked out Bra027457 in the purple line 8267 and obtained transgene-free, homozygous BrDFR-KO plants. These exhibited a green phenotype due to complete anthocyanin loss, verifying Bra027457 as the authentic BrDFR gene. Metabolite profiling of BrDFR-KO heads revealed significant increases in quercetin (Q), isorhamnetin (IR), and dihydroquercetin (DHQ). LC/MS analysis further identified five flavonol glycosides and one DHQ glycoside, of whch Q 3,7-di-O-glucoside and IR 3-O-(2‴-O-feruloyl)sophoroside-7-O-glucoside were predominant. These findings advance our understanding of flavonoid biosynthesis in Brassica species and provide valuable genetic resources for Chinese cabbage improvement.

RevDate: 2025-12-12
CmpDate: 2025-12-12

Sharma A, Locatelli F, Bhatia M, et al (2025)

Improvements in health-related quality of life in patients with severe sickle cell disease after exagamglogene autotemcel.

Blood advances, 9(24):6481-6490.

Severe sickle cell disease (SCD), an inherited blood disorder characterized by recurrent vaso-occlusive crises (VOCs), significantly impairs health-related quality of life (HRQoL). Exagamglogene autotemcel (exa-cel), a one-time, ex vivo CRISPR/Cas9 gene-edited cell therapy, eliminated VOCs in 97% of participants with severe SCD in the phase 3 CLIMB SCD-121 trial. Here, we describe changes in patient-reported outcomes (PROs) in 30 adults and 12 adolescents with ≥16 months follow-up. Adult PROs include EuroQol Quality of Life Scale-5 dimensions-5 levels of severity (EQ-5D-5L), Functional Assessment of Cancer Therapy Bone Marrow Transplant (FACT-BMT), Adult Sickle Cell Quality of Life Measurement Information System (ASCQ-Me), and 11-point pain Numerical Rating Scale (NRS). In adolescents, EuroQol Quality of Life Scale-5 dimensions-youth (EQ-5D-Y), Pediatric Quality of Life Inventory (PedsQL), and pain NRS were used. Adult EQ-5D-5L US and UK healthy utility index and EQ visual analog scale (VAS) scores, which were lower than general population norm at baseline, substantially improved by month 6 after exa-cel infusion and were sustained through month 36, with similar improvements in FACT-General (FACT-G) total and bone marrow transplant subscale. All FACT-G (physical, social/family, emotional, functional well-being) and ASCQ-Me (emotional, social functioning, stiffness, sleep impact) subscales showed clinically meaningful improvement, including ASCQ-Me pain subscales (impact, episode frequency, severity), with substantial decreases in pain episode frequency by month 6. Mean pain NRS score decreased by month 6 and was sustained. Consistent with adults, adolescents had improvements in mean EQ-5D-Y VAS score, PedsQL score, and pain NRS. Exa-cel led to broad and clinically meaningful HRQoL benefits in adults and adolescents with SCD. The CLIMB SCD-121 and CLIMB-131 trials were registered at www.clinicaltrials.gov as #NCT03745287 and #NCT04208529, respectively.

RevDate: 2025-12-10
CmpDate: 2025-12-11

Cheng KW, Bhave M, Markhard AL, et al (2025)

Replicon-based genome-wide CRISPR knockout screening for the identification of host factors involved in viral replication.

Nature communications, 16(1):11028.

We describe a viral replicon-based CRISPR knockout (KO) screening approach to specifically identify host factors essential for viral replication which are often missed in live virus screens. We benchmark the replicon screening using a stable fluorescent dengue virus type 2 (DENV-2) replicon cell line and successfully identify host genes known to be required for viral DENV-2 replication (e.g., endoplasmic reticulum membrane complex and oligosaccharyltransferase complex components), along with additional genes that have not been reported in prior CRISPR KO screens with DENV-2. We extend this replicon screening approach to chikungunya virus (CHIKV), a positive-sense RNA virus, and Ebola virus (EBOV), a negative-sense RNA virus, and identify distinct sets of genes required for replication of each virus. Our findings indicate that viral replicon-based CRISPR screens are a useful approach to identify host factors essential for replication of diverse viruses and to elucidate potential novel targets for host-directed medical countermeasures.

RevDate: 2025-12-11

Chen B, Gao J, Sun H, et al (2025)

Integrating CRISPR with SERS: Toward intelligent point-of-care diagnostics of the future.

Clinica chimica acta; international journal of clinical chemistry, 581:120782 pii:S0009-8981(25)00661-8 [Epub ahead of print].

In recent years, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated nuclease (Cas) system has emerged as a transformative genome-editing platform. Beyond its editing applications, the CRISPR/Cas system has attracted growing interest in molecular diagnostics particularly for nucleic acid detection due to its exceptional sensitivity and target specificity. Meanwhile, surface-enhanced Raman spectroscopy (SERS), which relies on plasmonic nanoparticles or nanostructures, has become a powerful biosensing technology known for its high sensitivity and distinct spectral fingerprinting capability. The integration of CRISPR/Cas-mediated molecular recognition with the ultrasensitive detection of SERS offers a rapid, low-volume, and direct strategy for identifying diverse nucleic acid targets. This synergistic combination has inspired the development of innovative biosensing platforms designed for ultrasensitive and precise molecular diagnostics. In this review, we first outline the fundamental principles of CRISPR/Cas and SERS, then summarize their hybrid applications in nucleic acid detection. Finally, we discuss the current progress, challenges, and future perspectives of CRISPR/Cas-integrated SERS biosensing.

RevDate: 2025-12-10

Longhi Cervantes DS, Leal GM, Fortirer JDS, et al (2025)

microRNAs and stress adaptation in grasses: A systematic review.

Plant physiology and biochemistry : PPB, 230:110783 pii:S0981-9428(25)01311-7 [Epub ahead of print].

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression after transcription, playing crucial roles in plant development and stress adaptation. In grasses, this regulation is vital under isolated biotic and abiotic stress conditions and combined stress scenarios, although many regulatory modules remain unexplored. This systematic review examined 60 studies out of 1823 publications indexed in Scopus, focusing on grass miRNAs with validated targets through Degradome-Seq and/or RACE approaches. Results indicate that miRNA-target modules were validated more often under abiotic stress than biotic or combined stress conditions. The most frequently studied miRNA families include miR156, miR159, miR164, miR169, and miR396, which are commonly linked to various types of stress, whether isolated or combined. Most research has concentrated on major crops such as rice and maize, with limited studies on other agriculturally important grasses. This review highlights advances in miRNA-phytohormone interactions, systemic signaling, and target validation strategies. It also underscores the potential of biotechnological tools such as RNAi, artificial miRNAs, target mimicry, and CRISPR/Cas for engineering more resilient grasses. Integrating multi-omics approaches and an increasing focus on combined stress responses suggest promising strategies for sustainable agriculture, food security, and bioenergy production amidst climate challenges. Together, these advances strengthen the potential of microRNA-based regulation as a key tool for enhancing crop resilience and adaptation.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Shi X, Hu C, Jia L, et al (2025)

An SpC editor targeting pre-mRNA splicing for precise CRISPR control and enhanced antitumor efficacy.

Nucleic acids research, 53(22):.

The CRISPR/Cas9 system is a powerful genome editing tool that has the potential to be applied to a variety of biomedical applications. Despite the considerable potential of this gene editing technology, there are numerous safety concerns including the possibility of unpredictable off-target effects. The splicing process, which involves the removal of introns from pre-mRNA and the alignment of exons to produce mature transcripts, is a critical step in gene expression in most eukaryotes. In this study, we present a spliceosome-responsive CRISPR/Cas9 (SpC) editor that utilizes the splicing inhibitor pladienolide B (PB) to regulate pre-mRNA splicing and control the expression of the anti-CRISPR protein AcrIIA4, thereby modulating the activity of the Cas9 nuclease. This approach allows for precise regulation of the gene editing process, thereby effectively mitigating off-target effects. The reliability and robustness of the SpC editor were demonstrated through in vitro and in vivo bioluminescence imaging. Furthermore, a dual-target sgRNA was designed to target the diphtheria toxin A gene, resulting in apoptosis induction and growth inhibition of tumor cells across various types of cancer cells. Our results indicate that this SpC editor has the capacity to precisely regulate tumor cell growth, thus providing new insights and significant implications for cancer gene therapy.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Gardner-Kay A, Le L, Filla M, et al (2025)

CRISPR Disruption of scaRNA1 Reduces Pseudouridylation in Spliceosomal RNA U2 at U89 and Perturbs the Transcriptome in HEK293T Cells.

Cells, 14(23):.

Small Cajal body-associated RNAs (scaRNAs) are essential for biochemical modification of spliceosomal RNAs and spliceosome function. Changes in scaRNA expression level have been associated with developmental issues, including cancer and congenital heart defects (CHDs), although the mechanism remains unclear. Small Cajal body-associated RNA 1 (scaRNA1) guides pseudouridylation at uridine 89 (Ψ89) of the spliceosomal RNA U2, a highly conserved modification that may be critical for spliceosome function. To investigate the role of scaRNA1 in splicing regulation, CRISPR-Cas9 genome editing was used to introduce targeted deletions in the scaRNA1 locus in HEK293T cells. Edited clones were identified by T7 endonuclease I assay and confirmed by Sanger sequencing. Pseudouridylation at Ψ89 was quantified using CMC-based reverse transcription followed by quantitative PCR, and global mRNA splicing alterations were assessed by RNA sequencing. Clones harboring scaRNA1 disruptions exhibited a significant reduction in Ψ89 pseudouridylation, consistent with impaired scaRNA1 function. Transcriptome analysis (of mRNA from two clones) revealed >300 protein coding genes with significant changes in transcript isoform level, including >100 genes related to RNA-binding activity. These results indicate that scaRNA1 disruption alters spliceosomal function and leads to substantial changes in mRNA splicing. The dysregulated splicing of RNA-binding proteins may impair RNA processing and gene expression programs required for normal development, providing new insight into how noncoding RNA dysfunction may contribute to developmental pathogenesis.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Cheng X, Wang D, Zhang X, et al (2025)

Regulation of the Homeostasis of Early Embryo Development in Dairy Cows by Targeted Editing of the PRLR Gene-Mediated Activation of the Anti-Heat Stress Pathway.

Cells, 14(23):.

The intensification of global climate warming exacerbates the issue of heat stress in dairy cows, making the SLICK mutation in the prolactin receptor (PRLR) gene a critical target for enhancing heat tolerance in these animals. This study aims to investigate the effects of CRISPR/Cas9-mediated editing of the PRLR gene on the biological characteristics of bovine fibroblasts and early embryonic development following somatic cell nuclear transfer (SCNT). Using the CRISPR/Cas9 system, we targeted and edited a 20 bp-150 bp region within exon nine of the PRLR gene. After conducting off-target predictions and activity screenings, we identified optimal guide RNA (sgRNA) sequences and established stable transgenic cell lines. Transcriptome sequencing was performed on edited cells to identify key genes and validate their expression profiles. Edited cells were utilized as donor cells for SCNT, during which we assessed oocyte levels of reactive oxygen species (ROS), glutathione (GSH), and mitochondrial function to analyze embryonic developmental performance. We constructed a cellular stress resistance network aimed at mitigating damage transmission while maintaining embryonic developmental homeostasis. This research provides technical support and theoretical reference for genetic editing breeding programs aimed at improving heat tolerance in dairy cattle.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Selokar NL, Singh P, Jose B, et al (2025)

A Myostatin (MSTN[-/-]) Knockout Buffalo Produced by CRISPR-Cas9 Mediated Genome Editing and Somatic Cell Nuclear Transfer.

The CRISPR journal, 8(6):436-442.

CRISPR-Cas9 genome editing offers significant opportunities to improve livestock traits; however, its application in buffalo has been very limited, with no prior reports of live gene-edited animals. Here, we report the successful birth of a buffalo edited in the myostatin (MSTN) gene. To achieve this, five single-guide RNAs (sgRNAs) targeting the buffalo MSTN gene were designed and tested in skin-derived fibroblasts. Among these, sgRNA5 exhibited the highest editing efficiency, approaching ∼50%, as confirmed by T7 Endonuclease I assay, Tracking of Indels by Decomposition, and Inference of CRISPR Edits analyses. Single-cell cloning identified six edited fibroblast clonal populations, including one with a bi-allelic frameshift mutation predicted to severely truncate the MSTN protein. These bi-allelic clonal cells were subsequently used as nuclear donors to produce somatic cell nuclear transfer (SCNT) embryos, which were transferred into recipient buffaloes (n = 15). This effort established three pregnancies and resulted in the birth of one live MSTN knockout buffalo calf. Phenotypically, the calf displayed accelerated growth and increased muscle fiber number and size while maintaining normal meat composition. In conclusion, this study reports the world's first gene-edited buffalo generated through CRISPR-Cas9-mediated genome editing combined with SCNT. These findings provide a proof-of-concept for genome editing in buffalo and demonstrate that MSTN disruption can effectively enhance muscle growth and meat production traits.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Patel J, Patel D, A Raval (2025)

Artificial Intelligence for Predictive Modeling in CRISPR/Cas9 Gene Editing: a Survey of Methods and Design Strategies.

The journal of gene medicine, 27(12):e70061.

Ongoing developments in genome editing most notably the continued evolution of CRISPR-Cas systems and their orthogonal or modified counterparts have substantively altered both experimental and applied practices in biomedicine, agriculture, and therapeutic design. More recently, the systematic incorporation of artificial intelligence and machine learning methodologies has augmented the specificity, throughput, and explanatory capacity of genome-editing workflows, thereby refining the prediction of on-target efficiencies, the appraisal of off-target liabilities, and the tailoring of molecular therapeutic configurations. The present contribution offers an integrative survey of these computational developments, emphasizing (i) predictive algorithms, (ii) machine-learning and deep-learning frameworks, (iii) data-centric procedural strategies, and (iv) dedicated applications in oncology, neurology, rare-disease research, and precision-medicine contexts. Throughout, we evaluate architectural choices, sequence-encoding representations, and lingering dataset-related biases, while additionally addressing current constraints concerning model interpretability, ethical viability, and the procedural prerequisites for clinical translation. Moreover, we advance a structured taxonomy that organizes AI-mediated genome-editing approaches according to methodological lineage and functional scope, and we delineate extant research lacunae. By combining these elements, we supply a prospective assessment of the means by which artificial intelligence might be further leveraged to support secure, efficacious, and equitably accessible genome engineering outcomes.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Launspach M, Macos J, Afzal S, et al (2025)

Personalized CRISPR knock-in cytokine gene therapy to remodel the tumor microenvironment and enhance CAR T cell therapy in solid tumors.

Nature communications, 16(1):10987.

The immunosuppressive tumour microenvironment (TME) remains a central barrier to effective immunotherapy in solid tumours. We present a gene-therapeutic strategy that enables localized remodelling of the TME via tumour-intrinsic cytokine expression. Central to this approach is CancerPAM, a multi-omics bioinformatics pipeline that identifies and ranks patient-specific, tumour-exclusive CRISPR-Cas9 knock-in sites with high specificity and integration efficiency. Using neuroblastoma as a model, CancerPAM analysis of tumour sequencing data identifies optimal knock-in sites for pro-inflammatory cytokines (CXCL10, CXCL11, IFNG), and CancerPAM rankings correlate strongly with target-site specificity and knock-in efficiency, validating its predictive performance. CRISPR-mediated CXCL10 knock-in enhances CAR T cell infiltration and antitumour efficacy in vitro and in vivo, including humanized CD34[+] HuNOG mice, where CXCL10-expressing tumours show stronger immune infiltration and prolonged tumour control within a reconstituted human immune microenvironment. Our findings establish a framework for safe and effective CRISPR-based cytokine delivery, integrating localized TME remodelling with cellular immunotherapies to enhance CAR T cells and other treatments in immune-refractory solid tumours.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Bian W, Mcquarrie DWJ, Haussmann IU, et al (2025)

Genetic evaluation of CRISPR-Cas9 off-target effects from deleterious mutations on Drosophila male single X chromosome.

Functional & integrative genomics, 25(1):270.

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease protein 9 (Cas9) is a powerful tool used for genome engineering, but concerns remain about off-target effects. Here we evaluate potential deleterious effects of CRISPR-Cas9 by combining sequence analysis and the genetics of the male X chromosome in a Drosophila model. Since males have only one X chromosome deleterious mutations on the X chromosome will manifest in reducing viability or result in visible phenotypes and thus provide sensitive readouts of off-target activity. Our data do not support large scale off-target effects in Drosophila. To optimize sgRNA selection, we incorporated off-target evaluation into the PlatinumCRISPr sgRNA selection tool for a broad range of organisms.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Jung SC, Oh H, Eom W, et al (2025)

Scarless Genetic Engineering of Saccharomyces cerevisiae for Enhanced Guanosine Monophosphate Production as a Natural Flavor Enhancer.

Journal of microbiology and biotechnology, 35:e2508034 pii:jmb.2508.08034.

Saccharomyces cerevisiae and Cyberlindnera jadinii are widely utilized in the natural food seasoning industry as sources of flavor enhancing nucleotides such as inosine monophosphate (IMP) and guanosine monophosphate (GMP), which contribute to umami taste and support sodium reduction in food. However, wild type yeast strains produce GMP at levels that are inadequate for industrial scale applications, necessitating metabolic engineering strategies to increase production efficiency. This study employed a CRISPR-Cas9-based scarless genome engineering approach to enhance GMP biosynthesis in S. cerevisiae via promoter replacement. The key genes IMD3 and GUA1, responsible for converting IMP to GMP, were overexpressed to redirect purine flux toward GMP production. To address precursor limitations, ZWF1 and RKI1, involved in the pentose phosphate pathway, were also overexpressed. In parallel, the expression of STB5 and RAP1 was increased to enhance NADPH regeneration and relieve transcriptional bottlenecks. As a result, the final engineered strain SCJ-7 demonstrated a 1.77-fold increase in GMP titer and a 1.40-fold increase in GMP content during flask fermentation compared to the wild-type. In fed-batch fermentation, GMP titer was further improved by 27.6%. These findings demonstrate that combining metabolic flux enhancement with transcriptional regulation provides an effective and scalable strategy for boosting GMP production in S. cerevisiae, offering strong potential for industrial application in the food industry.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Skeate JG, Lee CJ, Stewart C, et al (2025)

Functional genomics for improving adoptive T-cell transfer therapies.

Journal for immunotherapy of cancer, 13(12): pii:jitc-2025-013286.

Adoptive cell therapy (ACT) has shown remarkable success in the treatment of some malignancies, particularly leukemia. However, there are multiple factors that limit the durability of ACT in solid tumors, including dose-limiting toxicities, the immunosuppressive tumor microenvironment, and T-cell exhaustion. As the manufacture and preparation of adoptive T-cell therapies allows time and adequate conditions for ex vivo T-cell engineering, forward genetic screens can identify novel genetic targets that could improve their effectiveness. CRISPR is a commonly used functional genomics tool that has been successfully used to both enhance our understanding of mechanisms of resistance and to discover potential genetic edits to improve ACT. A complementary approach, Sleeping Beauty transposon mutagenesis provides additional opportunities to identify novel genetic edits without being constrained by the annotated human genome. Here, we summarize forward genetic screens and their tools to uncover strategies to enhance ACT. Complementary approaches can be combined and improved on to identify translatable genetic editing strategies through studies that accurately recapitulate disease-specific challenges.

RevDate: 2025-12-11
CmpDate: 2025-12-11

Zhang N, Zhou X, Jiao X, et al (2026)

Field-deployable CRISPR-Dx for BmNPV and Nosema bombycis: DNA-extraction-free one-pot RPA-Cas12a and Cas12a/Cas13a dual-gene assays with handheld devices.

Insect biochemistry and molecular biology, 186:104449.

Simple, accurate, sensitive, and rapid pathogen diagnosis is crucial for effective control of silkworm diseases. Although CRISPR-based nucleic acid detection systems show great potential for on-site detection of silkworm pathogens, their practicality is hindered by complex workflows and reagent-storage constraints. To address these limitations and enhance field suitability, we developed a DNA extraction-free one-pot RPA-CRISPR/Cas12a (DEORC) system and a dual-gene assay for detecting Bombyx mori nucleopolyhedrovirus (BmNPV) and Nosema bombycis using a handheld device. The DEORC assay detects BmNPV in hemolymph samples as early as 6 h post-infection (hpi) and N. bombycis at 10[3] spores/mL in spore suspensions. The entire process from sampling to visual readout is completed in approximately 70 min without requiring sophisticated equipment. To further enable off-grid deployment, we lyophilized the Cas12a detection reagents using 1 M betaine as a lyoprotectant, which retained measurable activity for at least one month at 4 °C under our test conditions, facilitating short-term refrigerated transport and field storage. Additionally, the dual-gene assay detects 10[3] copies/μL of a double-reference plasmid and simultaneously detects both BmNPV and N. bombycis in a single tube from midgut samples at 48 hpi; when combined with extraction-free techniques, it enables simultaneous detection of both pathogens in hemolymph samples at 72 hpi. Collectively, these advancements provide sensitive and portable tools for on-site sericulture disease management, offering faster and more practical workflows than two-step single-gene and traditional approaches.

RevDate: 2025-12-11
CmpDate: 2025-12-11

Huang G, Tang Y, Zhang S, et al (2026)

Multifunctional nano-polymer-based targeted delivery system for CRISPR/Cas9-Mediated hepatocellular carcinoma therapy.

International journal of pharmaceutics, 687:126392.

CRISPR/Cas9 gene-editing technology exhibits substantial therapeutic potential for hepatocellular carcinoma (HCC); however, the targeted delivery of the CRISPR/Cas9 system into tumor cells remains a critical challenge requiring urgent exploration. Methyltransferase-Like 3 (METTL3), a key methyltransferase, drives HCC proliferation via multiple mechanisms. To address this challenge, a multifunctional delivery system was developed to efficiently deliver CRISPR/Cas9 plasmids targeting METTL3 (pMETTL3) into HCC cells. The cationic PEI, which facilitated the adsorption of pMETTL3 and protected it from lysosomal degradation, served as the polymeric backbone and was modified with deoxycholic acid (DOCA) to enhance its hydrophobicity. Meanwhile, lactobionic acid (LA) was grafted onto the structure to actively target HCC cells. The resulting pMETTL3/LPD was further functionalized with pH-sensitive and cleavable polyethylene glycol (PEG), aiming to reduce toxicity and enhance prolonged circulation. Results demonstrated that the delivery system maintains stability in physiological pH environments while achieving significantly enhanced accumulation in tumor tissues. Furthermore, the efficient cellular uptake of CRISPR/Cas9 plasmids enables precise gene editing, thereby effectively disrupting METTL3 expression, inducing apoptosis, and ultimately inhibiting HCC growth. This study presents a promising therapeutic strategy targeting METTL3 for HCC treatment and further expands the application of CRISPR/Cas9 gene-editing technology in cancer therapy.

RevDate: 2025-12-11
CmpDate: 2025-12-11

Li H, Melnyk JE, Fu BXH, et al (2025)

Genome-scale CRISPR screens identify PTGES3 as a direct modulator of androgen receptor function in advanced prostate cancer.

Nature genetics, 57(12):3027-3038.

The androgen receptor (AR) is a critical driver of prostate cancer (PCa). Here, to study regulators of AR protein levels and oncogenic activity, we developed a live-cell quantitative endogenous AR fluorescent reporter. Leveraging this AR reporter, we performed genome-scale CRISPRi flow cytometry sorting screens to systematically identify genes that modulate AR protein levels. We identified and validated known AR protein regulators, including HOXB13 and GATA2, and also unexpected top hits including PTGES3-a poorly characterized gene in PCa. PTGES3 repression resulted in loss of AR protein, cell-cycle arrest and cell death in AR-driven PCa models. Clinically, analysis of PCa data demonstrates that PTGES3 expression is associated with AR-directed therapy resistance. Mechanistically, we show PTGES3 binds directly to AR, regulates AR protein stability and is necessary for AR function in the nucleus at AR target genes. PTGES3 represents a potential therapeutic target for overcoming known mechanisms of resistance to existing AR-directed therapies in PCa.

RevDate: 2025-12-11
CmpDate: 2025-12-11

Yoo D, Park H, Lim H, et al (2025)

Versatile Biosensing Tool: CRISPR-Cas12a System-Integrated Electrochemical Biosensor for Severe Fever with Thrombocytopenia Syndrome Virus Detection in Clinical and Environmental Conditions.

Small (Weinheim an der Bergstrasse, Germany), 21(49):e06860.

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a highly lethal zoonotic virus with a maximum mortality rate of 30%. Despite its risks and potential for human-to-human transmission, the standard diagnostic method has been absent for SFTSV detection. Therefore, this study introduces a versatile SFTSV biosensing technology using the electrochemical-clustered regularly interspaced short palindromic repeat (EC-CRISPR) system. The sensing membrane is functionalized with the 2WJ DNA@Au-MoS2 signal probe as a strategy to amplify the EC response resulting from target detection events of the CRISPR system. The sensor exhibits selective, sensitive, and reproducible detection capabilities in phosphate-buffered saline, human serum, and Haemaphysalis longicornis genomic DNA diluted conditions with detection limits of 210.7, 189.0, and 285.1 fM, respectively. This verifies the versatility of the fabricated system, which significantly contributes to the early SFTSV detection in various fields. In the meantime, the sufficient sensing performance is demonstrated in identifying of SFTSV from infectious agent DNA. Furthermore, the proposed EC-CRISPR biosensing platform can be considered as a flexible foundational technique for the diagnosis of zoonotic infectious diseases, as it demonstrates practical applicability for the detection of Orientia tsutsugamushi by utilizing a customized CRISPR system programming strategy.

RevDate: 2025-12-11
CmpDate: 2025-12-11

Remiszewski P, Siedlecki E, Wełniak-Kamińska M, et al (2025)

Genetically Modified Mouse Models for Sarcoma Research: A Comprehensive Review.

Current oncology reports, 27(11):1221-1248.

PURPOSE OF REVIEW: Sarcomas are a heterogeneous group of over 170 malignant tumours of mesenchymal origin. The poor prognosis highlights the need for novel therapeutic strategies. Preclinical modelling is essential, yet challenging, given that sarcomas differ substantially from carcinomas and resources are very limited.

RECENT FINDINGS: GEMMs allow for the precise modelling of recurrent sarcoma genetics. The Cre-loxP system offer spatial and temporal control over the activation of oncogenes or the loss of tumour suppressors, while the CRISPR-Cas9 system enables the rapid, simultaneous editing of key drivers such as Trp53, Nf1, Kras and Pten. These models reproduce key features of human sarcomas, including their histopathology, the initiation of tumours in specific lineages and sites, and tumour-immune interactions within immune-competent hosts. GEMMs have been used to investigate hypotheses about the cells of origin, to test radiotherapy and immunotherapy, and to compare fusion-driven sarcomas with those with a complex karyotype. Despite variability, GEMMs remain essential tools for investigating the mechanisms of initiation, progression, and response to therapy. GEMMs offer mechanistic fidelity, but their use is limited by factors such as breeding burden, variability in recombination, off-target effects of CRISPR, underrepresentation of genomic complexity and inconsistent metastasis. These weaknesses reduce their predictive value, particularly with regard to advanced disease and immunotherapy. Progress will require the integration of Cre-loxP with CRISPR-Cas9, the standardisation of induction and reporting, and a closer alignment with distinct sarcoma subtypes, in order to enhance translational relevance.

RevDate: 2025-12-11
CmpDate: 2025-12-11

Faber NR, Ashok K, Venkatesan T, et al (2026)

Leveraging advances in RNAi and CRISPR for improved biological pest control.

Current opinion in insect science, 73:101453.

The limitations of chemical pesticides and their associated risks highlight the need for more sustainable pest management strategies. Biological control using natural enemies offers an eco-friendly alternative but is sometimes constrained by efficiency and scalability. Emerging molecular tools-RNA interference (RNAi) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based gene editing-present novel opportunities to enhance existing biological control or to control pests directly. RNAi induces targeted gene knockdown via a non-heritable, transient response. CRISPR enables precise genetic modifications and could improve traits in beneficial insects or disrupt essential genes in pests, optionally including a gene drive for increased power. Although limitations remain for several species, these technologies could be valuable tools for integrated pest management. Their future implementation raises biosafety and regulatory considerations, particularly for self-propagating systems like gene drives. This review showcases developments in RNAi and CRISPR-based pest control, and calls for risk-based, adaptive governance to enable their responsible use in sustainable agriculture.

RevDate: 2025-12-11
CmpDate: 2025-12-11

Berger P, Wilming L, Jürgens R, et al (2025)

PSTPIP1 and pyrin, two key regulators of macrophage differentiation.

European journal of cell biology, 104(4):151518.

BACKGROUND: Monocytes develop from hematopoietic stem cells; migrate into the tissue, where they undergo a stimulation-dependent and tissue specific differentiation into macrophages imprinting specific inflammatory functions. The development of inflammatory functions during differentiation of progenitor cells into macrophages remained incompletely understood.

OBJECTIVE: We intended to identify regulatory factors driving monocyte/macrophage differentiation.

METHODS: A Genome-wide CRISPR/Cas9 knockout screen (GeCKO) in ER-HoxB8 macrophages was used to identify key drivers of macrophage differentiation which were verified in independent knock-out and knock-in cells. Immunophenotyping was studied by FACS, morphology and migration by fluorescence microscopy, the inflammatory response by ELISA. Transcriptomic data were obtained by next generation mRNA sequencing and validated by quantitative polymerase chain reaction and immunoblotting.

RESULTS: Genome-wide CRISPR/Cas9 knockout screen identified the cytosolic cytoskeleton-associated adaptor molecule PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1) as a regulatory factor of macrophage differentiation. Interestingly, mutations in PSTPIP1 cause autoinflammatory disorders (PAPA syndrome). Deletion of PSTPIP1 resulted in hampered differentiation, decreased inflammatory response, changed morphology, altered cell adhesion and migration properties. PSTPIP1 is a regulator of Pyrin inflammasome activity which drives autoinflammation in familial Mediterranean fever (FMF). Deletion of Pyrin also resulted in a strong alteration of cellular dynamics in macrophages.

CONCLUSION: PSTPIP1 and Pyrin are crucial factors in macrophage differentiation. Their deletion or mutation resulted in a hampered differentiation of macrophages resulting in strong morphological alterations and impacting phagocyte key functions as adhesion and migration. Impaired differentiation of macrophages may represent a significant factor in the pathophysiology of autoinflammatory diseases like FMF and PAPA.

RevDate: 2025-12-11
CmpDate: 2025-12-11

Cosgrove BD, Bounds LR, Taylor CK, et al (2025)

Mechanosensitive genomic enhancers potentiate the cellular response to matrix stiffness.

Science (New York, N.Y.), 390(6778):eadl1988.

Epigenetic control of gene expression and cellular phenotype is influenced by changes in the local microenvironment, yet how mechanical cues precisely influence epigenetic state to regulate transcription remains largely unmapped. In this study, we combined genome-wide epigenome profiling, epigenome editing, and phenotypic and single-cell RNA sequencing CRISPR screening to identify a class of genomic enhancers that responds to the mechanical microenvironment. These "mechanoenhancers" can be preferentially activated on either soft or stiff extracellular matrix contexts and regulate transcription to influence critical cell functions including apoptosis, adhesion, proliferation, and migration. Epigenetic editing of mechanoenhancers reprograms the cellular response to the mechanical microenvironment and modulates the activation of disease-related genes in lung fibroblasts from healthy and fibrotic donors. Epigenetic editing of mechanoenhancers holds potential for precise targeting of mechanically driven diseases.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Murtaza M, Gupta P, Choudhary P, et al (2025)

Strategies to decipher silent biosynthetic gene clusters in actinomycetes.

Archives of microbiology, 208(1):53.

Actinobacteria have a huge, mainly untapped potential for the production of secondary metabolites. These metabolites are an important source of bioactive compounds. However, a majority of biosynthetic gene clusters (BGCs) are either under-expressed or fully silent under standard laboratory conditions, limiting their potential. The present review article aims to explore the biosynthetic gene clusters (BGCs) of actinobacteria using strategies that aid in unlocking these silent BGCs. The strategies discussed are PCR-Targeted Gene Replacement (PCR-TR); Cre-LoxP recombination system; Transcription factor decoys, Ribosome engineering, and CRISPR/Cas technologies. Besides, elicitors also helped with the identification of these cryptic or silent BGCs and advanced our ability to explore these natural products. Combining experimental and computational platforms provides an opportunity to unlock the hidden chemical diversity in nature, thereby accelerating the identification of new bioactive substances. The new antibiotics explored by all the strategies could help in the fight against antimicrobial resistance (AMR).

RevDate: 2025-12-09
CmpDate: 2025-12-09

Toofan P, Singh M, Brooks A, et al (2026)

Non-clinical safety considerations on genome editing using the CRISPR/Cas system.

Genes & diseases, 13(2):101785.

Recent advances in gene editing using the CRISPR/Cas system have revolutionized genome editing, opening new horizons for human cellular and gene therapy products. Genome editing technologies are rapidly being adopted in clinical trials. However, critical non-clinical safety considerations are required to address challenges in translating research to the clinic. Here, we review current ex vivo and in vivo genome editing approaches using the CRISPR/Cas system and discuss the practical use of these methods in pre-clinical studies and in the clinic. We also discuss known limitations of genome editing in humans and the mitigation of risk factors associated with it from a non-clinical safety perspective. This review aims to aid researchers in acquiring a perspective that is essential for the safe translation of genome editing to the clinic.

RevDate: 2025-12-09

Min YH, Lee DG, Lee HY, et al (2025)

CRISPR/Cas12a with Antisense Oligonucleotide-Regulated Translational Amplification for Ultrasensitive Nucleic Acid Detection.

ACS sensors [Epub ahead of print].

Highly sensitive nucleic acid testing-assisted early disease detection is crucial for effective disease prevention and management, particularly when targeting low-abundance genetic materials in molecular diagnostics. This study describes CRATE (CRISPR/Cas controlled antisense oligonucleotide (ASO)-mediated translational signal enhancement), a novel ultrasensitive approach for nucleic acid detection by integrating Cas12a trans-cleavage, ASO-controlled gene expression, and cell-free signal protein amplification. This assay leverages the target-induced trans-cleavage of ASO-controlled gene expression for the amplification of signal proteins, with luminescent signal allowing for attomolar-level target DNA detection, as well as antigenic protein application enabling visual detection by lateral flow assay. The CRATE assay improves sensitivity using ASO-modified locked nucleic acid, achieving a 10-aM-level DNA detection. The proof of concept demonstrates 0.1 copies/μL detection of HPV genomic DNA from HPV-positive cancer cells as well as colorimetric lateral flow tests with ∼10 copies/μL sensitivity. The CRATE assay can detect the HBV target in plasma from HBV-positive patients with 100% sensitivity and specificity. With high specificity and accuracy, the CRATE assay retains the potential for detecting any nucleic acid of interest. By integration of precise CRISPR-based cleavage, ASO regulation, and efficient protein signal amplification, this approach provides a promising solution for highly selective and sensitive nucleic acid detection and potential applications in clinical diagnostics and point-of-care testing.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Ain QU, McCarthy A, Nadeem A, et al (2025)

CRISPR/Cas9-mediated generation of GATA3 knockout in Bovine Fibroblast and MDBK cell lines to assess sgRNAs targeting efficiency.

Functional & integrative genomics, 25(1):269.

GATA3 is expressed in the outer cells of the morula stage during embryonic development and is considered a key driver of the regulation of early lineage development in bovines. This research presents an optimised somatic cell validation resource, successfully generating GATA3 knockout (KO) Bovine Fetal Fibroblasts and MDBK cells using CRISPR/Cas9-mediated genome editing for their future implications in vivo studies designed to definitively understand the role of GATA3 in cell lineage specification and bovine embryo development. This involved designing single-guide RNAs (sgRNAs) targeting different regions of the GATA3 gene, cloning them into the px459 plasmid, delivering the CRISPR clone into bovine fibroblast cells and the MDBK cell line, screening for successful targeting and knockouts, and MiSeq analysis to verify successful disruption of the GATA3 gene. A total of eleven guides were designed targeting the functional domains in Exons 4 and 5 and the transcription initiation site in Exon 2. Designed guides were first optimized and screened using an in vitro cleavage assay. The guides with the best cutting efficiencies were then tested in vivo by targeting bovine fetal fibroblast (BFFs) and MDBK cell line followed by MiSeq analysis to verify the successful knockouts. A total of two effective guides were identified targeting the zinc-finger (ZnF) functional domains of the GATA3 gene (sgRNA#5 and sgRNA#8 in Exon 4 and Exon 5, respectively) and one in Exon 2 (sgRNA#1) targeting the transcription initiation site of the GATA3 gene. MiSeq data from targeted bovine cells showed indel frequency of 47.40%, 55.5%, and 42.4% in bovine fetal fibroblasts, 11.03%, 28.9% and 7.3% for MDBK cells for top three sgRNAs. Overall, MiSeq data for 3 selected sgRNAs showed successful disruption of the GATA3 gene, inserting a base pair 2-3 bp upstream of the PAM site, ultimately resulting in a premature stop codon TAA in the downstream region. This study established and validated highly efficient sgRNAs targeting the GATA3 gene, forming a molecular basis for forthcoming functional investigations in bovine embryos to explore gene function and protein-level effects.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Fast L, Omar M, Kanis P, et al (2025)

Search-and-remove genome editing allows selection of cells by DNA sequence.

Nature communications, 16(1):10985.

The selection of cells that have acquired a desired gene edit is often done by the introduction of additional genes that confer drug resistance or encode fluorophores. However, such marker genes can have unintended physiological effects and are not compatible with editing of single nucleotides. Here, we present SNIPE, a method that allows the marker-free selection of edited cells based on single nucleotide differences to unedited cells. SNIPE drastically enriches for cells, which have been precisely edited (median 7-fold). We validate the approach for 42 different edits using Cas9 or Cas12a in different cell types and species. We use it to enrich for combinations of substitutions that change missense mutations carried by all people today back to the ancestral state seen in Neandertals and Denisovans. We also show that it can be used to kill cultured tumor cells with aberrant genotypes and to repair heterozygous tumorigenic mutations.

RevDate: 2025-12-08
CmpDate: 2025-12-08

Roura-Martinez D, Popa N, Jaouen F, et al (2025)

Combination of Cas9 and adeno-associated vectors enables efficient in vivo knockdown of precise miRNAs in the rodent and primate brain.

Proceedings of the National Academy of Sciences of the United States of America, 122(50):e2513076122.

microRNAs (miRNAs) are key regulators of multiple biological functions. Although intensively studied, inactivating miRNAs in vivo is particularly challenging, especially in the brain. Here, we designed cell-specific tools aiming at downregulating defined miRNA species in vivo and investigating their function in discrete neuronal networks. Focusing on miR-124, a miRNA highly expressed in the mammalian brain and transcribed from three independent chromosomal loci, we designed and validated different guide RNAs. In vivo, our CRISPR-Cas9 designs strongly downregulate miR-124 levels without affecting the expression of other miRNAs. As a result, levels of endogenous miR-124 targets exhibit a significant increase supporting the release of its silencing activity. We provide evidence that specific deletion of miR-124 in neural stem cells of the subventricular zone altered migration of newly generated neurons into the olfactory bulb. We also showed that our vectors modified the Ca[2+] permeability of AMPA receptors, a robust functional output downstream of miR-124. We also extended our approach to other miRNAs, mammalian species, and Cas9 proteins, confirming the versatility of CRISPR-Cas9. These tool properties support their potential for elucidating miRNA functions in complex experimental in vivo settings such as brain networks.

RevDate: 2025-12-08
CmpDate: 2025-12-08

Ichinose M, Ohta M, Shimajiri Y, et al (2025)

RECODE: a programmable guide-free C-to-U RNA editing tool.

Nucleic acids research, 53(22):.

Programmable RNA cytidine deaminase tools have been developed to convert cytidine-to-uridine (C-to-U) using CRISPR systems with guide RNAs. These tools, however, have limitations such as low editing efficiency, limited targetable sequence flexibility, and off-target RNA editing. Here, we present a novel guide-free C-to-U editing tool, named RECODE (RNA Editor for C-to-U with an Optimized DYW Enzyme), based on the RNA-binding pentatricopeptide repeat proteins, naturally fused to a C-terminal DYW cytidine deaminase domain. The RECODE specificity domain was engineered to enable retargeting, while its length and sequence were optimized to reduce off-target effects. Further optimization of the C-terminal catalytic region increased both the editing activity and the translation of the edited RNA. We showed that RECODE efficiently edits a wide range of targets in human cells, without affecting adjacent cytidines. It achieved over 50% editing efficiency for most sites, except those with an upstream guanine. Furthermore, we showed that RECODE is functional in mice, with high editing efficiency observed in specific tissues such as skeletal muscles using an AAV delivery system, suggesting its therapeutic potential for various diseases.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Rodríguez-Estévez D, Gil-Durán C, Silva R, et al (2026)

CRISPR/Cas9-mediated development of Penicillium roqueforti strains deficient in roquefortine C and mycophenolic acid enables toxin-free blue cheese production.

International journal of food microbiology, 446:111535.

Penicillium roqueforti, a key fungus in the manufacture of blue-veined cheeses, can produce mycotoxins such as roquefortine C and mycophenolic acid. The production of these metabolites is highly strain- and condition-dependent. In industrial manufacture, hypotoxigenic P. roqueforti strains are typically used as controlled adjunct starters under standardized conditions, resulting in minimal mycotoxin accumulation, whereas naturally matured or artisan cheeses display more variable strain composition and ripening environments, which can elevate risk. In this context, the development of strains incapable of mycotoxin biosynthesis represents an important step toward safer cheese products. Here, we report the generation of P. roqueforti strains lacking the ability to synthesize roquefortine C and mycophenolic acid using CRISPR/Cas9. Single and double mutants deficient in one or both mycotoxins were obtained. Laboratory-scale cheeses produced under artisan-like conditions with these engineered strains contained no detectable levels of the target mycotoxins, in contrast to cheeses made with the wild-type strain. All mutants retained the ability to colonize cheese but displayed altered fungal biomass production compared to the native strain. These differences were consistent in curd and laboratory media and were not associated with changes in lipolytic or proteolytic activities. Further analyses revealed that while the absence of mycophenolic acid did not affect NaCl sensitivity, the lack of roquefortine C increased sensitivity to salt. Collectively, these results demonstrate the feasibility of producing mycotoxin-free blue cheeses using strains deficient in roquefortine C and mycophenolic acid biosynthesis, thereby laying the foundation for developing mycotoxin-free cheeses with engineered atoxigenic P. roqueforti strains.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Li L, Xiong Y, Guo Y, et al (2025)

G-Quadruplex-Enhanced DNA Silver Nanoclusters Enable CRISPR/Cas12a System for Ultrasensitive Detection of Salmonella typhimurium.

Journal of agricultural and food chemistry, 73(49):31603-31610.

DNA-templated silver nanoclusters (tDNA-AgNCs) show considerable promise as fluorescence reporters for the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system because of their ease of synthesis, strong resistance to photobleaching, and large Stokes shift. However, the weak luminous intensity and low cleavage efficiency of tDNA-AgNCs limit the sensitivity of CRISPR assays. In this study, we developed a novel approach by introducing activator DNA (aDNA) with a G-quadruplex structure to enhance the luminous intensity of the tDNA-AgNCs. As a result of the high cleavage efficiency of free aDNA by activated CRISPR/Cas12a, the G-quadruplex-enhanced tDNA-AgNCs (GED-AgNCs) were integrated into recombinase polymerase amplification and CRISPR/Cas12a system for the ultrasensitive detection of Salmonella typhimurium. By optimizing the synthesis of tDNA-AgNCs and GED-AgNCs, our developed G-quadruplex-enhanced DNA-AgNC CRISPR assay (G-DACA) platform enabled the sensitive determination of S. typhimurium with a detection limit as low as 1 CFU/mL and a wide dynamic range of 10-10[8] CFU/mL. Moreover, our proposed method demonstrated good accuracy and reliability for the quantitative analysis of S. typhimurium in real pasteurized milk samples, with recovery rates ranging from 81.06% to 102.33% and relative standard deviations between 7.17% and 14.84%. Overall, our innovative G-DACA platform offers an economical and versatile solution for food safety and clinical diagnostics.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Pei Y, Li S, Garipler G, et al (2025)

Stem cell-based approach to identify regulatory TFs during mammalian cell differentiation.

Stem cell reports, 20(12):102716.

Cell differentiation is regulated by transcription factors (TFs), but specific TFs needed for mammalian differentiation pathways are not fully understood. For example, during spinal motor neuron (MN) differentiation, 1,370 TFs are transcribed, yet only 55 have reported functional relevance. We developed a method combining pluripotent stem cell differentiation, single-cell transcriptomics, and a CRISPR-based TF loss-of-function screen and applied it to MN differentiation. The CRISPR screen identified 245 genes important for mouse MN differentiation, including 116 TFs. This screen uncovered important genes not showing differential transcription and identified a regulatory hub at the MN progenitor (pMN) stage. A secondary human screen of 69 selected candidates revealed a conservation between mouse pMN and human pMN and ventral pMN (vpMN) regulations. The validation of three hits required for efficient human MN differentiation supported the effectiveness of our approach. Collectively, our strategy offers a framework for identifying important TFs in various differentiation pathways.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Kraiczy J, B Yu (2025)

Human fallopian tube epithelial organoids with TP53 mutation recapitulate features of serous tubal intraepithelial carcinoma (STIC).

Gynecologic oncology, 203:198-208.

OBJECTIVE: Serous tubal intraepithelial carcinoma (STIC) is the immediate precursor lesion for high-grade serous ovarian carcinoma (HGSOC) and harbors universal TP53 mutations. The lack of an appropriate in vitro model for STIC presents a major challenge in studying its pathogenesis. We aimed to develop a human in vitro model that mimics STIC lesions.

METHODS: Using CRISPR-Cas9 gene editing, we generated human fallopian tube epithelial organoids with TP53 loss-of-function mutations (TP53[-/-] FTOs). We characterized TP53[-/-] FTOs on a cellular and molecular level using immunofluorescence confocal imaging, copy number variation (CNV) analysis, and RNA sequencing.

RESULTS: TP53[-/-] FTOs recapitulated key features of STIC lesions. They exhibited increased proliferation and nuclear abnormalities, including nuclear enlargement and atypical mitotic figures. Copy number variation analysis revealed aneuploidy in some TP53[-/-] FTOs. Compared to unedited controls, TP53[-/-] FTOs demonstrated significant transcriptomic changes, including the downregulation of DNA repair genes and upregulation of epithelial-mesenchymal transition (EMT) pathways. Similar to STIC lesions, TP53[-/-] FTOs showed a marked reduction in ciliated cells and ciliogenesis-associated gene expression.

CONCLUSIONS: These findings suggest that p53 loss in FTOs promotes a proliferative and genomically unstable state that is conducive to carcinogenesis. The TP53[-/-] FTO model we have generated provides a valuable tool for studying early events in ovarian carcinogenesis and for developing new strategies for the early detection and prevention of ovarian cancer.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Pérez Antón E, Dujeancourt-Henry A, Rotureau B, et al (2025)

A CRISPR-based diagnostic tool to survey drug resistance in human African trypanosomiasis.

Antimicrobial agents and chemotherapy, 69(12):e0093325.

The World Health Organization aims to eliminate human African trypanosomiasis caused by Trypanosoma brucei gambiense (gHAT) by 2030. With the decline of reported cases, maintaining active surveillance is essential, including for the potential emergence of drug-resistant parasites. We have developed new highly specific diagnostic tools, using the Cas13a-based Specific High-Sensitivity Reporter Enzymatic UnLOCKing (SHERLOCK) technology, for the detection of drug-resistant genotypes that (i) are already circulating, such as the AQP2/3(814) chimera providing resistance to pentamidine and melarsoprol or (ii) could emerge, such as the TbCPSF3 (N[232]H) mutation, associated with acoziborole resistance under laboratory conditions. The AQP2/3(814) SHERLOCK assay detected RNA from both cultured parasites and field strains isolated from gHAT patients who relapsed following melarsoprol or pentamidine treatment. The CPSF3(SNV) SHERLOCK assay discriminated between wild-type CPSF3 RNA and CPSF3 bearing a single A-C mutation that confers resistance to acoziborole in vitro. These SHERLOCK assays are amenable for use as a high-throughput screening method to monitor for drug-resistant-associated mutations in Trypanosoma brucei, providing a new molecular tool for epidemiological surveillance during the gHAT elimination phase.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Sivakumar S, Wang Y, Goetsch SC, et al (2025)

Benchmarking and optimizing Perturb-seq in differentiating human pluripotent stem cells.

Stem cell reports, 20(12):102713.

Perturb-seq is a powerful approach to systematically assess how genes and enhancers impact the molecular and cellular pathways of development and disease. However, technical challenges have limited its application in stem-cell-based systems. Here, we benchmarked Perturb-seq across multiple CRISPRi modalities, on diverse genomic targets, in multiple human pluripotent stem cells, during directed differentiation to multiple lineages, and across multiple single guide RNA (sgRNA) delivery systems. To ensure cost-effective production of large-scale Perturb-seq datasets as part of the Impact of Genomic Variants on Function (IGVF) consortium, our optimized protocol dynamically assesses experiment quality across the weeks-long procedure. Our analysis of 1,996,260 sequenced cells across benchmarking datasets reveals shared regulatory networks linking disease-associated enhancers and genes with downstream targets during cardiomyocyte differentiation. This study establishes open tools and resources for interrogating genome function during stem cell differentiation.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Huang X, Xiao T, Zhao X, et al (2025)

Olfactory perception of trifluralin by GOBP2 decreases the susceptibility of Spodoptera litura to insecticides through modulation of 20E signaling pathway-mediated metabolic detoxification.

Journal of hazardous materials, 500:140417.

Herbicide contamination has emerged as a critical ecological concern due to its persistent environmental accumulation and unintended impacts on non-target species. This study reveals that olfactory exposure to the volatile herbicide trifluralin enhances metabolic detoxification in Spodoptera litura larvae, significantly reducing their susceptibility to indoxacarb and chlorpyrifos. Building on our previous discovery of GOBP2's trifluralin-binding capacity, CRISPR/Cas9-generated GOBP2 knockout (GOBP2[KO]) larvae exhibited compromised loss of cross-tolerance, accompanied by impaired induction of carboxylesterases (COEs) and glutathione S-transferases (GSTs). Mechanistically, trifluralin perception through GOBP2 activated a 20-hydroxyecdysone (20E)-dependent pathway, upregulating both 20E biosynthesis genes and ecdysone receptor (EcR)/ultraspiracle (USP) complexes in wild-type insects. Systemic disruption of this signaling axis via RNAi-mediated EcR/USP co-silencing abolished trifluralin-induced detoxification enzyme activation and restored insecticide vulnerability. Molecular validation through dual-luciferase assays and yeast-one hybrid systems confirmed EcR/USP-mediated transactivation of COE/GSTe genes via conserved response elements. Functional characterization identified GSTe1 and GSTe16 as key effectors, with GSTe16 exhibiting effective metabolic efficiency against indoxacarb (19.25 % degradation) and chlorpyrifos (13.04 % degradation), while GSTe1 showed significant activity toward indoxacarb metabolism (14.96 %) and chlorpyrifos degradation (10.17 %). Genetic evidence from CRISPR/Cas9-ablated S. litura and transgenic Drosophila models further established causal relationships between GSTe expression levels and insecticide tolerance. Our integrated analysis establishes that GOBP2-mediated endocrine signaling constitutes a central axis in trifluralin-induced insecticide tolerance, directly bridging herbicide perception to metabolic resistance through 20E-dependent regulatory cascades.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Lin Y, Ye X, Zeng L, et al (2025)

Heat shock-optimized CRISPR/Cas9 system for visible clonal analysis and mutant generation in Drosophila.

G3 (Bethesda, Md.), 15(12):.

In Drosophila genetic studies, clonal analysis such as mosaic and Mosaic Analysis with a Repressible Cell Marker has been widely used to investigate gene function. Recently, the CRISPR/Cas9 system has been established as a powerful tool for efficient mutant generation; however, its application in clonal analysis has been rarely reported. Here, we present a suite of Gal4/UAS-Cas9 binary expression systems that integrate UAS-Cas9 and multiple-sgRNAs (single-guide RNAs) into a single plasmid. These systems facilitate versatile applications, enabling Gal4-driven direct phenotypic studies, approximate clonal analysis, in vitro cell transfection, and stable mutant generation, among which, the third-generation constructs: G3a/b incorporate visible labeling strategies for marking approximate clonal regions. In addition, compared to continuously active drivers, we found that the short-pulse-induced heat shock-Gal4 (hs-Gal4) was sufficient to induce high clonal efficiency and generate larger clones. In the germline, short-pulse heat shock is also effective. It reduces residual Cas9 activity in the germline stem cells, thereby minimizing the risk of affecting germline stem cell survival and improving mutant acquisition.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Salama R, Peet E, Morrione TL, et al (2025)

Functional classification of GNAI1 disorder variants in Caenorhabditis elegans uncovers conserved and cell-specific mechanisms of dysfunction.

Genetics, 231(4):.

Heterotrimeric G proteins transduce signals from G protein-coupled receptors, which mediate key aspects of neuronal development and function. Mutations in the GNAI1 gene, which encodes Gαi1, cause a disorder characterized by developmental delay, intellectual disability, hypotonia, and epilepsy. However, the mechanistic basis for this disorder remains unknown. Here, we show that GNAI1 is required for ciliogenesis in human cells and use Caenorhabditis elegans as a whole-organism model to determine the functional impact of 7 GNAI1-disorder patient variants. Using CRISPR-Cas9 editing in combination with robust cellular (cilia morphology) and behavioral (chemotaxis) assays, we find that T48I, K272R, A328P, and V334E orthologous variants impact both cilia assembly and function in AWC neurons, M88V and I321T have no impact on either phenotype, and D175V exerts neuron-specific effects on cilia-dependent sensory behaviors. Finally, we validate in human ciliated cell lines that D173V, K270R, and A326P GNAI1 variants disrupt ciliary localization of the encoded human Gαi1 proteins similarly to their corresponding orthologous substitutions in the C. elegans ODR-3 (D175V, K272R, and A328P). Overall, our findings determine the in vivo effects of orthologous GNAI1 variants and contribute to the mechanistic understanding of GNAI1-disorder pathogenesis as well as neuron-specific roles of ODR-3 in sensory biology.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Suter A, Graham A, Kuah JY, et al (2025)

Efficient Installation of Heterozygous Mutations in Human Pluripotent Stem Cells Using Prime Editing.

The CRISPR journal, 8(6):401-411.

The utility of human pluripotent stem cells (hPSCs) is greatly enhanced by the ability to introduce precise, site-specific genetic modifications with minimal off-target effects. Although Cas9 endonuclease is an exceptionally efficient gene-editing tool, its propensity for generating biallelic modifications often limits its capacity for introducing heterozygous variants. Here, we use prime editing (PE) to install heterozygous edits in over 10 distinct genetic loci, achieving knock-in efficiencies of up to 40% without the need for subsequent purification or drug selection steps. Moreover, PE enables the precise introduction of heterozygous edits in paralogous genes that are otherwise extremely challenging to achieve using endonuclease-based editing approaches. We also show that PE can be successfully combined with reprogramming to derive heterozygous induced pluripotent stem cell clones directly from human fibroblasts and peripheral blood mononuclear cells. Our findings highlight the utility of PE for generating hPSCs with complex edits and represent a powerful platform for modeling disease-associated dominant mutations and gene-dosage effects in an entirely isogenic context.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Basharat R, Rizzo G, Zoodsma JD, et al (2025)

Optimizing Prime Editing in Zebrafish.

The CRISPR journal, 8(6):426-435.

Prime editing is a clustered regularly interspaced short palindromic repeats-based approach that enables the introduction of precise genetic modifications, including missense mutations, making it valuable for generating disease models. The comparative performance of novel prime editor (PE) variants in zebrafish remains largely unexplored. Here, we systematically evaluated the efficiency of five PEs-PE2, PE6b, PE6c, PEmax, and PE7-in zebrafish. We tested mRNA encoding for each of these PEs with prime editing guide RNAs (pegRNAs) designed to install five missense mutations. Efficient editing was achieved at four of the five sites with multiple PEs. Among these, PEmax emerged as the most efficient editor for introducing pure prime edits, with rates reaching 15.34%. We found that strategies proposed to block 3' degradation of pegRNAs (epegRNAs and addition of a La RNA binding motif to the PE) did not improve performance in our assays. Together, these findings establish PEmax as a robust tool to introduce missense mutations into zebrafish.

RevDate: 2025-12-10
CmpDate: 2025-12-10

Salemdawod A, Cooper B, Liang Y, et al (2025)

CRISPR-Cas9 Single Nucleotide Editing of Tuberous Sclerosis Complex 2 Gene in Mesenchymal Stem Cells.

The CRISPR journal, 8(6):412-425.

The tuberous sclerosis complex (TSC)2 gene regulates the mammalian target of rapamycin (mTOR) pathway, impacting cell proliferation and growth. The loss-of-function mutations, especially in mesenchymal progenitors, drive the development multiple benign and malignant tumors. TSC2 mutations in certain cancer types, e.g., breast cancer, are also associated with poorer prognosis. The databases of TSC2-mutations report point mutations as the most prevalent. We aimed to test the feasibility of inducing point mutations in mesenchymal stem cells (MSCs), targeting the most frequent point mutations of the TSC2 gene, TSC2. c.1864 C>T (p.Arg622Trp), TSC2. c.1832 G>A (p.Arg611Glu), and TSC2. c.5024 C>T (p.Pro1675Leu) using two delivery methods for CRISPR-Cas9. We report a high editing efficiency of up to 85% inducing TSC2 point mutations in hMSCs using lipofectamine-based transfection. Overall, the high editing efficiency of some TSC2 mutations enables the induction and reversal of mutations in primary hMSCs without needing resource-consuming derivation of cell lines frequently distinct from their primary counterparts.

RevDate: 2025-12-08
CmpDate: 2025-12-08

Li Z, Cheng Y, Li C, et al (2025)

Harnessing microalgae for bioproducts: innovations in synthetic biology.

World journal of microbiology & biotechnology, 41(12):500.

Microalgae are increasingly recognized as versatile platforms for sustainable production of biofuels and high-value bioproducts such as lipids, carotenoids and polyunsaturated fatty acids. Rapid progress in synthetic biology is transforming microalgal engineering by enabling precise rewiring of metabolic pathways and overcoming long-standing technical bottlenecks, particularly those related to transformation efficiency, genetic stability and strain scalability. Recent innovations (including CRISPR/Cas genome editing, modular cloning systems, synthetic promoter libraries and dynamic, environment-responsive regulatory circuits) have greatly expanded the genetic toolset available for both model and recalcitrant species. These advances support targeted control of lipid and pigment biosynthesis, improved flux distribution and more robust performance under industrially relevant conditions. When integrated with progress in photobioreactor design, automated cultivation, and process intensification, synthetic biology unlocks new potential for scalable, economically viable microalgal biomanufacturing. This review summarizes these developments, highlights remaining challenges in strain robustness and bioprocess translation, and outlines future pathways toward high-performance microalgal biofactories that can contribute meaningfully to a low-carbon, bio-based economy.

RevDate: 2025-12-08
CmpDate: 2025-12-08

Birappa G, Perumalsamy H, Hong SH, et al (2026)

Single-cell RNA sequence analysis reveals USP32 as a therapeutic target to mitigate PD-L1-driven colorectal tumorigenesis in vitro and in vivo.

Theranostics, 16(2):986-1005.

Background: The expression levels of the programmed death-ligand 1 (PD-L1) protein serves as a prognostic indicator for patients with colorectal cancer (CRC). Advancement of CRC is facilitated by deubiquitinating enzymes (DUBs), which regulate oncoprotein levels via the ubiquitin-proteasomal pathway. The post-translational regulatory mechanisms governing PD-L1 protein abundance on CRC, in relation to different tumor grades and their clinical relevance, remains unknown. Methods: We analyzed single-cell RNA sequencing (scRNA-seq) data to identify DUB genes associated with PD-L1 expression in CRC. We used a loss-of-function-based CRISPR/Cas9 library to identify putative DUB genes that regulate the PD-L1 protein level. Immunoprecipitation was used to confirm the interaction between the USP32 and PD-L1 along with its ubiquitination status. A series of in vitro and in vivo carcinogenesis-related experiments were conducted to determine the clinical relevance between USP32 and PD-L1 expression in CRC progression. Results: In this study, we analyzed scRNA-seq data from extensive cohorts of human and mice at the single-cell level to identify DUB genes associated with PD-L1 expression in CRC. Our analysis identified multiple putative DUBs, including USP32 and USP12, as prognostic markers associated with PD-L1 expression, which was found to be elevated in T cells, macrophages, and classical monocytes cell types in patients with CRC. A secondary screening using CRISPR/Cas9-mediated loss-of-function analysis for DUBs found that USP32 modulates PD-L1 protein levels in CRC. Furthermore, we demonstrated that USP32 interacts with, stabilizes, and extends the half-life of PD-L1 by preventing its K-48-linked polyubiquitination as an underlying mechanism that contributes for tumorigenesis. Conclusion: A combination of scRNA-seq analysis and wet-lab experimental validation confirmed that USP32 mediates PD-L1 protein stabilization in colon cancer, identifying it as a potential therapeutic target for CRC. CRISPR/Cas9-mediated targeted knockout of the USP32 gene reduced PD-L1 protein levels and significantly mitigated colorectal cell proliferation and tumorigenesis, both in vitro and in vivo, in a xenograft mouse model, underscoring a novel and alternative approach to the treatment of CRC.

RevDate: 2025-12-08
CmpDate: 2025-12-08

Wei C, Z Chen (2025)

Comprehensive analysis of phage genomes from diverse environments reveals their diversity, potential applications, and interactions with hosts and other phages.

Frontiers in microbiology, 16:1686402.

Phages are ubiquitous and diverse, playing a key role in maintaining microbial ecosystem balance. However, their diversity, potential applications, and their interactions with hosts and other phages remain largely unexplored. To address this, we collected 59,652,008 putative viral genomes from our laboratory, 45 public viral datasets, and an integrated public viral genome database (IGN), covering seven habitats. We obtained 741,692 phage genomes with completeness ≥50% (PGD50), and most (93.83%, 695,938/741,692) of these phage genomes were classified into the Caudoviricetes class. We found that 158,522 species-level viral clusters that contained 28.96% (214,814/741,692) phage genomes without any known phage genomes in the IGN, indicating substantial novelty. Global phylogenetic trees for five iterations based on complete phage genomes significantly expanded the known diversity of the virosphere. Genome analysis revealed phage potential divergence with habitat types and highlighted the utilization of alternative genetic codes. Furthermore, 3D structural similarity searches demonstrated significant potential for annotating previously uncharacterized viral proteins. Analysis of CRISPR spacer inferred potential hosts of phages and competitive networks among phages, highlighting virulent phages as promising candidates for phage therapy against pathogenic bacteria. Intriguingly, diverse CRISPR-Cas systems were detected within phage genomes themselves, suggesting their enormous potential as novel gene editing tools. Collectively, this study provides a comprehensive phage genome resource, foundational for future research into phage-host and phage-phage interactions, phage therapy development, and the mining of next-generation genetic tools.

RevDate: 2025-12-08
CmpDate: 2025-12-08

Zhang Y, Deng Q, Xu Y, et al (2026)

ROS-responsive cellular vesicles with ferroptosis-targeting siACMSD delivery for acute kidney injury therapy.

Theranostics, 16(4):1941-1958.

Background: Acute kidney injury (AKI) is a severe and prevalent nephrotic syndrome which lack of definitive therapies. Alpha-amino-β-carboxymuconic acid-ε-semialdehyde decarboxylase (ACMSD) is a metabolic enzyme mainly expressed in the kidney which exacerbated AKI injury by promoting TCA cycle and inhibiting nicotinamide adenine dinucleotide (NAD[+]) production, whereas lack of effective intervention strategies for ACMSD-targeted therapy. Methods: Herein, we knocked out ACMSD in vitro through CRISPR-Cas9 method, and developed a reactive oxygen species (ROS)-responsive neutrophil-derived cellular vesicles (CVs) drugs (RNAi@ROS-CVs), which efficiently mediated ACMSD knockdown in vivo, exploring the mechanism of ACMSD-induced ferroptosis process in AKI. Results: ACMSD knockout effectively alleviated cisplatin (CP)-induced mitochondrial damage, suppressed TCA cycle progression, promoted NAD[+] synthesis, and inhibited ferroptosis in HK2 cells. In mice AKI model, RNAi@ROS-CVs effectively targeted the injured kidneys, downregulated ACMSD expression in renal tubular epithelial cells, reduced ROS production and lipid peroxidation, and alleviated CP or ischemia/reperfusion (I/R)-induced ferroptosis. Conclusion: These findings highlight the therapeutic potential of ACMSD-targeted knockout in AKI intervention and introduce a versatile and efficient controlled-release drug delivery platform for AKI-targeted therapy, with potential applicability to other acute renal diseases.

RevDate: 2025-12-08
CmpDate: 2025-12-08

Zhong XY, Yang YX, Xiong YF, et al (2026)

Programmable molecular microscopy: CRISPR/Cas fluorescent probes revolutionizing spatiotemporal genomic imaging.

Theranostics, 16(4):1877-1904.

Bioimaging technologies visually resolve spatiotemporal dynamics of biomolecules, cells, and tissues, enabling essential insights into gene regulation, disease mechanisms, and drug metabolism. CRISPR/Cas-based fluorescent probes transform CRISPR from "genetic scissors" into "molecular microscopes," providing an indispensable tool for in situ decoding of molecular events in living systems. Their high nucleic acid specificity establishes CRISPR/Cas as a pivotal technology for dynamically monitoring genomic and transcriptomic events at live-cell and in vivo levels. This work systematically outlines design strategies and functional mechanisms of mainstream CRISPR/Cas fluorescent probes for bioimaging, encompassing five categories: fluorescent proteins, synthetic dyes, smart gated probes, nanomaterials, and multimodal integrated probes. Recent advances and persistent challenges in achieving high-sensitivity targeted imaging, effective signal amplification, and precise delivery control are comprehensively examined, including analysis of their advantages, limitations, and adaptability in complex biological environments. Building on breakthroughs in in vivo delivery systems, diverse carriers demonstrate significant potential for enhancing CRISPR/Cas transport efficiency, improving tissue penetration, and enabling spatiotemporal controlled release. Continued innovation drives CRISPR/Cas imaging platforms toward higher sensitivity, enhanced biocompatibility, and multifunctional integration, thereby fostering the convergence and broad application of gene editing and molecular diagnostics.

RevDate: 2025-12-07

Das T, Barman T, A Prasad (2025)

Precision editing to improve fruit traits: CRISPR/Cas into the picture.

Protoplasma [Epub ahead of print].

Crop growth, quality, and yield can be adversely affected by various biotic and abiotic stresses. Crop characteristics can be improved with conventional breeding and other variation-based breeding strategies. However, these strategies are time as well as resource consuming and to overcome this, novel approaches are necessary. CRISPR/Cas technique allows to improve desired traits more efficiently and accurately by targeting specific genes. Genome editing has become more versatile with CRISPR/Cas systems and is a valuable tool to protect food security by developing commercial crops optimized for yield and nutritional quality. Researchers are able to target and edit stress response pathway genes to develop crops with increased tolerance to stress. A lack of regeneration protocols and sufficient genome sequencing data has restricted fruit editing to only a few fruits (tomatoes, citrus, apple, kiwi, banana, grapes, strawberries, watermelon, etc.). This review is focused on CRISPR/Cas applications on the nutritional aspects of fruit engineering along with the challenges and opportunities. Another aspect which will be covered is the use of CRISPR/Cas technology to improve fruit resilience to biotic and abiotic stress, but not at the cost of yield. We discuss the pros and cons of using this technology, such as unintended effects on fruit traits or public concerns about GMOs. We conclude that the application of CRISPR/Cas9 technology has the potential to be of great benefit to the agricultural industry not only to improve nutritional aspects but also to help reduce crop losses.

RevDate: 2025-12-07
CmpDate: 2025-12-08

Nguyen VT, Van BTT, Uyen TN, et al (2025)

Functional divergence of zebrafish keap1 paralogs revealed by CRISPR/Cas9-mediated gene editing: a specialized role for keap1b in inflammation.

Transgenic research, 34(1):53.

The Keap1/Nrf2 signaling pathway is a master regulator of cellular defense against oxidative and electrophilic stress. In teleosts like zebrafish (Danio rerio), whole-genome duplication resulted in two keap1 paralogs, keap1a and keap1b, whose functional specificities remain incompletely understood. This study investigates the divergent roles of these paralogs by comparing the responses of established keap1a and novel keap1b knockout larvae to distinct chemical stressors. By comparing the responses of keap1b[dl40], keap1a[dl07], and nfe2l2a[dl703] (Nrf2a) larvae to these stressors, we uncovered a striking functional dichotomy. While loss of either paralog conferred resistance to H2O2-induced oxidative stress, keap1b[dl40] larvae, unlike their keap1a[dl07] counterparts, exhibited extreme sensitivity to the lethal effects of CuSO4 exposure, with survival rates plummeting to ~ 25%. This heightened sensitivity to copper sulfate was associated with a blunted transcriptional response of inflammatory markers tnf-a and c3a, suggesting that Keap1b is critical for modulating the Nrf2a-mediated response to inflammatory stress in orchestrating a viable inflammatory response. This work clarifies the non-redundant, vital function of Keap1b in the response to heavy metal-induced stress and provides a valuable genetic resource (keap1b[dl40] null allele) for future studies.

RevDate: 2025-12-07

Madny MA, KS Yadav (2025)

Biomimetic oral drug delivery: Translating nature's design into therapeutic innovation.

Colloids and surfaces. B, Biointerfaces, 259:115348 pii:S0927-7765(25)00855-0 [Epub ahead of print].

Oral drug delivery, the most patient friendly administration route offers convenience and compliance but faces formidable biological barriers. Enzymatic degradation, mucosal entrapment, efflux transport and extensive first-pass metabolism drastically reduce the effectiveness of sensitive therapeutics including peptides, proteins, nucleic acids and vaccines. Conventional formulations often fail to overcome these challenges highlighting the need for innovative approaches. Biomimetic drug delivery has emerged as a transformative strategy. By emulating structures and functions from cells, membranes, exosomes, viruses and gut microbiota these systems achieve immune evasion, mucus penetration, site-specific targeting and stimulus-responsive release. Such approaches improve formulation stability and in vivo absorption but also promise precise and patient centric therapies. This review provides a comprehensive overview of biomimetic oral systems highlighting their mechanisms, design principles and translational potential. Recent advances include cell membrane-coated nanoparticles for tumor targeting and immune modulation, exosome-inspired carriers for protein and RNA transport, virus-like particles (VLPs) for oral vaccines, and mucoadhesive or mucus-penetrating polymers modeled on pathogen strategies. Complementary pH, enzyme and redox-responsive platforms exploit gastrointestinal (GI) microenvironments to ensure controlled release. Emerging tools such as bioinspired computational modeling, 3D/4D printing, organoid-on-chip models and CRISPR/Cas-based platforms accelerate optimization and clinical translation. Although most technologies remain in preclinical development, early findings demonstrate superior pharmacokinetics, therapeutic efficacy, and safety over conventional systems. This article critically examines biomimetic oral drug delivery addressing advances and underlying mechanisms including regulatory considerations and future directions. They stand poised to form the foundation of next-generation precision therapeutics.

RevDate: 2025-12-06
CmpDate: 2025-12-06

Guan X, Wang S, Wang P, et al (2026)

Enhanced chemiluminescence aptasensing with triple cascade amplification for sensitive detection of tumor-derived exosomes.

Analytica chimica acta, 1383:344873.

BACKGROUND: Tumor-associated exosomes hold significant clinical promise as liquid biopsy biomarkers. However, the accurate detection of these rare exosome subpopulations in clinical samples demands analytical platforms with exceptionally high sensitivity and specificity. While conventional nucleic acid amplification-based methods provide considerable detection sensitivity, they are often hampered by time-consuming procedures, operational complexity, and susceptibility to contamination. Therefore, it is imperative to develop practical exosome measurement platforms that combine high sensitivity, robustness, and rapid analysis capabilities to provide reliable evidence-based support for precision oncology.

RESULTS: In this work, a triple cascade-amplified aptasensor (TCAA) via functionalized gold nanoparticle (fAuNP), CRISPR/Cas12a, and alkaline phosphatase (ALP) was developed for enhanced chemiluminescence (CL) assay of tumor-derived exosomes without nucleic acid amplification. The target exosomes were initially recognized by CD63 and MUC1 aptamers. fAuNP-conjugated Trigger sequences then activated CRISPR/Cas12a to cleave single-stranded DNA and release ALP. Consequently, the ALP catalyzed substrate to produce CL signals correlating with the concentration of the analyte. By simultaneously integrating the signal amplification capabilities of multiple techniques, this TCAA achieved a limit of detection of 44 particles/μL for MUC1-positive exosomes within 60 min with excellent robustness. Compared with the single- and dual-amplification methods, the sensitivity was increased by 40-fold and 6-fold, respectively. Clinical trials showed that the area under the curve of this approach was 0.96, which was higher than that of the commercialized chemiluminescence immunoassay and effectively distinguished breast cancer-derived specimens.

SIGNIFICANCE: These findings indicate that the TCAA strategy provides a highly sensitive, rapid, and robust tool for the detection of low-abundance tumor exosome subpopulations without nucleic acid amplification. It effectively addresses the limitations of conventional methods and demonstrates high clinical utility. This work offers a reliable and practical platform for non-invasive liquid biopsy, holding great potential for trace-level detection of diverse biomarkers.

RevDate: 2025-12-09
CmpDate: 2025-12-09

CoÅŸar B, Kılıç P, ÖD İşeri (2025)

The intersection of CAR-T immunotherapy with emerging technologies.

Cytokine & growth factor reviews, 86:238-259.

Chimeric antigen receptor (CAR) T-cell (CAR-T) therapy is a transformative modality in cancer immunotherapy that employs genetically engineered T-cells to eliminate malignant cells selectively. Its efficacy and limitations are governed by cytokine- and growth factor-mediated signaling networks that shape T-cell activation, proliferation, differentiation, and persistence. This review traces the molecular evolution of CAR-T architecture across generations, highlighting how synthetic modulation of cytokine and co-stimulatory pathways enhances potency while reducing exhaustion and toxicity. We discuss strategies that incorporate cytokine engineering, metabolic reprogramming, and logic-gated activation to counteract the immunosuppressive tumor microenvironment. Recent technological advances-such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-based cytokine pathway editing, induced pluripotent stem cell (iPSC)-derived "off-the-shelf" CAR-T platforms, and extracellular vesicle (EV)-mediated cytokine delivery-are reshaping adoptive immunotherapy. Framing CAR-T development through the lens of cytokine and growth factor biology, we outline how integrating these pathways enables safer, more durable, and scalable next-generation therapies for hematologic and solid tumors.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Lan F, Chen A, Ding Y, et al (2025)

Sensitive and Specific Analysis of miRNAs in Single Tumor-Derived Extracellular Vesicles Using CRISPR-Based Nanoflow Cytometry.

Analytical chemistry, 97(48):26521-26531.

Tumor-derived extracellular vesicle (TEV) microRNAs (miRNAs) are promising cancer biomarkers but pose detection challenges due to their low abundance and sequence homology. Here, we present a CRISPR/Cas13a-based nanoflow cytometry (nFCM) platform integrated with a DNA-guided orthogonal membrane fusion strategy for ultrasensitive miRNA detection of TEVs at the single particle level. TEVs were identified with aptamers against CD63 and EpCAM markers to create an orthogonal barcode-anchored TEV (Orth-TEV). Meanwhile, liposomes preloaded with CRISPR/Cas13a molecular sensing components were modified with cholesterol-tagged DNA probes to produce Tags-CRISPR/Cas13a@Lipo. The complementary DNA sequences on the Orth-TEV and Tags-CRISPR/Cas13a@Lipo vesicles facilitated zipper-like hybridization, thereby achieving specific membrane fusion to effectively eliminate the interference of nontarget vesicles or free molecules. The resulting TEV-CRISPR/Cas13a@Lipo vesicles allow in situ detection of three prostate cancer (PCa)-associated miRNAs in a single TEV via nFCM with a low detection limit (LOD) of 14.7 (miR-153), 16.0 (miR-183), and 23.7 (miR-940) particles/mL, respectively. The approach was further applied to plasma samples from PCa patients and healthy donors, showing significantly elevated miRNA signals in PCa-derived TEV. ROC analysis yielded AUC values of 0.931, 0.923, and 0.869 for the three target miRNAs, confirming excellent diagnostic performance. To enhance classification accuracy, we conducted a statistical multivariate analysis based on the PCA-LDA model, which achieved perfect group separation and a diagnostic accuracy of 91.3%. Overall, this CRISPR/Cas13a-based nFCM platform offers a robust, accurate, and clinically applicable platform for single-vesicle miRNA profiling with broad potential in liquid biopsy-based cancer diagnosis.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Du J, Hu J, An J, et al (2025)

Guanine-Quadruplex-Engineered crRNA Enables Light-Activated CRISPR/Cas12a System for Robust One-Pot Viral Assay.

Analytical chemistry, 97(48):26580-26589.

Conventional one-pot detection platforms integrating CRISPR/Cas12a with isothermal amplification significantly streamline the nucleic acid detection workflow, while minimizing the risk of aerosol contamination. However, the intrinsic cleavage activity of the CRISPR/Cas12a system can substantially interfere with the nucleic acid amplification efficiency, ultimately compromising detection sensitivity. Herein, we develop a light-activated CRISPR/Cas12a system by engineering the crRNA with a guanine-quadruplex (G4) motif at its 3'-terminal, achieving precise regulation of Cas12a activity via photoswitching G4 structure formation. Through coupling with a recombinase polymerase amplification (RPA) reaction, we establish a one-pot detection platform that demonstrates superior detection performance compared to traditional Cas12a-based one-pot systems. The detection sensitivity has been improved by 2 orders of magnitude, reaching a level of 1 copy/μL. Notably, the platform demonstrated comparable sensitivity and specificity to PCR, the gold standard method, in detecting clinical samples, such as Epstein-Barr virus (EBV) and Influenza A virus (IAV), making it a promising technology for clinical diagnostics.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Su T, Wei T, Wang Z, et al (2025)

A Pre-Amplification-Free Modular Dual-CRISPR System for Enhanced Pathogen Detection Sensitivity.

Analytical chemistry, 97(48):26640-26648.

CRISPR/Cas12a is extensively utilized for pathogen detection owing to its high specificity and efficiency. However, traditional single-CRISPR/Cas12a encounters challenges due to its limited sensitivity, requiring pre-amplification of nucleic acids. This increases the complexity of the procedure and the potential for cross-contamination and false positives. Herein, a modular dual-CRISPR approach was developed coupled with hybridization chain reaction (HCR) for the universal and sensitive detection of pathogen nucleic acids without the need for pre-amplification. The system comprises two core modules: the first CRISPR/Cas12a recognition module specifically identifies pathogen targets and releases the activating agent, while the second CRISPR/Cas12a signal module is activated by this agent to initiate the HCR reaction for generating a strong fluorescent signal through DNA nanostructure self-assembly. Through rational design, we demonstrate the ability of this dual-CRISPR system to achieve attomolar (aM) level sensitivity for pathogen nucleic acid detection without pre-amplification, showing over six-order-of-magnitude higher sensitivity than a traditional single-CRISPR/Cas12a system. Additionally, the flexibility and versatility of the modular dual-CRISPR system have been confirmed for diverse pathogen targets, such as African swine fever virus (ASFV), severe fever with thrombocytopenia syndrome virus (SFTSV), and human papillomavirus type 16 (HPV-16) DNA. The system's practicality was demonstrated by examining ASFV quality control samples in complex environments. The exploration of the pre-amplification-free dual-CRISPR system offers a new perspective on enhancing pathogen nucleic acid detection systems.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Mao S, Guo Y, Dong C, et al (2026)

Loss of cyclin C drives resistance to anti-TIGIT therapy by upregulating CD155-mediated immune evasion.

Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 84:101318.

AIMS: CD155 is an immune checkpoint protein expressed in tumor cells that interacts with its ligand T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) on natural killer (NK) cells and T cells, mediating inhibitory regulation on immune cells. Blockade of the CD155-TIGIT interaction has demonstrated clinical benefits in patients with advanced cancers. The transcriptional and post-translational mechanisms governing CD155 expression remain largely unknown.

METHODS: To identify regulators of CD155, we conducted a genome-wide CRISPR-Cas9 screen in cancer cells. Surface CD155 protein levels were analyzed via flow cytometry. The role of candidate regulators was validated through loss- and gain-of-function experiments with flow cytometry, Western blot, quantitative PCR, and chromatin immunoprecipitation (ChIP) assays. Additionally, ubiquitination assay was performed to examine post-translational modifications. Functional studies, including NK and T cell cytotoxicity assays, were conducted to assess the immune modulatory effects of CD155 regulation. Clinical relevance was evaluated by analyzing Cyclin C (CCNC) and CD155 expression in datasets of cancer patients who underwent immune checkpoint blockade therapy.

RESULTS: The CRISPR-Cas9 screen identified CCNC as a transcriptional suppressor of CD155. CCNC knockout led to increased surface CD155 expression in cancer cell lines. Mechanistically, CCNC inhibited CD155 transcription by suppressing the activity of the transcription factor FOSL2. Furthermore, CCNC was found to be ubiquitinated and degraded by the E3 ubiquitin ligase FBXO11, suggesting a post-translational regulatory mechanism. Functionally, loss of CCNC promoted CD155 upregulation, thereby enhancing tumor immune evasion from NK and T cell-mediated responses. Clinically, CCNC expression was negatively correlated with CD155 levels in cancer patients, particularly those receiving immune checkpoint blockade therapy.

CONCLUSION: This study identifies a previously unrecognized master regulator CCNC that functions as a suppressor of CD155-mediated cancer immune evasion. The findings of this study suggest that tumors with low CCNC expression may be resistant to monotherapy and highlight a combination immunotherapy (TIGIT/PD-1 co-blockade) as a promising anti-cancer therapeutic strategy to overcome immune evasion in CCNC-deficient tumors.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Zheng L, Zhou X, Zhang Y, et al (2025)

Rapid Bacterial Identification and Antimicrobial Susceptibility Testing Directly from Urine Samples via an Asymmetric Polymerase Chain Reaction-Cas12a Platform.

Analytical chemistry, 97(48):26466-26474.

Antimicrobial resistance poses a critical global health challenge, largely due to the prolonged turnaround times of conventional pathogen identification (ID) and antimicrobial susceptibility testing (AST). Here, we present a clinically validated diagnostic platform integrating asymmetric polymerase chain reaction (aPCR) with CRISPR/Cas12a for direct bacterial ID and phenotypic AST from urine samples. Unlike traditional multiplex PCR requiring complex primer sets, our platform employs a singleplex aPCR targeting the V3-V4 region of 16S rDNA to generate single-stranded and double-stranded DNA. This design enables protospacer adjacent motif-free activation of Cas12a when required via the ssDNA fraction generated by aPCR, facilitating species-level multiplex detection of six common uropathogens at 10[3] CFU/mL via programmable CRISPR/Cas12a crRNAs. Phenotypic AST is accomplished within 60 min by quantifying nucleic acid changes following antibiotic exposure, allowing accurate discrimination between susceptible and resistant strains. When validated with 86 clinical urine samples, the aPCR-Cas12a platform achieved complete concordance with culture-based identification among the 45 samples carrying target pathogens and demonstrated high accuracy for AST, confirming its reliability for direct pathogen detection and susceptibility assessment from urine. The complete workflow requires only 5.5 h, significantly reducing the diagnostic time compared to standard methods (>48 h). This rapid, cost-effective, and scalable platform offers a promising solution for infection diagnosis and antimicrobial stewardship, with strong potential for integration into routine clinical microbiology and point-of-care settings.

RevDate: 2025-12-09
CmpDate: 2025-12-09

He X, Deng L, Zhou S, et al (2025)

Breaking the PAM Restriction: A Universal Double Stranded DNA Detection Method Based on the Sticky End-Mediated CRISPR/Cas12a Coupled RPA and Its Application to KRAS G12C Single Base Mutations.

Analytical chemistry, 97(48):26886-26896.

The CRISPR/Cas12a system facilitates efficient and specific nucleic acid detection, but its dependence on Protospacer Adjacent Motif (PAM) sequences and the complexity of existing sticky end-based methods pose challenges for stable and portable applications. To address these issues, this study developed a universal dsDNA detection method by integrating the sticky end-mediated CRISPR/Cas12a with recombinase polymerase amplification (RPA). By incorporating NlaIII recognition sites into RPA primers, precise cleavage of amplification products was achieved, generating uniform sticky ends and eliminating reliance on PAM sites. In comparison to flat end dsDNA containing PAM sites, the use of sticky end dsDNA significantly enhanced Cas12a activity. This strategy demonstrated sensitivity and specificity, achieving a detection limit of 40 aM and successfully identifying KRAS G12C mutations at a frequency of 0.1%, with genomic DNA results aligning with those obtained from FastNGS. Furthermore, we preliminarily explored a one-tube detection strategy, which effectively streamlined the operational process and reduced aerosol contamination. In summary, we established a simple, sensitive, and universal PAM-free CRISPR/Cas12a detection platform that integrates the advantages of isothermal amplification with a standardized sticky end design, thereby offering broad application prospects in molecular diagnostics and clinical translation.

RevDate: 2025-12-09
CmpDate: 2025-12-09

Sun D, Bo L, Jiang C, et al (2026)

Beyond the boundary: The emerging roles of ATP-binding cassette transporters in multidrug resistance (MDR) and therapeutic targeting in cancer.

Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 84:101310.

Multidrug resistance (MDR) remains a primary obstacle to successful cancer chemotherapy, with the overexpression of ATP-binding cassette (ABC) transporters being a principal cause. These transporters actively efflux a wide range of anticancer drugs, reducing their intracellular efficacy. Consequently, targeting ABC transporters represents a critical strategy for overcoming therapeutic resistance. This comprehensive review details the molecular architecture and functional mechanisms of all seven human ABC transporter subfamilies (ABCA-ABCG), elucidating their distinct roles in both cancer progression and the development of MDR. We trace the evolution of therapeutic interventions, from first, second, and third-generation small molecule inhibitors to the potential of natural products. Furthermore, this review explores advanced and emerging strategies designed to circumvent or neutralize ABC transporter activity. These include genetic approaches such as RNA interference and CRISPR-Cas9 gene editing, immunotherapy-based tactics like monoclonal antibodies and antibody-drug conjugates (ADCs), and the application of sophisticated nanoparticle delivery systems designed to bypass efflux mechanisms. By providing a holistic overview of the entire ABC transporter family and the broad array of strategies being developed to counteract their function, this article aims to equip researchers with a full-scope perspective on the field, identifying current challenges and illuminating future directions for combating MDR in cancer.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

SUPPORT ESP: Click Covers to Order from Amazon
The ESP project will earn a commission.

CRISPR-Cas

By delivering the Cas9 nuclease, complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be precisely cut at any desired location, allowing existing genes to be removed and/or new ones added. That is, the CRISPR-Cas system provides a tool for the cut-and-paste editing of genomes. Welcome to the brave new world of genome editing. R. Robbins

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 28 JUL 2024 )