Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Biofilm

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 20 Jul 2019 at 01:34 Created: 


Wikipedia: Biofilm A biofilm is any group of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular polymeric substances (EPS). The EPS components are produced by the cells within the biofilm and are typically a polymeric conglomeration of extracellular DNA, proteins, and polysaccharides. Because they have three-dimensional structure and represent a community lifestyle for microorganisms, biofilms are frequently described metaphorically as cities for microbes. Biofilms may form on living or non-living surfaces and can be prevalent in natural, industrial and hospital settings. The microbial cells growing in a biofilm are physiologically distinct from planktonic cells of the same organism, which, by contrast, are single-cells that may float or swim in a liquid medium. Biofilms can be present on the teeth of most animals as dental plaque, where they may cause tooth decay and gum disease. Microbes form a biofilm in response to many factors, which may include cellular recognition of specific or non-specific attachment sites on a surface, nutritional cues, or in some cases, by exposure of planktonic cells to sub-inhibitory concentrations of antibiotics. When a cell switches to the biofilm mode of growth, it undergoes a phenotypic shift in behavior in which large suites of genes are differentially regulated.

Created with PubMed® Query: biofilm[title] NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-07-19

Morgan-Sagastume F, Jacobsson S, Olsson LE, et al (2019)

Anaerobic treatment of oil-contaminated wastewater with methane production using anaerobic moving bed biofilm reactors.

Water research, 163:114851 pii:S0043-1354(19)30617-7 [Epub ahead of print].

Oil-contaminated wastewaters are generally treated by a combination of physico-chemical and biological methods. Interest in the anaerobic treatment of oily wastewaters has increased since it complements aerobic treatment and produces energy in the form of methane. The objectives of this study were to characterise the anaerobic process spontaneously occurring in a full-scale storage tank at a facility treating waste oil and oil-contaminated effluents, and to evaluate the applicability of an anaerobic moving bed biofilm reactor (AnMBBR) and an anaerobic contact reactor (ACR) for treating the oil contaminated wastewater feeding the storage tank. Three lab-scale reactors were operated in parallel over 465 days: one mesophilic and one thermophilic AnMBBR, and one thermophilic ACR. The wastewater had a high strength with an average chemical oxygen demand (COD) of 36 g/L with a soluble fraction of 80%. The BOD7/COD ratios varied between 0.1 and 0.5, indicating low aerobic degradability. However, biomethane potential tests indicated some level of anaerobic degradability with methane yields between 150 and 200 NmL/gCOD. The full-scale storage tank operated at low organic loading rates (0.35-0.43 kgCOD/m3d), and long hydraulic retention times (HRT = 83-104 d). In comparison, the AnMBBRs achieved similar COD reductions (60%) as the full-scale tank but at a much shorter HRT of 30 d. Similar efficiency could only be reached at longer HRTs (43 d) in the ACR due to low biomass levels resulting from poor sludge settleability. The methane yield was higher (210 NmLCH4/COD removed) in the AnMBBR operated at 37 °C, compared to the other reactors working at 50 °C (180 NmLCH4/COD removed). This reactor also maintained a higher COD removal (67%) at an increased OLR of 1.1 kgCOD/m3d than the AnMBBR at 50 °C. The microbial composition of the biomass from the full-scale tank and the laboratory reactors provided evidence for the conversion of oil-contaminated wastewater into methane with a relatively high abundance of hydrogenotrophic methanogens.

RevDate: 2019-07-19

Qi X, Liu P, Liang P, et al (2019)

Dual-signal-biosensor based on luminescent bacteria biofilm for real-time online alert of Cu(II) shock.

Biosensors & bioelectronics, 142:111500 pii:S0956-5663(19)30579-2 [Epub ahead of print].

The development of real-time online warning system for toxicity materials is important to ensure the safety of water supply. This study for the first time constructs luminescent bacteria (Vibrio fischeri) biofilm to deliver both electrical and optical real-time response for Cu(II) toxic shock in a bioelectrochemical system (BES) sensor. Compared to biocathode, bioanode was more suitable as sensitive elements. With three tested concentrations of Cu(II), i.e., 1 mg/L, 3 mg/L and 6 mg/L, electrical signals were raised. But optical signal failed to respond to the lowest concentration, suggesting that electrical signal then was produced by chemical reaction of Cu(II) on the electrode surface. For 3 mg/L and 6 mg/L Cu(II) shock, more rapid optical signals were observed than electrical signal, indicating that both the biofilm's surface and inner was affected. In addition, high concentration of Cu(II) toxic as 6 mg/L caused irreversible damage in the biosensor as there were great fluctuation in the recovery curve and large recovery ratio up to -10.39% for optical signal. These results provided a comparison between optical and electrical signals simultaneously produced by a biosensor and visual evidences for better understanding of the toxicity process in the biosensor.

RevDate: 2019-07-19

Li D, Chen S, Dou H, et al (2019)

Preparation of cefquinome sulfate cationic proliposome and evaluation of its efficacy on Staphylococcus aureus biofilm.

Colloids and surfaces. B, Biointerfaces, 182:110323 pii:S0927-7765(19)30459-X [Epub ahead of print].

Staphylococcus aureus (S. aureus) has the propensity to form biofilms, which eventually cause antibiotic resistance and treatment failure. Cefquinome sulfate (CS) is an animal-specific antibacterial agent for S. aureus infection. In this work, CS cationic proliposomes (CSCPs) were prepared by solid-dispersion method combined with effervescent hydration to eradicate bacterial biofilm and improve the antibacterial effect of the drug. CSCPs were readily dispersed in water, thereby forming CS cationic liposomes (CSCLs) as a white, uniform suspension. The CSCLs had an encapsulation efficiency (EE) of 63.21%, a drug loading of 4.04%, an average particle size of 201.5 nm, and a positive zeta-potential of 65.29 mV. In vitro release studies showed that CSCLs had good sustained-release behavior. The CS and CSCL minimal inhibitory concentration (MIC) of S. aureus type culture strain were 1 and 0.48 g/mL, respectively. The eradication effect of CS on bacterial biofilm (BBF) was relatively weak during culture in drug-containing medium for 8 h-24 h. However, the CSCL eradication effect on BBF increased gradually, and the clearance rate of CSCLs on BBF was about twice that of CS. The clearance rate reached 81.30% with 2.5 × MIC in 24 h. All these results indicated that CSCLs can significantly improve the eradication effect of cefquinome on biofilm to inhibit bacterial growth.

RevDate: 2019-07-19

PLOS Pathogens Staff (2019)

Correction: Circuit diversification in a biofilm regulatory network.

PLoS pathogens, 15(7):e1007966 pii:PPATHOGENS-D-19-01250.

[This corrects the article DOI: 10.1371/journal.ppat.1007787.].

RevDate: 2019-07-19

Černáková L, Light C, Salehi B, et al (2019)

Novel Therapies for Biofilm-Based Candida spp. Infections.

Advances in experimental medicine and biology [Epub ahead of print].

The presence of fungal infections continue to grow worldwide, mostly in immunosuppressed patients, and in individuals with continued antimicrobial treatments. Candida spp. are the most common yeasts involved in these disorders, being associated with a high rate of antifungal resistance and an increased ability to form biofilms, which make the treatment of these infections difficult. This review aims to present and discuss the main biofilm-related infections cause by several Candida spp. and novel therapies that are currently available in the clinical, scientific and academic environment. New drugs with promising antifungal activity, natural approaches (e.g. probiotics, essential oils, plant extracts, honey) and a final consideration on alternative methodologies, such as photodynamic therapy are presented and discussed.

RevDate: 2019-07-19

Pakshir K, Sheykhi S, Zomorodian K, et al (2019)

Evaluation of biofilm formation in the homozygous and heterozygous strains of vaginal Candida albicans isolates.

Current medical mycology, 5(2):37-40.

Background and Purpose: Candida albicans is one of the most opportunistic yeasts around the world. This species has two heterozygous and homozygous strains at hyphal wall protein 1 (hwp1) gene locus. A simple method for the discrimination of these two strains is the amplification of HWP1 gene. Regarding this, the aim of this study was to discriminate C. albicans heterozygous and homozygous strains via the amplification of hwp1 gene and evaluation of biofilm formation between the strains.

Materials and Methods: A total of 60 homozygous (n=30) and heterozygous (n=30) strains were discriminated among 126 C. albicans vaginal isolates by the amplification of HWP1 gene, using specific primers. The evaluation of biofilm formation was accomplished using the visual method.

Results: According to the results, the homozygous and heterozygous strains produced one and two DNA fragments, respectively. The frequency of homozygous strains among the C. albicans vaginal isolates was 76.2%. Biofilm formation activity in the heterozygous strains was more than that in the homozygous strains. However, statistical analysis showed no significant difference between the strains in terms of biofilm formation.

Conclusion: As the findings indicated, the frequency of the heterozygous strains in C. albicans was lower than that of the homozygous strains. Both of the strains could form biofilm in the different ranges of severity. High activity of biofilm formation in heterozygous strains may set the ground for its pathogenicity.

RevDate: 2019-07-19

Lee MJ, Kwon JS, Kim JY, et al (2019)

Bioactive resin-based composite with surface pre-reacted glass-ionomer filler and zwitterionic material to prevent the formation of multi-species biofilm.

Dental materials : official publication of the Academy of Dental Materials pii:S0109-5641(19)30211-8 [Epub ahead of print].

OBJECTIVE: This study evaluated the synergetic effect between surface pre-reacted glass-ionomer (SPRG) filler and 2-methacryloyloxyethyl phosphorylcholine (MPC), for inhibiting multi-species biofilm formation, while maintaining or even improving the original beneficial features of SPRG-filled resin-based composite (RBC).

METHODS: MPC (1.5-10wt%) was incorporated into commercial SPRG-filled RBC. Then, the inherent properties of RBC, and ion release and acid-neutralising properties associated with SPRG were investigated. Further, protein adsorptions and bacterial adhesion and viability on the SPRG-filled RBC surfaces were studied using four kinds of oral bacteria; Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula, and Porphyromonas gingivalis. Finally, the thickness and biomass of the human saliva-derived biofilm model cultured on test and control samples were analysed.

RESULTS: Addition of MPC content resulted in decreased flexural strength and wettability of SPRG-filled RBC. SPRG-filled RBC released significantly higher amounts of multiple ions as contents of MPC increased. Meanwhile, SPRG-filled RBC with 5-wt% MPC significantly improved acid-neutralising properties than those of other test and control samples (P<0.001). SPRG-filled RBC with 3wt% MPC significantly reduced the amount of adsorbed bovine serum albumin and proteins from the brain heart infusion medium as compared to the control (P<0.01). A similar trend was observed in the attachment of four types of bacteria and multi-species biofilm (P<0.01).

SIGNIFICANCE: Despite limitation in terms of deteriorations of some physical properties, addition of 3% MPC to SPRG-filled RBC leads to inhibition of the attachment of multi-species bacteria on its surface, as well as inhibition of biofilm growth. Moreover, the original important bioactive features of SPRG-filled RBC such as ion release and acid neutralisations are either maintained or improved upon adding MPC.

RevDate: 2019-07-19

Ahmed AA, FA Salih (2019)

Quercus infectoria gall extracts reduce quorum sensing-controlled virulence factors production and biofilm formation in Pseudomonas aeruginosa recovered from burn wounds.

BMC complementary and alternative medicine, 19(1):177 pii:10.1186/s12906-019-2594-5.

BACKGROUND: Quercus gall extracts' ability to kill pathogens in vitro and even removal of chronic drug-resistant infections has been reported by several studies. The current investigation is focused on the action of extracts of Quercus infectoria gall in their sub-inhibitory concentrations on the corresponding bacterial behaviours instead of killing them.

METHODS: The effect of gall extracts on the quorum sensing (QS) associated virulence of multiple drug resistant Pseudomonas aeruginosa recovered from burns wounds was studied. The influence of different extracts on the production of bacterial virulence and biofilm, and expression of the genes encoding quorum sensing and exotoxin A were investigated. Quorum sensing is a crucial regulator of virulence and biofilm development in Pseudomonas aeruginosa and other medical related microbes.

RESULTS: Experiments to characterise and quantify Q. infectoria gall extracts impact on the quorum sensing networks of P.aeruginosa revealed that the expression of las, rhl, and exotoxin A (ETA) genes levels including the associated virulence were reduced by the extracts at their subinhibitory concentrations.

CONCLUSIONS: The obtained results indicated that extracts of Q. infectoria galls fight infections either by their inhibitory constituents, which vigorously eradicate cells or by disruption of the pathogens quorum sensing system through weakening the virulence and bacterial coordination.

RevDate: 2019-07-19

Balasubramanian S, Aubin-Tam ME, AS Meyer (2019)

3D Printing for the Fabrication of Biofilm-Based Functional Living Materials.

ACS synthetic biology, 8(7):1564-1567.

Bacterial biofilms are three-dimensional networks of cells entangled in a self-generated extracellular polymeric matrix composed of proteins, lipids, polysaccharides, and nucleic acids. Biofilms can establish themselves on virtually any accessible surface and lead to varying impacts ranging from infectious diseases to degradation of toxic chemicals. Biofilms exhibit high mechanical stiffness and are inherently tolerant to adverse conditions including the presence of antibiotics, pollutants, detergents, high temperature, changes in pH, etc. These features make biofilms resilient, which is beneficial for applications in dynamic environments such as bioleaching, bioremediation, materials production, and wastewater purification. We have recently described an easy and cost-effective method for 3D printing of bacteria and have extended this technology for 3D printing of genetically engineered Escherichia coli biofilms. Our 3D printing platform exploits simple alginate chemistry for printing of a bacteria-alginate bioink mixture onto calcium-containing agar surfaces, resulting in the formation of bacteria-encapsulating hydrogels with varying geometries. Bacteria in these hydrogels remain intact, spatially patterned, and viable for several days. Printing of engineered bacteria to produce inducible biofilms leads to formation of multilayered three-dimensional structures that can tolerate harsh chemical treatments. Synthetic biology and material science approaches provide the opportunity to append a wide range of useful functionalities to these 3D-printed biofilms. In this article, we describe the wide range of future applications possible for applying functional 3D-printed biofilms to the construction of living biofilm-derived materials in a large-scale and environmentally stable manner.

RevDate: 2019-07-18

Narayana JL, Mishra B, Lushnikova T, et al (2019)

Modulation of antimicrobial potency of human cathelicidin peptides against the ESKAPE pathogens and in vivo efficacy in a murine catheter-associated biofilm model.

Biochimica et biophysica acta. Biomembranes pii:S0005-2736(19)30162-2 [Epub ahead of print].

Antimicrobial peptides are essential components of innate immune systems that protect hosts from infection. They are also useful candidates for developing a new generation of antibiotics to fight antibiotic-resistant pathogens. Human innate immune peptide LL-37 can inhibit biofilm formation, but suffers from high cost due to a long peptide length and rapid protease degradation. To improve the peptide, we previously identified the major active region and changed the peptide backbone structure. This study designed two families of new peptides by altering peptide side chains. Interestingly, these peptides displayed differential potency against various ESKAPE pathogens in vitro and substantially reduced hemolysis. Further potency test in vivo revealed that 17tF-W eliminated the burden of methicillin-resistant Staphylococcus aureus (MRSA) USA300 in both mouse-embedded catheters and their surrounding tissues. In addition, peptide treatment suppressed the level of chemokine TNFα, and boosted the levels of chemokines MCP-1, IL-17A and IL-10 in the surrounding tissues of the infected catheter embedded in mice. In conclusion, we have designed a set of new LL-37 peptides with varying antimicrobial activities, opening the door to potential topical treatment of infections involving different drug-resistant pathogens.

RevDate: 2019-07-18

Patel KK, Surekha DB, Tripathi M, et al (2019)

Anti-biofilm potential of silver sulfadiazine loaded nanoparticle formulations: a study on the role of DNase-I in microbial biofilm and wound healing activity.

Molecular pharmaceutics [Epub ahead of print].

Biofilm resistance is one of the severe complication associated with chronic wound infections which impose the extreme microbial tolerance against antibiotic therapy. Interestingly, DNase-I has empirically proved efficacy to improve the antibiotics susceptibility against biofilm-associated infections. DNase-I hydrolyzes the extracellular DNA, a key component of the biofilm responsible for the cell adhesion and strength. Moreover, Silver sulfadiazine, a frontline therapy in burn wound infections, exhibit delayed wound healing due to fibroblast toxicity. In this study, solid lipid nanoparticles of silver sulfadiazine (SSD-SLNs) laden chitosan gel supplemented with DNase-I has been developed to reduce the fibroblast cytotoxicity and overcome the biofilm imposed resistance. The extensive optimization by using Box-Behnken Design (BBD) resulted in the formation of SSD-SLNs with smooth surface as confirmed by scanning electron microscopy and controlled release (83%) for up to 24h. The compatibility between the SSD and other formulation excipients was confirmed by FTIR, differential scanning calorimetry and powder X-ray diffraction studies. Developed SSD-SLNs demonstrated improved cell viability (90.3±3.8%) as compared to SSD alone (76.9±4.2%) and combination of SSD-SLNs with DNase-I, inhibited around 96.8% of biofilm of Pseudomonas aeruginosa as compared to SSD with DNase-I (82.9%). In line with our hypothesis, SSD-SLNs were found less toxic (cell viability 90.3±3.8% at 100 µg/mL) in comparison with SSD (Cell viability 76.9±4.2 %) against human dermal fibroblasts cell line. Eventually, the results of in-vivo wound healing study showed complete wound healing after 21 days' treatment with SSD-SLNs with DNase-I, whereas, marketed formulation, SSD and SSD-LSNs showed incomplete healing after 21 days. Data in hand suggest, SSD-SLNs with DNase-I as an effective treatment strategy against the biofilm-associated wound infections and to accelerate the wound healing.

RevDate: 2019-07-18

Alsahhaf A, Al-Aali KA, Alshagroud RS, et al (2019)

Comparison of yeasts species in the subgingival oral biofilm of type 2-diabetic and non-diabetic individuals with peri-implantitis.

Journal of periodontology [Epub ahead of print].

BACKGROUND: There are no studies that have investigated the presence of yeasts in the subgingival oral biofilm (OB) of type-2 diabetic and non-diabetic patients with peri-implantitis. The aim was to assess the presence of yeasts in the subgingival OB of type-2 diabetic and non-diabetic patients with peri-implantitis.

MATERIALS AND METHODS: Type-2 diabetic individuals with peri-implantitis (Group-A), non-diabetic individuals with peri-implantitis (Group-B) and non-diabetic individuals without peri-implantitis (Group-C) were included. Life style related and demographic data was collected using a questionnaire and hemoglobin A1c levels were measured. Peri-implant plaque-index (PI), bleeding-on-probing (BOP) and probing-depth (PD) were evaluated and crestal bone loss (CBL) were measured. Subgingival OB samples were collected, and oral yeasts species were identified using ChromAgar medium. Level of significance was set at P < 0.05.

RESULTS: The mean age of individuals in groups A (n = 43), B (n = 41) and C (n = 42) were 55.6 ± 6.4, 54.6 ± 4.5 and 57.1 ± 3.3 years, respectively. The mean HbA1c levels were higher in Group-A (P < 0.01) than groups B and C. Peri-implant PI (P < 0.01), BOP (P < 0.01), PD (P < 0.01) and CBL (P < 0.01) were significantly higher in Group-A compared with patients in groups B and C. Peri-implant PI (P < 0.05), BOP (P < 0.05), PD (P < 0.05) and CBL (P < 0.05) were significantly higher among patients in Group-B compared with Group-C. Subgingival yeasts were more often isolated from the OB of patients in groups A (74.4%) and B (46.3%) than Group-C (7.1%). The most common yeast species identified in all groups was Candida albicans (C. albicans). The CFU/ml for subgingival yeasts were higher in Group-A than groups B (P < 0.01) and C (P < 0.01). The CFU/ml for subgingival yeasts were higher in Group-B than Group-C (P < 0.01).

CONCLUSION: Candida species (predominantly C. albicans) were more often present in the subgingival OB of type-2 diabetic and non-diabetic patients with peri-implantitis than systemically healthy individuals without peri-implant diseases. This article is protected by copyright. All rights reserved.

RevDate: 2019-07-18

Sherman E, Bayles K, Moormeier D, et al (2019)

Observations of Shear Stress Effects on Staphylococcus aureus Biofilm Formation.

mSphere, 4(4): pii:4/4/e00372-19.

Staphylococcus aureus bacteria form biofilms and distinctive microcolony or "tower" structures that facilitate their ability to tolerate antibiotic treatment and to spread within the human body. The formation of microcolonies, which break off, get carried downstream, and serve to initiate biofilms in other parts of the body, is of particular interest here. It is known that flow conditions play a role in the development, dispersion, and propagation of biofilms in general. The influence of flow on microcolony formation and, ultimately, what factors lead to microcolony development are, however, not well understood. The hypothesis being examined is that microcolony structures form within a specific range of levels of shear stress. In this study, laminar shear flow over a range of 0.15 to 1.5 dynes/cm2 was examined. It was found that microcolony structures form in a narrow range of shear stresses around 0.6 dynes/cm2 Further, measurements of cell density as a function of space and time showed that shear dependence can be observed hours before microcolonies form. This is significant because, among other physiologic flows, this is the same shear stress found in large veins in the human vasculature, which, along with catheters of similar diameters and flow rates, may therefore play a critical role in biofilm development and subsequent spreading of infections throughout the body.IMPORTANCE It is well known that flow plays an important role in the formation, transportation, and dispersion of Staphylococcus aureus biofilms. What was heretofore not known was that the formation of tower structures in these biofilms is strongly shear stress dependent; there is, in fact, a narrow range of shear stresses in which the phenomenon occurs. This work quantifies the observed shear dependence in terms of cell growth, distribution, and fluid mechanics. It represents an important first step in opening up a line of questioning as to the interaction of fluid forces and their influence on the dynamics of tower formation, break-off, and transportation in biofilms by identifying the parameter space in which this phenomenon occurs. We have also introduced state-of-the-art flow measurement techniques to address this problem.

RevDate: 2019-07-18

Zeighami H, Valadkhani F, Shapouri R, et al (2019)

Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients.

BMC infectious diseases, 19(1):629 pii:10.1186/s12879-019-4272-0.

BACKGROUND: Nosocomial infections and persistence of multidrug resistant biofilm forming Acinetobacter baumannii in hospitals has made it as a serious problem in healthcare settings worldwide.

METHODS: A total of 100 A. baumannii clinical isolates from immunocompromised patients hospitalized in ICU were investigated for biofilm formation, the presence of biofilm related genes (bap, ompA, csuE, fimH, epsA, blaPER-1, bfmS, ptk, pgaB, csgA, kpsMII), integron characterization and molecular typing based on REP-PCR.

RESULTS: All isolates were resistant to three or more categories of antibiotics and considered as multidrug resistant (MDR). A total of 32 isolates were resistant to all tested antibiotics and 91% were extensively drug-resistance (XDR). All isolates were able to produce biofilm and 58% of isolates showed strong ability to biofilm formation. All strong biofilm forming A. baumannii isolates were XDR. All A. baumannii isolates carried at least one biofilm related gene. The most prevalent gene was csuE (100%), followed by pgaB (98%), epsA and ptk (95%), bfmS (92%) and ompA (81%). 98% of isolates carried more than 4 biofilm related genes, simultaneously. Class I integron (67%) was more frequent in comparison with class II (10%) (P < 0.05). The REP-PCR patterns were classified as 8 types (A-H) and 21 subtypes. The A1 (23%) and C1 (15%) clusters were the most prevalent among A. baumannii isolates (P < 0.05). According to the REP-PCR patterns, 23% of all isolates had a clonal relatedness.

CONCLUSION: Our study revealed the high frequency of biofilm forming XDR A. baumannii in ICU patients, with a high prevalence of biofilm related genes of csuE and pgaB. It seems that the appropriate surveillance and control measures are essential to prevent the emergence and transmission of XDR A. baumannii in our country.

RevDate: 2019-07-17

Sianglum W, Muangngam K, Joycharat N, et al (2019)

Mechanism of Action and Biofilm Inhibitory Activity of Lupinifolin Against Multidrug-Resistant Enterococcal Clinical Isolates.

Microbial drug resistance (Larchmont, N.Y.) [Epub ahead of print].

The treatment of enterococcal infections is becoming more difficult because of multidrug resistance (MDR). Lupinifolin, a prenylated flavonoid isolated from Albizia myriophylla Benth., showed a potent antimicrobial activity against enterococci. The aim of this study was to investigate antibacterial activity and action of lupinifolin against MDR enterococcal clinical isolates. Antibacterial properties of lupinifolin against 21 MDR isolates were assessed using broth microdilution method and time-kill assay. To study mode of action of lupinifolin on the isolates, propidium iodide intensity, salt tolerance assay, and electron microscopic analyses were performed. Antibiofilm formation activity of lupinifolin was conducted using crytal violet assay. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration values of lupinifolin against the isolates ranged between 0.5 and 2.0 μg/mL and between 2 and 16 μg/mL, respectively. Lupinifolin at 2MIC and 4MIC inhibited the bacterial growth >2 log colony-forming units (CFU)/mL at 2 hr incubation by time-kill analysis. The compound increased membrane permeability and caused loss of salt tolerance. SEM and TEM micrographs revealed pronounced morphological and ultrastructural changes in the treated bacteria. Crystal violet staining showed the antibiofilm-producing activity of lupinifolin against four MDR enterococci. This study suggested that lupinifolin is an essential antimicrobial agent that could be useful for the treatment of MDR enterococcal infections.

RevDate: 2019-07-17

Khelissa SO, Abdallah M, Jama C, et al (2019)

Comparative Study on the Impact of Growth Conditions on the Physiology and the Virulence of Pseudomonas aeruginosa Biofilm and Planktonic Cells.

Journal of food protection [Epub ahead of print].

The aim of the present work was to study and compare the effect of growth temperature (20, 30, and 37°C) and surface type (stainless steel and polycarbonate) on the production of virulence factors, such as proteases and siderophores, and the risk of surface contamination associated with Pseudomonas aeruginosa biofilm and planktonic cells. The increase of growth temperature from 20 to 37°C increased (approximately twofold) the electronegative charge and the hydrophobicity of the P. aeruginosa biofilm cell surface. P. aeruginosa biofilm cell adhesion to stainless steel and polycarbonate was 5- and 1.5-fold higher than their planktonic counterparts at 20 and 30°C, respectively. The increase of growth temperature from 20 to 37°C increased the production of proteases (twofold) and siderophores (twofold) and the cytotoxicity (up to 30-fold) against the HeLa cell line in the supernatants of P. aeruginosa planktonic and biofilm cultures. This study also highlighted that biofilm and planktonic P. aeruginosa cells exhibited distinct physiological properties with respect to the production of virulence factors and the cytotoxicity against the Hela cell line. Therefore, effective disinfection procedures should be adapted to inactivate bacteria detached from biofilms.

RevDate: 2019-07-17

Wei Q, Zhang Z, Luo J, et al (2019)

Insulin treatment enhances pseudomonas aeruginosa biofilm formation by increasing intracellular cyclic di-GMP levels, leading to chronic wound infection and delayed wound healing.

American journal of translational research, 11(6):3261-3279.

Diabetes-related infections have become challenging and important public health problems in China and around the world. P. aeruginosa plays an important role in diabetic foot infections. As a gram-negative opportunistic pathogen, P. aeruginosa causes recurrent and refractory infections that are characterized by biofilm formation. Previous studies have demonstrated that biofilm-challenged wounds typically take longer to heal than non-biofilm-challenged normal wounds in diabetic mouse models. In the present study, we sought to explore the mechanism via which insulin treatment affects cyclic di-GMP signaling in P. aeruginosa-infected chronic wounds in db/db diabetic mice. We found that the wounds of diabetic mice healed more slowly than those of nondiabetic mice. Moreover, wound healing in diabetic mice treated with insulin exhibited a considerable delay. Peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) was used to detect biofilms on P. aeruginosa-infected wound tissues. Increased intracellular c-di-GMP levels promoted biofilm formation in wound tissues from nondiabetic mice. Greater biofilm formation was observed in the wounds of insulin-treated diabetic mice than in the wounds of untreated diabetic mice or nondiabetic mice, in both the PAO1/plac-yhjH- and PAO1-infected groups. Quantitative RT-PCR indicated that upon infection with PAO1/Plac-yhjH (the low c-di-GMP expression strain), the expression of IL-4 RNA was significantly higher in diabetic mice treated with insulin than in untreated diabetic mice or nondiabetic mice at each observation time point. Peak expression of IFN-γ occurred earlier in diabetic mice treated with insulin than in untreated diabetic mice with each of the experimental strains. Finally, P. aeruginosa harboring the plasmid pCdrA: gfps was used as a reporter strain to monitor c-di-GMP levels. We found that insulin could promote biofilm formation by increasing intracellular c-di-GMP levels in vitro. Taken together, these data demonstrate that insulin treatment increases intracellular c-di-GMP levels, promotes biofilm formation and prolongs the inflammation period during the healing of infected wounds, resulting in delayed wound healing.

RevDate: 2019-07-17

Nóbrega V, Faria M, Quintana A, et al (2019)

From a Basic Microalga and an Acetic Acid Bacterium Cellulose Producer to a Living Symbiotic Biofilm.

Materials (Basel, Switzerland), 12(14): pii:ma12142275.

Bacterial cellulose (BC) has recently been the subject of a considerable amount of research, not only for its environmentally friendly biosynthesis, but also for its high potential in areas such as biomedicine or biomaterials. A symbiotic relationship between a photosynthetic microalga, Chlamydomonas debaryana, and a cellulose producer bacterium, Komagataeibacter saccharivorans, was established in order to obtain a viable and active biofilm. The effect of the growth media composition ratio on the produced living material was investigated, as well as the microalgae biomass quantity, temperature, and incubation time. The optimal temperature for higher symbiotic biofilm production was 30 °C with an incubation period of 14 days. The high microalgae presence, 0.75% w/v, and 60:40 HS:BG-11 medium (v/v) induced a biofilm microalgae incorporation rate of 85%. The obtained results report, for the first time, a successful symbiotic interaction developed in situ between an alkaline photosynthetic microalga and an acetic acid bacterium. These results are promising and open a new window to BC living biofilm applications in medical fields that have not yet been explored.

RevDate: 2019-07-16

Cusicanqui Méndez DA, Gutierrez E, Campos Chaves Lamarque G, et al (2019)

The effectiveness of curcumin-mediated antimicrobial photodynamic therapy depends on pre-irradiation and biofilm growth times.

Photodiagnosis and photodynamic therapy pii:S1572-1000(19)30086-9 [Epub ahead of print].

BACKGROUND: The aim of this study was to determine the influence of distinct pre-irradiation times (PIT) of curcumin on the effectiveness of the antimicrobial photodynamic therapy (aPDT) against intact dentin caries biofilms grown for 3 or 5 days.

METHODS: The microcosm biofilms grew on non-fluorescent glass blocks immersed in McBain medium with 1% sucrose, using microaerophilic conditions at 37 °C for 3 or 5 days. The biofilms were treated by the association of 600 µmol.L-1 curcumin using different pre-irradiation times (1, 2 or 5 min) combined with 0 or 75 blue LED. Then, the vitality of biofilms was determined by confocal scanning laser microscopy (CSLM), after being stained with the mixture of ethidium bromide and fluorescein diacetate. Statistical analysis was performed by two-way ANOVA and post-hoc Tukey tests, after arcsine transformation (P < 0,05).

RESULTS: In comparison to control, curcumin alone (PIT = 5 min) and all combinations of curcumin and LED reduced significantly the vitality of 3-day biofilms. Distinctly, only curcumin plus LED using PITs of 2 or 5 min were effective in reducing the vitality of 5-day biofilms.

CONCLUSION: Curcumin-mediated aPDT significantly decreased the vitality of intact dentin caries microcosms grown during 3 or 5 days, although successful treatments of 5-day biofilms required longer PITs in comparison to their counterparts.

RevDate: 2019-07-15

Bahari M, Ebrahimi Chaharom ME, Daneshpooy M, et al (2019)

Effect of bleaching protocols on surface roughness and biofilm formation on silorane-based composite resin.

Dental research journal, 16(4):264-270.

Background: Knowledge about the effect of bleaching on behavior of composite resins is important to find a suitable composite resin for restoration of teeth undergoing bleaching. This study aimed to assess the effect of different bleaching protocols on surface roughness and biofilm formation on a silorane-based composite resin.

Materials and Methods: In this in vitro experimental study, 60 silorane-based composite resin samples measuring 3 mm in thickness and 6 mm in diameter were fabricated and polished. They were then randomly divided into four groups (n = 15). In Group 1, samples were stored in distilled water as control. Samples in Groups 2, 3, and 4 were subjected to bleaching with 15% carbamide peroxide, 35% hydrogen peroxide, and 35% hydrogen peroxide activated by light, respectively. Surface roughness was measured using a profilometer. Streptococcus mutans cultured in brain-heart infusion broth was used for the assessment of biofilm formation on the samples. The bacterial colonies were counted using the pure-plate technique. Data were analyzed using one-way ANOVA and post hoc Tukey's tests. Regression model was used to assess the association between surface roughness and biofilm formation (P < 0.05).

Results: The mean surface roughness of the four groups was not significantly different (P = 0.11); however, a significant difference was noted in the mean biofilm formation among the groups (P = 0.00).

Conclusion: Bleaching decreased biofilm formation. The lowest biofilm formation was noted in the group subjected to light-activated 35% hydrogen peroxide. Increased surface roughness enhanced biofilm formation to a certain level; excessive roughness did not increase biofilm formation.

RevDate: 2019-07-15

Farajzadeh Sheikh A, Asareh Zadegan Dezfuli A, Navidifar T, et al (2019)

Association between biofilm formation, structure and antibiotic resistance in Staphylococcus epidermidis isolated from neonatal septicemia in southwest Iran.

Infection and drug resistance, 12:1771-1782 pii:204432.

Background:Staphylococcus epidermidis has emerged as the pathogen from neonatal septicemia. Antibiotic resistance and the capability of biofilm formation make these infections much harder to treat. Hence, the aim of this study was to investigate the association between biofilm formation, structure and antibiotic resistance in S. epidermidis isolated from neonatal septicemia. Methods: Overall, 65 S. epidermidis isolates were recovered from blood cultures of neonatal septicemia. Antibiotic resistance pattern and the biofilm production were determined using phenotypic methods. The presence of ica operon, the bhp, the aap genes and SCCmec types were screened using PCR. Results: Most S.epidermidis isolates were resistant to erythromycin, while all isolates were sensitive to linezolid and vancomycin. Fifty-three percent of S.epidermidis isolates were resistant to methicillin. SCCmec types II was found commonly among methicillin-resistant S. epidermidis (MRSE) strains. The biofilm formation was observed in 65% of S.epidermidis isolates and the majority have polysaccharide matrix. icaA and icaD genes were found in 40% and 19% of isolates. Twenty-three isolates (62%) produced dissolvable polysaccharide intercellular adhesion (PIA)-dependent biofilms in SM after growth in TSB with NaCl and 14 (37%) isolates produced dissolvable protein-dependent biofilms in PK after growth in TSB with glucose. Three isolates (62%) produced dissolvable polysaccharide intercellular adhesion. Conclusion: Our data indicate the high rates of antibiotic resistance and the capability of biofilm formation among S. epidermidis isolates. Hence, the transmission of these strains can cause an increased risk of serious nosocomial infections.

RevDate: 2019-07-14

Zhang Q, Zhang L, Li Z, et al (2019)

Enhancement of fipronil degradation with eliminating its toxicity in a microbial fuel cell and the catabolic versatility of anodic biofilm.

Bioresource technology, 290:121723 pii:S0960-8524(19)30953-8 [Epub ahead of print].

The degradation of fipronil was investigated in microbial fuel cells (MFCs). Almost 79% of 30 mg/L fipronil was rapidly degraded within 12 h by MFC biofilm. Based on the constructed quadratic polynomial model, a maximum fipronil degradation rate of 94.22% could be theoretically achieved at pH of 7.01, 33.39 °C, and the initial fipronil concentration 74 mg/L after incubation for 72 h. The high acute toxicity of fipronil toward zebrafish was largely eliminated after degradation by the MFC. In addition, the MFC biofilm showed catabolic versatility to 4-chloronitrobenzene, sulfanilamide, fluoroglycofen, and azoxystrobin. The microbial community analysis revealed that the functional bacteria Sphaerochaeta, Pseudomonas, Azospirillum, Azoarcus, and Chryseobacterium were major predominant bacteria in the anodic biofilm. Therefore, the MFC offers a promising approach in treating the environmental contaminants due to its abilities of energy capture from waste substances and catabolic versatility to different organic compounds.

RevDate: 2019-07-13

Zara G, Bou Zeidan M, Fancello F, et al (2019)

The administration of L-cysteine and L-arginine inhibits biofilm formation in wild-type biofilm-forming yeast by modulating FLO11 gene expression.

Applied microbiology and biotechnology pii:10.1007/s00253-019-09996-5 [Epub ahead of print].

Microbial biofilms are undesired in food manufacturing, drinking water distribution systems, and clinical realms. Yeast biofilms are particularly problematic because of the strong capacity of yeast cells to adhere to abiotic surfaces, cells, and tissues. Novel approaches have been developed over recent years to prevent the establishment of microbial biofilms, such as through the use of small molecules with inhibiting and dispersing properties. Here, we studied the inhibitory activity of 11 different amino acids on the biofilm formation ability of three wild-type Saccharomyces cerevisiae strains and the reference strain ∑1278b. Subsequent evaluation of different concentrations of the two most effective amino acids, namely, arginine and cysteine, revealed that they acted in different ways. Arginine prevented biofilm formation by reducing FLO11 gene expression; its addition did not affect cell viability and was even found to enhance cell metabolism (vitality marker) as determined by phenotype microarray (PM) analysis. On the contrary, the addition of cysteine reduced both cell viability and vitality as well as FLO11 expression. Thus, the use of cysteine and arginine as agents against biofilm formation can be diversified depending on the most desired action towards yeast growth.

RevDate: 2019-07-13

Uribe-García A, Paniagua-Contreras GL, Monroy-Pérez E, et al (2019)

Frequency and expression of genes involved in adhesion and biofilm formation in Staphylococcus aureus strains isolated from periodontal lesions.

Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi pii:S1684-1182(19)30076-3 [Epub ahead of print].

BACKGROUND/PURPOSE: The aim of this study was to characterize the Staphylococcus aureus strains isolated from periodontal lesions of patients, to determine the expression of genes involved in cell adhesion upon their infection of human epithelial cells using an in vitro model, its biofilm formation, and its resistance to antibiotics.

METHODS: S. aureus was analysed by PCR, Kirby-Bauer, and pulsed-field gel electrophoresis (PFGE), measuring gene expression by real-time PCR after infection of human cells in vitro.

RESULTS: S. aureus was identified in 18.6% (50/268) of the samples. All strains (n = 50) possessed the virulence genes spa (Staphylococcal protein A), coa (coagulase), and icaAB (intercellular adhesin); 96% (n = 48) possessed clfB (clumping factor B), and 88% (n = 44) possessed ebps (elastin-binding protein) and sdrD (serine aspartate repeat protein D). All strains were resistant to methicillin, ampicillin, dicloxacillin, cefotaxime, and penicillin, and were multidrug resistant to 6-12 antibiotics. PFGE analysis showed 37 different pulsed-field types and most strains (60.4%) had a unique pulsed-field type. Twenty-four distinct combinations of virulence genes and antibiotic-resistant phenotypes were identified.

CONCLUSION: Although S. aureus has been considered a transient member of the oral microbiota, our results indicate a high-level expression of virulence genes and multidrug resistance in the strains isolated from periodontal lesions. These strains might complicate the successful treatment of the disease.

RevDate: 2019-07-13

Zhang K, Lyu L, Yao S, et al (2019)

Effects of vibration on anammox-enriched biofilm in a high-loaded upflow reactor.

The Science of the total environment pii:S0048-9697(19)32650-6 [Epub ahead of print].

An upflow biofilm reactor was operated for 211 days to investigate the effects of vibration on anammox treatment performance. With vibration, the highest nitrogen removal rates (20 kg-N·m-3·d-1) were obtained on day 180. Since the vibration could directly applied on the biofilm, it could release the dinitrogen gas accumulated in the biofilm timely and reduce the internal mass transfer resistance sharply. The specific anammox activity increased by more than 3 times with a higher vibration intensity. Meanwhile, the unique random motion caused by mechanical vibration promotes the production of extracellular proteins. Moreover, the VSS reached 20.97 g·L-1 which was 1.6 times higher than the control reactor. Such enrichment method resulted in a hard and thick anammox biofilm with a special granular morphology, and the nitrite tolerance concentration could reach 500 mg-N·L-1. Operated with an adequate vibration intensity could maintain the biofilm thickness and conducive to improve the stability of the reactor. In addition, this technique also allowed the microorganisms inside the biofilm and those on the surface to reach the same culture conditions. Base on the batch experiments, intermittent vibration caused a decrease in energy consumption from about 7.757 (kW·h)·(kg-N)-1 in group 0-Lv7(60-60) to 0.912 (kW·h)·(kg-N)-1 in group 0-Lv7(5-60). Compared to the internal recycle without vibration, the energy consumption fell by a slice over 65%. Furthermore, the high-throughput sequencing results showed that the relative abundance of Candidatus Kuenenia in reactor 1 increased from 13.2% to 43.9%.

RevDate: 2019-07-13

Azmi K, Qrei W, Z Abdeen (2019)

Screening of genes encoding adhesion factors and biofilm production in methicillin resistant strains of Staphylococcus aureus isolated from Palestinian patients.

BMC genomics, 20(1):578 pii:10.1186/s12864-019-5929-1.

BACKGROUND: Intercellular adhesion and biofilm production by Staphylococcus aureus makes these bacteria resistant to antimicrobial therapy. Here, Methicillin-resistant Staphylococcus aureus (MRSA) strains were characterized and the prevalence of genes encoding adhesion factors and biofilm formation was determined.

RESULTS: All 248 MRSA isolates identified by cefoxitin disc diffusion were positive for the mecA gene. SCCmec-IV was the most frequently detected genotype (92.7%) and SCCmec-IVa was also very prevalent (84.3%). The quantitative microtiter plate assay showed that all the isolates were able to produce biofilm with levels ranging from high (21%) to moderate (46.4%) to low (32.7%). All the strains possessed the icaD/icaA genes and produced biofilm (P < 0.05). None of the isolates possessed the bap gene. Furthermore, 94.8% of the isolates were positive for eno, 80.2% for clfA and for clfB, 78.2% for fnbA, 76.2% for ebps, 62.2% for fib, 39.9% for cna and 29.0% for fnbB. Also, nearly 69.8% of the isolates were positive for the gene sarA. All four agr groups were present: agr group 1 was predominant with 39.5%; agr group 3. agr group 2 and 3 strains carried more toxin-producing genes, and frequently produced more toxin. Sixty-six (26.6%) of the strains were multidrug resistant. All were vancomycin sensitive. Agr group I is more resistant to ciprofloxacin and gentamicin while agr group III is more resistant to erythromycin. Maximum sensitivity was to gentamicin and SXT, and they could be considered drugs of choice for controlling MRSA mediated infections in this region.

CONCLUSIONS: Biofilm development in MRSA might be an ica dependent and one needs to investigate the involvement of other global regulators, agr and sarA, and their contribution to the biofilm phenotype, as the high rate of biofilm production among the studied strains of S. aureus.

RevDate: 2019-07-12

Nichols D, Pimentel MB, Borges FTP, et al (2019)

Sustained Release of Phosphates From Hydrogel Nanoparticles Suppresses Bacterial Collagenase and Biofilm Formation in vitro.

Frontiers in bioengineering and biotechnology, 7:153.

Intestinal disease or surgical intervention results in local changes in tissue and host-derived factors triggering bacterial virulence. A key phenotype involved in impaired tissue healing is increased bacterial collagenase expression which degrades intestinal collagen. Antibiotic administration is ineffective in addressing this issue as it inadvertently eliminates normal flora while allowing pathogenic bacteria to "bloom" and acquire antibiotic resistance. Compounds that could attenuate collagenase production while allowing commensal bacteria to proliferate normally would offer major advantages without the risk of the emergence of resistance. We have previously shown that intestinal phosphate depletion in the surgically stressed host is a major cue that triggers P. aeruginosa virulence which is suppressed under phosphate abundant conditions. Recent findings indicate that orally administered polyphosphate, hexametaphosphate, (PPi) suppresses collagenase, and biofilm production of P. aeruginosa and S. marcescens in animal models of intestinal injury but does not attenuate E. faecalis induced collagenolytic activity (Hyoju et al., 2017). Systemic administration of phosphates, however, is susceptible to rapid clearance. Given the diversity of collagenase producing bacteria and the variation of phosphate metabolism among microbial species, a combination therapy involving different phosphate compounds may be required to attenuate pathogenic phenotypes. To address these barriers, we present a drug delivery approach for sustained release of phosphates from poly(ethylene) glycol (PEG) hydrogel nanoparticles. The efficacy of monophosphate (Pi)- and PPi-loaded NPs (NP-Pi and NP-PPi, respectively) and a combination treatment (NP-Pi + NP-PPi) in mitigating collagenase and biofilm production of gram-positive and gram-negative pathogens expressing high collagenolytic activity was investigated. NP-PPi was found to significantly decrease collagenase and biofilm production of S. marcescens and P. aeruginosa. Treatment with either NP-Pi or NP-Pi + NP-PPi resulted in more prominent decreases in E. faecalis collagenase compared to NP-PPi alone. The combination treatment was also found to significantly reduce P. aeruginosa collagenase production. Finally, significant attenuation in biofilm dispersal was observed with NP-PPi or NP-Pi + NP-PPi treatment across all test pathogens. These findings suggest that sustained release of different forms of phosphate confers protection against gram-positive and gram-negative pathogens, thereby providing a promising treatment to attenuate expression of tissue-disruptive bacterial phenotypes without eradicating protective flora over the course of intestinal healing.

RevDate: 2019-07-12

Friedlander A, Nir S, Reches M, et al (2019)

Preventing Biofilm Formation by Dairy-Associated Bacteria Using Peptide-Coated Surfaces.

Frontiers in microbiology, 10:1405.

Biofilm-forming bacteria, which colonize the surfaces of equipment in the dairy industry, may adversely affect the safety and quality of the milk and its products. Despite numerous efforts to combat biofilm formation, there is still no effective technological means to thoroughly solve the biofilm problem in the dairy industry. Here, we introduced peptide-based coating in order to modify the physical properties of the stainless steel surface by affecting its availability for bacterial adhesion. We found that the coated surface displays a notable decrease in the ability of bacterial cells to attach and to subsequently form biofilm by Gram-positive Bacillus licheniformis and Gram-negative Pseudomonas aeruginosa. Furthermore, the coated surface retained its anti-biofilm ability following its exposure to raw milk. Importantly, the modified surface did not affect the milk coagulation process or its nutritious properties and quality. Overall, this anti-biofilm approach may serve as an attractive solution for the dairy industry in its struggle against bacterial contamination.

RevDate: 2019-07-12

Al-Yousef HM, IA Sheikh (2019)

β-Sitosterol derived compound from onion husks non-polar fraction reduces quorum sensing controlled virulence and biofilm production.

Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 27(5):664-672.

Quorum sensing is an important regulatory factor of P. aeruginosa virulence induction such as BF, motility, formations of proteases, pyocyanin, and some toxins. The aim of the current study is to detect the effect of the pet.ether extract from onion husk and compound drive from it on quorum sensing and virulence formations of P. aeruginosa. Quorum sensing inhibiting effect of the pet.ether extract of onion husk and a compound drive from it, was evaluated by C. violaceum reporter using dilution method as well as an antioxidant by using DPPH. The efficacious of: Quorum sensing inhibiting on pet.ether fraction and compound derived from it, were investigated for their activities toward biofilm and pyocyanin synthesis as well as motility from P. aeruginosa. The pet.ether fraction and compound derived from it of onion husk exhibited potent antimicrobial, antioxidant and Quorum sensing inhibiting effects. The pet.ether fraction and compound derived from it possesses significant reduction on pyocyanin and biofilm induction of P. aeruginosa. Moreover, they significantly inhibited swimming motilities of P. aeruginosa. For the first time, our study showed the medical importance of Allium cepa L. as antimicrobial, antioxidant as well as Quorum sensing inhibiting and virulence suppressors of P. aeruginosa. Thus, these might emphasized on Allium cepa L as a natural source for attenuating toxins of the Pseudomonas.

RevDate: 2019-07-11

Di Martino P (2018)

Extracellular polymeric substances, a key element in understanding biofilm phenotype.

AIMS microbiology, 4(2):274-288 pii:microbiol-04-02-274.

One of the key elements in the establishment and maintenance of the biofilm structure and properties is the extracellular matrix. The extracellular matrix is composed of water and extracellular polymeric substances (EPS): primarily polysaccharides, proteins and DNA. Characterization of the matrix requires component identification, as well as determination of the relative concentration of EPS constituents, including their physicochemical properties and descriptions of their interactions. Several types of experimental approaches with varying degrees of destructiveness can be utilized for this characterization. The analysis of biofilm by infrared spectroscopy gives information about the chemical content of the matrix and the proportions of different EPS. The sensitivity of a biofilm to hydrolytic enzymes targeting different EPS gives insight into the composition of the matrix and the involvement of matrix components in the integrity of the structure. Using both chemical and physical treatments, extraction and purification of EPS from the biofilm also provides a means of determining matrix composition. Purified and/or artificial EPS can be used to obtain artificial matrices and to study their properties. Using examples from the literature, this review will illustrate selected technologies useful in the study of EPS that provide a better understanding of the structure-function relationships in extracellular matrix, and thus the structure-function relationships of the biofilm phenotype.

RevDate: 2019-07-11

Wallis JK, Krömker V, JH Paduch (2018)

Biofilm formation and adhesion to bovine udder epithelium of potentially probiotic lactic acid bacteria.

AIMS microbiology, 4(2):209-224 pii:microbiol-04-02-209.

Mastitis is one of the most important diseases threatening modern dairy herds. The idea of fighting the disease through colonising the udder with lactic acid bacteria (LAB), thereby building a beneficial biofilm, is the base for a probiotic approach towards mastitis control. The purpose of this study was to screen 13 LAB strains (eleven wild strains, two ATCC strains) inhibitory to the growth of mastitis-causing pathogens for their in vitro ability to form a biofilm and to adhere to bovine glandular mammary epithelium in order to assess their probiotic potential. Furthermore, we aimed to gain knowledge about the chemical nature of the adhesins involved by subjecting the bacteria to various chemical and enzymatical pre-treatments. The biofilms were grown on hydrophilic glass and on hydrophobic polypropylene in de Man, Rogosa and Sharpe (MRS) broth and afterwards quantified with a crystal violet assay. Biofilm formation was observed in all strains. However, the extent strongly depended on the strain, surface charge and medium. The adhesion assay also revealed a strong strain dependency, but this trait was also present in all of the investigated LAB isolates. Depending on the strain, chemical or enzymatical pre-treatment revealed carbohydrate molecules as well as proteins and lipids to be crucial for the adhesion of LAB to epithelial cells. The seven strains showing the strongest biofilm formation and/or adhesion represent promising candidates for further investigation in order to develop a probiotic remedy for the treatment of mastitis. Still, their safety for consumers and patients as well as their capability to colonise the udder remain to be investigated in in vivo studies.

RevDate: 2019-07-11

Polyudova TV, Eroshenko DV, VP Korobov (2018)

Plasma, serum, albumin, and divalent metal ions inhibit the adhesion and the biofilm formation of Cutibacterium (Propionibacterium) acnes.

AIMS microbiology, 4(1):165-172 pii:microbiol-04-01-165.

Adhesion and biofilm formation of human skin bacteria C. acnes on plasma, serum and albumin-coated polystyrene or in the presence of these blood components were studied. The proteins which were pre-adsorbed to polystyrene surface or added to the medium simultaneously with bacterial cells reduced C. acnes adhesion and biofilm formation by 2-5 times to compare to the control. The role of calcium, magnesium and zinc on C. acnes attachment was also assessed. Calcium (1 and 10 mM) had the inhibitory effect on C. acnes adhesion, whereas zinc (1 and 10 mM) diminished the biofilm formation of C. acnes. We also observed that C. acnes cells did not bind to erythrocytes. Thus, we suggest that bacteria C. acnes preferably colonize the plasma-poor environment due to the inhibitory effect of blood components, in particular, albumin, calcium, and zinc.

RevDate: 2019-07-11

Xu Y, Nagy A, Bauchan GR, et al (2017)

Enhanced biofilm formation in dual-species culture of Listeria monocytogenes and Ralstonia insidiosa.

AIMS microbiology, 3(4):774-783 pii:microbiol-03-04-774.

In the natural environments microorganisms coexist in communities as biofilms. Since foodborne pathogens have varying abilities to form biofilms, investigation of bacterial interactions in biofilm formation may enhance our understanding of the persistence of these foodborne pathogens in the environment. Thus the objective of this study was to investigate the interactions between Listeria monocytogenes and Ralstonia insidiosa in dual species biofilms. Biofilm development after 24 h was measured using crystal violet in 96-well microtiter plate. Scanning electron microscopy and cell enumeration were employed after growth on stainless steel coupons. When compared with their single species counterparts, the dual species biofilms exhibited a significant increase in biofilm biomass. The number of L. monocytogenes in co-culture biofilms on stainless steel also increased significantly. However, there was no effect on the biofilm formation of L. monocytogenes when cultured with R. insidiosa separated by a semi-permeable membrane-linked compartment or cultured in R. insidiosa cell-free supernatant, indicating that direct cell-cell contact is critical for this interaction.

RevDate: 2019-07-11

Gomes LC, Moreira JMR, Araújo JDP, et al (2017)

Surface conditioning with Escherichia coli cell wall components can reduce biofilm formation by decreasing initial adhesion.

AIMS microbiology, 3(3):613-628 pii:microbiol-03-03-613.

Bacterial adhesion and biofilm formation on food processing surfaces pose major risks to human health. Non-efficient cleaning of equipment surfaces and piping can act as a conditioning layer that affects the development of a new biofilm post-disinfection. We have previously shown that surface conditioning with cell extracts could reduce biofilm formation. In the present work, we hypothesized that E. coli cell wall components could be implicated in this phenomena and therefore mannose, myristic acid and palmitic acid were tested as conditioning agents. To evaluate the effect of surface conditioning and flow topology on biofilm formation, assays were performed in agitated 96-well microtiter plates and in a parallel plate flow chamber (PPFC), both operated at the same average wall shear stress (0.07 Pa) as determined by computational fluid dynamics (CFD). It was observed that when the 96-well microtiter plate and the PPFC were used to form biofilms at the same shear stress, similar results were obtained. This shows that the referred hydrodynamic feature may be a good scale-up parameter from high-throughput platforms to larger scale flow cell systems as the PPFC used in this study. Mannose did not have any effect on E. coli biofilm formation, but myristic and palmitic acid inhibited biofilm development by decreasing cell adhesion (in about 50%). These results support the idea that in food processing equipment where biofilm formation is not critical below a certain threshold, bacterial lysis and adsorption of cell components to the surface may reduce biofilm buildup and extend the operational time.

RevDate: 2019-07-11

Yuyama KT, Neves TSPDC, Memória MT, et al (2017)

Aurantiogliocladin inhibits biofilm formation at subtoxic concentrations.

AIMS microbiology, 3(1):50-60 pii:microbiol-03-01-050.

Infections where pathogens are organized in biofilms are difficult to treat due to increased antibiotic resistances in biofilms. To overcome this limitation new approaches are needed to control biofilms. One way is to screen natural products from organisms living in a wet environment. The rational is that these organisms are preferentially threatened by biofilm formation and may have developed strategies to control pathogens in these biofilms. In a screen of fungal isolates obtained from the Harz mountains in Germany several strains have been found producing compounds for the inhibition of biofilms. One of these strains has been identified as Clonostachys candelabrum producing aurantiogliocladin. Biological tests showed aurantiogliocladin as a weak antibiotic which was active against Staphylococcus epidermidis but not S. aureus. Aurantiogliocladin could also inhibit biofilm formation of several of the tested bacterial strains. This inhibition, however, was never complete but biofilm inhibition activity was also found at concentrations below the minimal inhibitory concentrations, e. g. Bacillus cereus with a MIC of 128 µg mL-1 showed at 32 µg mL-1 still 37% biofilm inhibition. In agreement with this finding was the observation that aurantiogliocladin was bacteriostatic for the tested bacteria but not bactericidal. Because several closely related toluquinones with different antibiotic activities have been reported from various fungi screening of a chemical library of toluquinones is suggested for the improvement of biofilm inhibition activities.

RevDate: 2019-07-11

Carter MJ, MF Myntti (2019)

Cost-utility of a biofilm-disrupting gel versus standard of care in chronic wounds: a Markov microsimulation model based on a randomised controlled trial.

Journal of wound care, 28(Sup7):S24-S38.

OBJECTIVE: Analyse the cost-effectiveness and treatment outcomes of debridement (standard of care) plus BlastX, a biofilm-disrupting wound gel (group 1) or a triple-antibiotic, maximum-strength ointment (group 2), comparing a subset of patients who had not healed at four weeks using the ointment crossed-over to the biofilm-disrupting gel (group 3).

METHODS: A series of Markov microsimulation models were built using health states of an unhealed non-infected ulcer, healed ulcer, and infected non-healed ulcer and absorbing states of dead or amputation. All patients started with unhealed non-infected ulcers at cycle 0. Complications and healing rates were based on a randomised controlled trial (RCT). Costs were incurred by patients for procedures at outpatient wound care clinics and hospitals (if complications occurred) and were in the form of Medicare allowable charges. Quality-adjusted life years (QALYs) were computed using literature utility values. Incremental cost-effectiveness ratios (ICERs) were calculated for group 1 versus group 2, and group 3 versus group 2. One-way, multi-way and probabilistic sensitivity analysis (PSA) was conducted.

RESULTS: After one year, the base case ICER was $8794 per QALY for group 1 versus group 2, and $21,566 per QALY for group 3 versus group 2. Product cost and amputation rates had the most influence in one-way sensitivity analysis. PSA showed that the majority of costs were higher for group 1 but effectiveness values were always higher than for group 2. Average product use of 3.1ml per application represented 9.4% of the total group 1 cost (average $24.52 per application/$822.50 per group 1 patient). The biofilm-disrupting gel group performed substantially better than the current cost-effectiveness benchmarks, $8794 versus $50,000, respectively. Furthermore, when biofilm-disrupting gel treatment was delayed, as in group 3, the ICER outcomes were less substantial but it did remain cost-effective, suggesting the added benefits of immediate use of biofilm-disrupting gel. Also, when product cost assumptions used in the study were halved (Wolcott study usage), the model indicates important reductions in ICER to $966/QALY when comparing group 1 with group 2. It should be noted that product cost can hypothetically be affected not only by direct product purchase costs, but also by application intervals and technique. This suggests additional opportunities exist to optimise these parameters, maximising wound healing efficacy while providing significant cost savings to the payer.

CONCLUSION: The addition of the biofilm-disrupting gel treatment to standard of care is likely to be cost-effective in the treatment of chronic wounds but when delayed by as little as 9-12 weeks the ICER is still far less than current cost-effectiveness benchmarks. The implication for payers and decision-makers is that biofilm-disrupting gel should be used as a first-line therapy at the first clinic visit rather than waiting as it substantially decreases cost-utility.

RevDate: 2019-07-11

Alizadeh S, Abdul Rahim A, Guo B, et al (2019)

Impacts of continuous inflow of low concentrations of silver nanoparticles on biological performance and microbial communities of aerobic heterotrophic wastewater biofilm.

Environmental science & technology [Epub ahead of print].

Attached-growth wastewater processes are currently used in water resource recovery facilities (WRRFs) for upgrades required due to an increase in influent loading or to reach more stringent discharge criteria. Yet, the distribution and long-term inhibitory effects of silver nanoparticles (AgNPs) in attached growth biological wastewater processes and their impact on involved microbial communities are poorly understood at relevant, low concentrations. Retention, distribution and long-term inhibitory effect of polyvinylpyrrolidone (PVP)-coated AgNPs were evaluated in bench-scale moving bed biofilm reactors (MBBRs), achieving soluble organic matter removal, over a 64-day exposure to nominal concentrations of 10 and 100 μg/L. Distributions of continuously added AgNPs were characterized in the influent, bioreactor and effluent of MBBRs using single particle inductively-coupled plasma mass spectroscopy (spICP-MS). Aerobic heterotrophic biofilms in MBBRs demonstrated limited retention capacity for AgNPs over long-term exposure, with release of AgNPs, and Ag-rich biofilm sloughed from the carriers. Continuous exposure to both influent AgNP concentrations significantly decreased soluble chemical oxygen demand (SCOD) removal efficiency (11% to 31%) and reduced biofilm viability (8% to 30%). Specific activities of both intracellular dehydrogenase (DHA) and extracellular α-glucosidase (α-Glu) and protease (PRO) enzymes were significantly inhibited (8% to 39%) with an observed NP dose-dependent intracellular reactive oxygen species (ROS) production and shift in biofilm microbial community composition by day 64. Our results indicated that long-term exposure to AgNPs in biofilm processes at environmentally relevant concentrations can impact the treatment process stability and the quality of the discharged effluent.

RevDate: 2019-07-11

Xaxiri NA, Nikouli E, Berillis P, et al (2018)

Bacterial biofilm development during experimental degradation of Melicertus kerathurus exoskeleton in seawater.

AIMS microbiology, 4(3):397-412 pii:microbiol-04-03-397.

Chitinolytic bacteria are widespread in marine and terrestrial environment, and this is rather a reflection of their principle growth substrate's ubiquity, chitin, in our planet. In this paper, we investigated the development of naturally occurring bacterial biofilms on the exoskeleton of the shrimp Melicertus kerathurus during its degradation in sea water. During a 12-day experiment with exoskeleton fragments in batch cultures containing only sea water as the growth medium at 18 °C in darkness, we analysed the formation and succession of biofilms by scanning electron microscopy and 16S rRNA gene diversity by next generation sequencing. Bacteria belonging to the γ- and α-Proteobacteria and Bacteroidetes showed marked (less or more than 10%) changes in their relative abundance from the beginning of the experiment. These bacterial taxa related to known chitinolytic bacteria were the Pseudolateromonas porphyrae, Halomonasaquamarina, Reinekea aestuarii, Colwellia asteriadis and Vibrio crassostreae. These bacteria could be considered as appropriate candidates for the degradation of chitinous crustacean waste from the seafood industry as they dominated in the biofilms developed on the shrimp's exoskeleton in natural sea water with no added substrates and the degradation of the shrimp exoskeleton was also evidenced.

RevDate: 2019-07-11

Coelho C, Gougeon RD, Perepelkine L, et al (2019)

Chemical Transfers Occurring Through Oenococcus oeni Biofilm in Different Enological Conditions.

Frontiers in nutrition, 6:95.

Chardonnay wine malolactic fermentations were carried out to evaluate the chemical transfers occurring at the wood/wine interface in the presence of two different bacterial lifestyles. To do this, Oenococcus oeni was inoculated into must and wine in its planktonic and biofilm lifestyles, whether adhering or not to oak chips, leading to three distinct enological conditions: (i) post-alcoholic fermentation inoculation in wine in the absence of oak chips, (ii) post-alcoholic fermentation inoculation in wine in the presence of oak chips, and (iii) co-inoculation of both Saccharomyces cerevisiae and O. oeni directly in Chardonnay musts in the presence of oak chips. Classical microbiological and physico-chemical parameters analyzed during the fermentation processes confirmed that alcoholic fermentation was completed identically regardless of the enological conditions, and that once O. oeni had acquired a biofilm lifestyle in the presence or absence of oak, malolactic fermentation occurred faster and with better reproducibility compared to planktonic lifestyles. Analyses of volatile components (higher alcohols and wood aromas) and non-volatile components (Chardonnay grape polyphenols) carried out in the resulting wines revealed chemical differences, particularly when bacterial biofilms were present at the wood interface. This study revealed the non-specific trapping activity of biofilm networks in the presence of wood and grape compounds regardless of the enological conditions. Changes of concentrations in higher alcohols reflected the fermentation bioactivity of bacterial biofilms on wood surfaces. These chemical transfers were statistically validated by an untargeted approach using Excitation Emission Matrices of Fluorescence combined with multivariate analysis to discriminate innovative enological practices during winemaking and to provide winemakers with an optical tool for validating the biological and chemical differentiations occurring in wine that result from their decisions.

RevDate: 2019-07-11

Schiffer C, Hilgarth M, Ehrmann M, et al (2019)

Bap and Cell Surface Hydrophobicity Are Important Factors in Staphylococcus xylosus Biofilm Formation.

Frontiers in microbiology, 10:1387.

Staphylococcus (S.) xylosus is a coagulase-negative Staphylococcus species naturally present in food of animal origin with a previously described potential for biofilm formation. In this study we characterized biofilm formation of five selected strains isolated from raw fermented dry sausages, upon different growth conditions. Four strains exhibited a biofilm positive phenotype with strain-dependent intensities. Biofilm formation of S. xylosus was influenced by the addition of glucose, sodium chloride and lactate to the growth medium, respectively. It was further dependent on strain-specific cell surface properties. Three strains exhibited hydrophobic and two hydrophilic cell surface properties. The biofilm positive hydrophilic strain TMW 2.1523 adhered significantly better to hydrophilic than to hydrophobic supports, whereas the differences in adherence to hydrophobic versus hydrophilic supports were not as distinct for the hydrophobic strains TMW 2.1023, TMW 2.1323, and TMW 2.1521. Comparative genomics enabled prediction of functional biofilm-related genes and link these to phenotypic variations. While a wide range of biofilm associated factors/genes previously described for S. aureus and S. epidermidis were absent in the genomes of the five strains analyzed, they all possess the gene encoding biofilm associated protein Bap. The only biofilm negative strain TMW 2.1602 showed a mutation in the bap sequence. This study demonstrates that Bap and surface hydrophobicity are important factors in S. xylosus biofilm formation with potential impact on the assertiveness of a starter strain against autochthonous staphylococci by competitive exclusion during raw sausage fermentation.

RevDate: 2019-07-11

Ranjith K, Ramchiary J, Prakash JSS, et al (2019)

Gene Targets in Ocular Pathogenic Escherichia coli for Mitigation of Biofilm Formation to Overcome Antibiotic Resistance.

Frontiers in microbiology, 10:1308.

The present work is an attempt to establish the functionality of genes involved in biofilm formation and antibiotic resistance in an ocular strain of Escherichia coli (L-1216/2010) which was isolated and characterized from the Vitreous fluid of a patient with Endophthalmitis. For this purpose, seven separate gene-specific knockout mutants were generated by homologous recombination in ocular E. coli. The genes that were mutated included three transmembrane genes ytfR (ABC transporter ATP-binding protein), mdtO (multidrug efflux system) and tolA (inner membrane protein), ryfA coding for non-coding RNA and three metabolic genes mhpA (3-3-hydroxyphenylpropionate 1,2-dioxygenase), mhpB (2,3-di hydroxyphenylpropionate 1,2-dioxygenase), and bdcR (regulatory gene of bdcA). Mutants were validated by sequencing and Reverse transcription-PCR and monitored for biofilm formation by XTT method and confocal microscopy. The antibiotic susceptibility of the mutants was also ascertained. The results indicated that biofilm formation was inhibited in five mutants (ΔbdcR, ΔmhpA, ΔmhpB, ΔryfA, and ΔtolA) and the thickness of biofilm reduced from 17.2 μm in the wildtype to 1.5 to 4.8 μm in the mutants. Mutants ΔytfR and ΔmdtO retained the potential to form biofilm. Complementation of the mutants with the wild type gene restored biofilm formation potential in all mutants except in ΔmhpB. The 5 mutants which lost their ability to form biofilm (ΔbdcR, ΔmhpA, ΔmhpB, ΔtolA, and ΔryfA) did not exhibit any change in their susceptibility to Ceftazidime, Cefuroxime, Ciprofloxacin, Gentamicin, Cefotaxime, Sulfamethoxazole, Imipenem, Erythromycin, and Streptomycin in the planktonic phase compared to wild type ocular E. coli. But ΔmdtO was the only mutant with altered MIC to Sulfamethoxazole, Imipenem, Erythromycin, and Streptomycin both in the planktonic and biofilm phase. This is the first report demonstrating the involvement of the metabolic genes mhpA and mhpB and bdcR (regulatory gene of bdcA) in biofilm formation in ocular E. coli. In addition we provide evidence that tolA and ryfA are required for biofilm formation while ytfR and mdtO are not required. Mitigation of biofilm formation to overcome antibiotic resistance could be achieved by targeting the genes bdcR, mhpA, mhpB, ryfA, and tolA.

RevDate: 2019-07-11

Gannesen AV, Zdorovenko EL, Botchkova EA, et al (2019)

Composition of the Biofilm Matrix of Cutibacterium acnes Acneic Strain RT5.

Frontiers in microbiology, 10:1284.

In skin, Cutibacterium acnes (former Propionibacterium acnes) can behave as an opportunistic pathogen, depending on the strain and environmental conditions. Acneic strains of C. acnes form biofilms inside skin-gland hollows, inducing inflammation and skin disorders. The essential exogenous products of C. acnes accumulate in the extracellular matrix of the biofilm, conferring essential bacterial functions to this structure. However, little is known about the actual composition of the biofilm matrix of C. acnes. Here, we developed a new technique for the extraction of the biofilm matrix of Gram-positive bacteria without the use of chemical or enzymatic digestion, known to be a source of artifacts. Our method is based on the physical separation of the cells and matrix of sonicated biofilms by ultracentrifugation through a CsCl gradient. Biofilms were grown on the surface of cellulose acetate filters, and the biomass was collected without contamination by the growth medium. The biofilm matrix of the acneic C. acnes RT5 strain appears to consist mainly of polysaccharides. The following is the ratio of the main matrix components: 62.6% polysaccharides, 9.6% proteins, 4.0% DNA, and 23.8% other compounds (porphyrins precursors and other). The chemical structure of the major polysaccharide was determined using a nuclear magnetic resonance technique, the formula being →6)-α-D-Galp-(1→4)-β-D-ManpNAc3NAcA-(1→6)-α-D-Glcp-(1→4)-β-D-ManpNAc3NAcA-(1→3)-β-GalpNAc-(1→. We detected 447 proteins in the matrix, of which the most abundant were the chaperonin GroL, the elongation factors EF-Tu and EF-G, several enzymes of glycolysis, and proteins of unknown function. The matrix also contained more than 20 hydrolases of various substrata, pathogenicity factors, and many intracellular proteins and enzymes. We also performed surface-enhanced Raman spectroscopy analysis of the C. acnes RT5 matrix for the first time, providing the surface-enhanced Raman scattering (SERS) profiles of the C. acnes RT5 biofilm matrix and biofilm biomass. The difference between the matrix and biofilm biomass spectra showed successful matrix extraction rather than simply the presence of cell debris after sonication. These data show the complexity of the biofilm matrix composition and should be essential for the development of new anti-C. acnes biofilms and potential antibiofilm drugs.

RevDate: 2019-07-11

Calapez AR, Elias CL, Almeida SFP, et al (2019)

Sewage contamination under water scarcity effects on stream biota: biofilm, grazers, and their interaction.

Environmental science and pollution research international pii:10.1007/s11356-019-05876-7 [Epub ahead of print].

One of the most common anthropogenic impacts on river ecosystems is the effluent discharge from wastewater treatment plants. The effects of this contamination on stream biota may be intensified in Mediterranean climate regions, which comprise a drought period that leads to flow reduction, and ultimately to stagnant pools. To assess individual and combined effects of flow stagnation and sewage contamination, biofilm and gastropod grazers were used in a 5-week experiment with artificial channels to test two flow velocity treatments (stagnant flow/basal flow) and two levels of organic contamination using artificial sewage (no sewage input/sewage input). Stressors' effects were determined on biofilm total biomass and chlorophyll (Chl) content, on oxygen consumption and growth rate of the grazers (Theodoxus fluviatilis), and on the interaction grazer-biofilm given by grazer's feeding activity (i.e., biofilm consumption rate). The single effect of sewage induced an increase in biofilm biomass and Chl-a content, simultaneously increasing both grazers' oxygen consumption and their feeding activity. Diatoms showed a higher sensitivity to flow stagnation, resulting in a lower content of Chl-c. Combined stressors interacted antagonistically for biofilm total biomass, Chl-b contents, and grazers's feeding rate. The effect of sewage increasing biofilm biomass and grazing activity was reduced by the presence of flow stagnation (antagonist factor). Our findings suggest that sewage contamination has a direct effect on the functional response of primary producers and an indirect effect on primary consumers, and this effect is influenced by water flow stagnation.

RevDate: 2019-07-10

Wang M, Shi J, Mao H, et al (2019)

Fluorescent Imidazolium-type Poly(ionic liquid)s for Bacterial Imaging and Biofilm Inhibition.

Biomacromolecules [Epub ahead of print].

Fluorescent imidazolium-type poly(ionic liquid)s (PIL)s were synthesized by anion exchange of bromide (Br-) in poly(3-butyl-1-vinylimidazolium bromide) (PIL-Br) with a fluorescent anion, 3-(4-(1,2,2-triphenylvinyl) phenoxy) propane-1-sulfonate (TPESO3-). Such an anion exchange provided antibacterial PILs with aggregation-induced emission (AIE) properties that simultaneously kill and image bacteria. These fluorescence and antibacterial properties could be regulated by controlling the TPESO3-/Br- ratio. The fluorescence intensity increases as this ratio increases, while the antibacterial property exhibited an opposite trend. Moreover, the AIE-type PILs are useful for fluorescently imaging dead bacteria (macroscopically and microscopically), and could effectively inhibit biofilm growth. This study provided a convenient method to obtain fluorescent PILs with adjustable antibacterial and imaging properties.

RevDate: 2019-07-10

Süß M, A De Visscher (2019)

Effect of diffusion limitation and substrate inhibition on steady states of a biofilm reactor treating a single pollutant.

Journal of the Air & Waste Management Association (1995) [Epub ahead of print].

The occurrence of multiple steady states in a toluene biodegrading, diffusion-limited biofilm under aerobic conditions was investigated by computer models: one steady-state, and one nonsteady-state. Two stable and one unstable intermediate steady-state were identified in a narrow set of combinations of parameters values. The nonsteady-state model predicts conditions that evolve to a steady state that is within 0.02-1% of the solution of the steady-state model, depending on the number of grid points used, confirming the algorithms are valid. Multiple steady states occur if, 1) a biofilm is exposed to a constant gas-phase pollution concentration, which exceeds or undershoots a certain threshold, 2) in a narrow range of parameter values and 3) provided that the pollutant degradation follows Haldane kinetics. Such a biofilm displays half-saturation (i.e., Michaelis-Menten)-like apparent ('falsified') kinetics from a concentration range starting at zero up to the occurrence of a second steady state. Multiple steady states and falsified kinetics can negatively affect a biofilter and the experimental determination of kinetic parameters, respectively.

RevDate: 2019-07-10

Lim ES, Koo OK, Kim MJ, et al (2019)

Bio-enzymes for inhibition and elimination of Escherichia coli O157:H7 biofilm and their synergistic effect with sodium hypochlorite.

Scientific reports, 9(1):9920 pii:10.1038/s41598-019-46363-w.

Escherichia coli O157:H7 is one of the most important pathogens worldwide. In this study, three different kinds of enzymes, DNase I, proteinase K and cellulase were evaluated for inhibitory or degrading activity against E. coli O157:H7 biofilm by targeting extracellular DNA, proteins, and cellulose, respectively. The cell number of biofilms formed under proteinase K resulted in a 2.43 log CFU/cm2 reduction with an additional synergistic 3.72 log CFU/cm2 reduction after NaClO post-treatment, while no significant reduction occurred with NaClO treatment alone. It suggests that protein degradation could be a good way to control the biofilm effectively. In preformed biofilms, all enzymes showed a significant reduction of 16.4-36.7% in biofilm matrix in 10-fold diluted media (p < 0.05). The sequential treatment with proteinase K, cellulase, and NaClO showed a significantly higher synergistic inactivation of 2.83 log CFU/cm2 compared to 1.58 log CFU/cm2 in the sequence of cellulase, proteinase K, and NaClO (p < 0.05). It suggests that the sequence of multiple enzymes can make a significant difference in the susceptibility of biofilms to NaClO. This study indicates that the combination of extracellular polymeric substance-degrading enzymes with NaClO could be useful for the efficient control of E. coli O157:H7 biofilms.

RevDate: 2019-07-10

Tsai MH, Liang YH, Chen CL, et al (2019)

Characterization of Salmonella resistance to bile during biofilm formation.

Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi pii:S1684-1182(18)30398-0 [Epub ahead of print].

BACKGROUND: Non-typhoid Salmonella infection may present as acute gastroenteritis or chronic infection, primarily in the bile-rich gallbladder. Biofilm formation is a mechanism of bile resistance in Salmonella. Our aim was to determine how Salmonella utilizes bile as a signal, and to study the relevance of the interaction between the PhoP-PhoQ two-component system and cyclic diguanosine monophosphate (c-di-GMP) signaling to biofilm formation.

METHODS: Two-dimensional (2-D) gel electrophoresis was used to identify genes required for Salmonella biofilm formation in bile. Quantitative real-time PCR (qRT-PCR) was used to clarify the role of the PhoP-PhoQ two-component system and its interaction with genes involved in the c-di-GMP network during biofilm formation.

RESULTS: Our result revealed that Salmonella mutants with incomplete outer membrane (△ompA), defective flagella (△flgE), or incomplete PhoP-PhoQ two-component system (△phoP), were unable to develop complete biofilms in the presence of bile. Moreover, PhoP-PhoQ two-component system-related Salmonella mutants (△phoP, △phoQ, △phoP△phoQ) had lower expression of c-di-GMP related genes (csgD, adrA) than the wild-type Salmonella strain had in the bile environment.

CONCLUSION: Salmonella may sense and respond to bile through the PhoP-PhoQ two-component system during biofilm formation. Furthermore, the PhoP-PhoQ two-component system might activate regulators of the c-di-GMP signaling network.

RevDate: 2019-07-09

Wu F, Li MC, Sun CC, et al (2019)

[Influence of environmental factors on the two-species biofilm formed by Streptococcus oligofermentans and Streptococcus mutans].

Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology, 54(7):456-462.

Objective: To study the influence of environmental factors on the two-species biofilm formed by the combinations of Streptococcus oligofermentans (So) with Streptococcus mutans (Sm) and Streptococcus sanguinis (Ss) with Sm so as to evaluate the role of So in maintaining the microecological balance of the oral cavity. Methods: Single-and two-species biofilms were grown on saliva-coated surfaces (glass tube and 96-well plate). Colony-counting method and safranin staining method were used to measure the biofilms formed under various oxygen conditions (aerobic and anaerobic), sucrose conditions (0%, 1% and 5% sucrose concentrations) and pH conditions (5.5, 6.0, 6.5, 7.0, 7.5 and 8.0). Results: Comparing the numbers of Sm in two co-cultures under various conditions, Sm counts in So+Sm group [(7.70±2.46)×10(8) CFU/ml] were significantly lower than those in Ss+Sm group [(9.00±1.13)×10(8) CFU/ml] in aerobic environment (P<0.05). Sm counts in So+Sm group [(2.80±0.52)×10(8) CFU/ml] were also significantly lower than those in the Ss+Sm group [(4.00±1.25)×10(8) CFU/ml] in anaerobic environment (P<0.05). The Sm counts in So+Sm group [(8.90±0.82)×10(8) CFU/ml] were significantly higher than those in Ss+Sm group [(7.50±1.73)×10(8) CFU/ml] in 0% sucrose environment (P<0.05). The Sm counts in So+Sm group [(5.70±2.94)×10(8) CFU/ml] were significantly lower than those in Ss+Sm group [(10.30±3.21) ×10(8) CFU/ml] in 1% sucrose environment (P<0.05). The Sm counts in So+Sm group [(6.10±1.71)×10(8) CFU/ml] were also significantly lower than those in Ss+Sm group [(7.40±1.20)×10(8) CFU/ml] in 5% sucrose environment (P<0.05). The Sm counts in So+Sm group [(3.50±1.50)×10(8) CFU/ml] were significantly lower than those in Ss+Sm group [(10.70±2.80)×10(8) CFU/ml] in pH7.0 environment (P<0.05). Comparing the formation of biofilm after 24 h cultivation, the Sm counts in So+Sm group were significantly lower than those in Ss+Sm group both in aerobic and anaerobic environments (P<0.05). The Sm counts in So+Sm group were significantly higher than those in Ss+Sm group in 0% sucrose environment (P<0.05). The Sm counts in So+Sm group were significantly lower than those in Ss+Sm group in 1% and 5% sucrose and pH 7.0 environments (P<0.05). Both So and Ss had no inhibitory effect on Sm in pH5.5 and pH8.0 environments. Conclusions: In the in vitro two-species co-culture systems, So showed stronger inhibitory effects than Ss on Sm and its inhibitory ability might influenced by various environmental factors.

RevDate: 2019-07-09

Xiang Z, Li Z, Ren Z, et al (2019)

EzrA, a cell shape regulator contributing to biofilm formation and competitiveness in Streptococcus mutans.

Molecular oral microbiology [Epub ahead of print].

Bacterial cell division is initiated by tubulin homologue FtsZ that assembles into a ring structure at mid-cell to facilitate cytokinesis. EzrA has been identified to be implicated in FtsZ ring dynamics and cell wall biosynthesis during cell division of Bacillus subtilis and Staphylococcus aureus, the model rod and cocci. However, its role in pathogenic streptococci remains largely unknown. Here, the role of EzrA was investigated in Streptococcus mutans, the primary etiological agent of human dental caries, by constructing an ezrA in-frame deletion mutant. Our data showed that the ezrA mutant was slow-growing with a shortened length and extended width round cell shape compared to the wild type, indicating a delay in cell division with abnormalities of peptidoglycan biosynthesis. Additionally, FtsZ irregularly localized in dividing ezrA mutant cells forming angled division planes, potentially contributing to an aberrant cell shape. Furthermore, investigation using single-species cariogenic biofilm model revealed that deletion of ezrA resulted in defective biofilm formation with less extracellular polysaccharides and altered three-dimensional biofilm architecture. Unexpectedly, in a dual-species ecological model, the ezrA mutant exhibited substantially lower tolerance for H2 O2 and reduced competitiveness against one commensal species, Streptococcus sanguinis. Taken together, these results demonstrate that EzrA plays a key role in regulating cell division and maintaining a normal morphology in S. mutans and is required for its robust biofilm formation/interspecies competition. Therefore, EzrA protein represent a potential therapeutic target in the development of drugs controlling dental caries and other biofilm-related diseases. This article is protected by copyright. All rights reserved.

RevDate: 2019-07-09

Ryser S, Tenorio E, Estellés A, et al (2019)

Human antibody repertoire frequently includes antibodies to a bacterial biofilm associated protein.

PloS one, 14(7):e0219256 pii:PONE-D-18-37146.

We have previously described a native human monoclonal antibody, TRL1068, that disrupts bacterial biofilms by extracting from the biofilm matrix key scaffolding proteins in the DNABII family, which are present in both gram positive and gram negative bacterial species. The antibiotic resistant sessile bacteria released from the biofilm then revert to the antibiotic sensitive planktonic state. Qualitative resensitization to antibiotics has been demonstrated in three rodent models of acute infections. We report here the surprising discovery that antibodies against the target family were found in all twenty healthy humans surveyed, albeit at a low level requiring a sensitive single B-cell assay for detection. We have cloned 21 such antibodies. Aside from TRL1068, only one (TRL1330) has all the biochemical properties believed necessary for pharmacological efficacy (broad spectrum epitope specificity and high affinity). We suggest that the other anti-DNABII antibodies, while not necessarily curative, reflect an immune response at some point in the donor's history to these components of biofilms. Such an immune response could reflect exposure to bacterial reservoirs that have been previously described in chronic non-healing wounds, periodontal disease, chronic obstructive pulmonary disease, colorectal cancer, rheumatoid arthritis, and atherosclerotic artery explants. The detection of anti-DNABII antibodies in all twenty surveyed donors with no active infection suggests that bacterial biofilm reservoirs may be present periodically in most healthy individuals. Biofilms routinely shed bacteria, creating a continuous low level inflammatory stimulus. Since chronic subclinical inflammation is thought to contribute to most aging-related diseases, suppression of bacterial biofilm has potential value in delaying age-related pathology.

RevDate: 2019-07-09

Dong QY, Wang Z, Shi LD, et al (2019)

Anaerobic methane oxidation coupled to chromate reduction in a methane-based membrane biofilm batch reactor.

Environmental science and pollution research international pii:10.1007/s11356-019-05709-7 [Epub ahead of print].

Chromate can be reduced by methanotrophs in a membrane biofilm reactor (MBfR). In this study, we cultivated a Cr(VI)-reducing biofilm in a methane (CH4)-based membrane biofilm batch reactor (MBBR) under anaerobic conditions. The Cr(VI) reduction rate increased to 0.28 mg/L day when the chromate concentration was ≤ 2.2 mg/L but declined sharply to 0.01 mg/L day when the Cr(VI) concentration increased to 6 mg/L. Isotope tracing experiments showed that part of the 13C-labeled CH4 was transformed to 13CO2, suggesting that the biofilm may reduce Cr(VI) by anaerobic methane oxidation (AnMO). Microbial community analysis showed that a methanogen, i.e., Methanobacterium, dominated in the biofilm, suggesting that this genus is probably capable of carrying out AnMO. The abundance of Methylomonas, an aerobic methanotroph, decreased significantly, while Meiothermus, a potential chromate-reducing bacterium, was enriched in the biofilm. Overall, the results showed that the anaerobic environment inhibited the activity of aerobic methanotrophs while promoting AnMO bacterial enrichment, and high Cr(VI) loading reduced Cr(VI) flux by inhibiting the methane oxidation process.

RevDate: 2019-07-09

Menini M, Setti P, Dellepiane E, et al (2019)

Comparison of biofilm removal using glycine air polishing versus sodium bicarbonate air polishing or hand instrumentation on full-arch fixed implant rehabilitations: a split-mouth study.

Quintessence international (Berlin, Germany : 1985) pii:42704 [Epub ahead of print].

OBJECTIVES: To compare the cleaning efficacy of glycine air polishing against two different professional oral hygiene techniques on implants supporting full-arch fixed prostheses.

METHOD AND MATERIALS: Thirty patients with a total of 32 implant fixed full-arch rehabilitations in the maxilla and/or mandible (134 implants) were included. After the removal of the screw-retained prostheses, baseline peri-implant spontaneous bleeding (SB), Plaque Index (PI), probing depth (PD), and bleeding on probing (BOP) were recorded (T0). Three oral hygiene treatments were assigned randomly following a split-mouth method: all the patients received glycine air polishing (G) in one side of the arch (n = 32), and sodium bicarbonate air polishing (B) (n = 16) or manual scaling with carbon-fiber curette (C) (n = 16) was performed in the opposite side. After the hygiene procedures, PI and SB were recorded and patient's comfort degree towards the three techniques was analyzed by questionnaires using a rating scale from 1 to 5 (T1).

RESULTS: PI reduction was significantly higher for G (T0, 2.88 ± 1.37; T1, 0.04 ± 0.21) and B (T0, 3.13 ± 1.34; T1, 0.0 ± 0.0) as compared with C (T0, 2.15 ± 1.46; T1, 0.44 ± 0.7) (P < .001). B reported the highest mean value of SB (T0, 0.0 ± 0.0; T1, 3.42 ± 0.75) compared with G (T0, 0.05 ± 0.21; T1, 1.60 ± 1.05) and C (T0, 0.07 ± 0.24; T1, 0.73 ± 0.91) (P < .001). A significant difference in comfort mean score was found between G (4.8 ± 0.5) and B (3.5 ± 1.7) (P = .014), no difference between G and C (4.7 ± 0.7) (P = .38).

CONCLUSION: Professional oral hygiene on implants using glycine air polishing showed high levels of both cleaning efficacy and patients' acceptance.

RevDate: 2019-07-09

Merino L, Trejo FM, De Antoni G, et al (2019)

Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry.

Food research international (Ottawa, Ont.), 123:258-265.

Lactic acid bacteria (LAB) exert a strong antagonistic activity against many microorganisms including food spoilage organisms and may be used as an alternative to control biofilm formation of pathogens in food industries. The objective of this work was to investigate the ability of fifteen Salmonella strains isolated from poultry environment to form biofilms on different surfaces. In addition, the effect of Lactobacillus kefiri strains 8321 and 83113 and Lactobacillus plantarum 83114 and their surface proteins on biofilm development of Salmonella Enteritidis 115 was studied. The relationship between surface properties of bacteria (hydrophobicity, autoaggregation and coaggregation with lactobacilli) and biofilm formation was also investigated. Most of Salmonella strains were hydrophilic and five strains were moderately hydrophobic. In general, Salmonella strains showed high aggregation abilities (27-54%). S. Enteritidis 106 and S. Typhimurium 102 and 108 showed the highest percentages of autoaggregation. All Salmonella strains tested showed aggregation abilities with the three lactobacilli studied, but the percentage of coaggregation proved to be strain-specific. When comparing stainless steel, glass and polystyrene surfaces, higher levels of biofilm formation occurred on polystyrene plate than on glass surfaces or stainless steel. S. Enteritidis 115 exhibited the greatest attachment to polyestyrene surface. The preincubation or coincubation with the three lactobacilli strains significantly reduced (about 1 log CFU/ml of reduction) the ability of S. Enteritidis 115 to form biofilm compared to the control without lactobacilli. These results were confirmed by confocal microscopy. In the same way, when surface proteins extracted from lactobacilli strains were preincubated or coincubated with S. Enteritidis 115, biofilm formation of this strain was significantly decreased compared to the control. The results obtained showed that these Lactobacillus strains and their surface proteins can be used as alternatives for control of biofilm formation by Salmonella in the poultry industry.

RevDate: 2019-07-09

Rajkumari J, Borkotoky S, Reddy D, et al (2019)

Anti-quorum sensing and anti-biofilm activity of 5-hydroxymethylfurfural against Pseudomonas aeruginosa PAO1: Insights from in vitro, in vivo and in silico studies.

Microbiological research, 226:19-26.

Pseudomonas aeruginosa is one of the most common pathogens associated with nosocomial infections and a great concern to immunocompromised individuals especially in the cases of cystic fibrosis, AIDS and burn wounds. The pathogenicity of P. aeruginosa is largely directed by the quorum sensing (QS) system. Hence, QS may be considered an important therapeutic target to combat P. aeruginosa infections. The anti-quorum sensing and anti-biofilm efficacy of aromatic aldehyde, 5-hydroxymethylfurfural (5-HMF) against P. aeruginosa PAO1 were assessed. At the sub-inhibitory concentration, 5-HMF suppressed the production of QS-controlled virulence phenotypes and biofilm formation in P. aeruginosa. It was also able to significantly enhance the survival rate of C. elegans infected with P. aeruginosa. The in silico studies revealed that 5-HMF could serve as a competitive inhibitor for the auto-inducer molecules as it exhibited a strong affinity for the regulatory proteins of the QS-circuits i.e. LasR and RhlR. In addition, a significant down-regulation in the expression of QS-related genes was observed suggesting the ability of 5-HMF in mitigating the pathogenicity of P. aeruginosa.

RevDate: 2019-07-09

Li L, Yan G, Wang H, et al (2019)

Denitrification and microbial community in MBBR using A. donax as carbon source and biofilm carriers for reverse osmosis concentrate treatment.

Journal of environmental sciences (China), 84:133-143.

In this study, raw Arundo donax (A. donax) pieces were applied as carbon source and biofilm carriers for denitrification in a lab-scale moving bed biofilm reactor (MBBR) for the treatment of reverse osmosis concentrate gathered from local wastewater reuse plant. At stable phase (about 60 days), efficient denitrification performance was obtained with 73.2% ± 19.5% NO3--N average removal and 8.10 ± 3.45 g N/(m3·day) NO3--N average volumetric removal rate. Mass balance analysis showed that 4.84 g A. donax was required to remove 1 g TN. Quantitative real-time PCR analysis results showed that the copy numbers of 16S r-RNA, narG, nirS, nosZ and anammox gene of carrier biofilm and suspended activated sludge in the declination phase (BF2 and AS2) were lower than those of samples in the stable phase (BF1 and AS1), and relatively higher copy numbers of nirS and nirK genes with lower abundance of narG and nosZ genes were observed. High-throughput sequencing analysis was conducted for BF2 and AS2, and similar dominant phyla and classes with different abundance were obtained. The class Gammaproteobacteria affiliated with the phylum Proteobacteria was the most dominant microbial community in both BF2 (52.6%) and AS2 (41.7%). The PICRUSt prediction results indicated that 33 predictive specific genes were related to denitrification process, and the relative abundance of 18 predictive specific genes in BF2 were higher than those in AS2.

RevDate: 2019-07-10

Lu L, Wang B, Zhang Y, et al (2019)

Identification and nitrogen removal characteristics of Thauera sp. FDN-01 and application in sequencing batch biofilm reactor.

The Science of the total environment, 690:61-69 pii:S0048-9697(19)33026-8 [Epub ahead of print].

A strain FDN-01 was isolated from the sequencing batch biofilm reactor (SBBR) which was seeded with wasted activated sludge from a municipal wastewater treatment plant in Shanghai. Bacterium FDN-01 was identified as Thauera sp., and Genbank Sequence_ID was KY393097. By comparing inorganic total nitrogen (TN) removal efficiency by strain FDN-01 under different conditions, the optimal initial pH, carbon source and the ratio of carbon to nitrogen were 7.5, sodium succinate and 4.0, respectively. Inorganic TN removal efficiency was 93% within 3 d while the concentration of nitrate was 100 mg/L, and the type of substrates affected extracellular polymeric substances (EPS) production and the ratio of protein to polysaccharide in the EPS. Further investigation for the application of strain FDN-01 in the SBBRs showed that anoxic ammonia oxidation occurred at room temperature, and the removal efficiencies of inorganic TN were noticeably enhanced by the augmentation of bacterium FDN-01 back into the SBBR. This study provided a promising method of TN removal requiring less carbon source in the wastewater.

RevDate: 2019-07-08

Cabrini Carmello J, Alves F, Basso FG, et al (2019)

Antimicrobial photodynamic therapy reduces adhesion capacity and biofilm formation of Candida albicans from induced oral candidiasis in mice.

Photodiagnosis and photodynamic therapy pii:S1572-1000(19)30018-3 [Epub ahead of print].

BACKGROUND: Antimicrobial photodynamic therapy (aPDT) has been considered an alternative therapeutic modality for the treatment of Candida infections. However, most studies are focused mainly on microorganism's inactivation efficiency. Here, we evaluated the efficacy of aPDT mediated by chloro-aluminum phthalocyanine encapsulated in cationic nanoemulsions (ClAlP-NE) to treat oral candidiasis in vivo and its effect on the virulence factors of Candida albicans.

METHODS: For this, mice were immunosuppressed and inoculated with C. albicans to produce oral candidiasis. aPDT and Nystatin were applied for 5 successive sessions. Next, the microbiological evaluation was determined (CFU/ml) and the analyses of virulence factors (adhesion capacity and biofilm formation) were performed. Data were analyzed by Two-way ANOVA (α = 0.05).

RESULTS: aPDT was as effective as Nystatin reducing 1.4 and 2.0 log10 of the cell viability (p ≤ 0.0001), respectively. Both treatments reduced the adhesion capacity and biofilm formation of C. albicans (p ≤ 0.0001) CONCLUSION: : ClAlP-NE-mediated aPDT was effective in reducing the virulence factors of C. albicans and also to treat induced oral candidiasis in mice.

RevDate: 2019-07-08

P S, Murugesan R, S Narayan (2019)

Chlorogenic Acid- Loaded Calcium Phosphate Chitosan Nanogel as Biofilm Degradative Materials.

The international journal of biochemistry & cell biology pii:S1357-2725(19)30143-8 [Epub ahead of print].

This work describes an effort to develop an antimicrobial agent (chlorogenic acid - CGA) loaded porous nanogel based on calcium phosphate-chitosan (CaPNP@Chi) nanogel with biofilm degradative properties and has potential applications in restorative dentistry. The nanogel was prepared by ionic gelation of calcium phosphate nanoparticles and chitosan in the ratio of 1.25: 1. Chlorogenic acid was loaded to the nanoparticles as an ethanolic solution and the encapsulation efficiency determined by chromatographic techniques. The particle size and morphology of CaPNP@Chi and CaPNP@Chi@CGA was determined by dynamic light scattering and scanning electron microscopic techniques. The minimum inhibitory concentration against S. aureus and K. pneumoniae was determined through the well diffusion method. The biofilm formation and biofilm decay were studied through staining assays. The toxicity, if any of the nanogel was assessed by MTT assay against HaCaT cells. All data were statistically analyzed. The composite had a CGA encapsulation efficiency of 70% and was thermally stable up to 124 °C. The zone of inhibition was found to be 18.7 mm ± 0.6 against S. aureus. CaPNP@Chi@CGA showed a 68% increase in biofilm degradation when compared with the untreated group. Results obtained in this study suggest that the positively charged nanogel interacted with the bacterial cell membrane and brought about the disruption of the cell membrane. Also, CaPNP@Chi@CGA was observed to be nontoxic up to 40 µg/mL to HaCaT cells. These results support the potential of CaPNP@Chi@CGA nanogel for biofilm degradation and its application as filling material in restorative dentistry.

RevDate: 2019-07-08

Meroni G, Zamarian V, Prussiani C, et al (2019)

The bovine acute phase protein α1-acid glycoprotein (AGP) can disrupt Staphylococcus aureus biofilm.

Veterinary microbiology, 235:93-100 pii:S0378-1135(19)30495-X [Epub ahead of print].

Staphylococcus aureus biofilm-related infections are of clinical concern due to the capability of bacterial colonies to adapt to a hostile environment. The present study investigated the capability of the acute phase protein alpha 1-acid glycoprotein (AGP) to a) disrupt already established S. aureus biofilm and b) interfere with the biofilm de novo production by using Microtiter Plate assay (MtP) on field strains isolated from infected quarters by assessing. The present study also investigated whether AGP could interfere with the expression of bacterial genes related to biofilm formation (icaA, icaD, icaB, and icaC) and adhesive virulence determinants (fnbA, fnbB, clfA, clfB, fib, ebps, eno) by quantitative real-time PCR (qPCR). The results provided the evidence that AGP could disrupt the biofilm structure only when it was already developed, but could not prevent the de novo biofilm formation. Moreover, AGP could interfere with the expression levels of genes involved in biofilm formation in a dose- and strain-dependent way, by upregulating, or downregulating, icaABC genes and fnbB, respectively. The results presented in this study provide new insights about the direct antibacterial activity of AGP in bovine milk. It remains to be demonstrated the molecular bases of AGP mechanism of action, in particular for what concerns the scarce capability to interact with the de novo formation of biofilm.

RevDate: 2019-07-08

Wongkaewkhiaw S, Taweechaisupapong S, Anutrakunchai C, et al (2019)

D-LL-31 in combination with ceftazidime synergistically enhances bactericidal activity and biofilm destruction in Burkholderia pseudomallei.

Biofouling [Epub ahead of print].

Melioidosis is a severe disease caused by Burkholderia pseudomallei. The biofilm of B. pseudomallei acquires resistance to several antibiotics and may be related to relapse in melioidosis patients. Here, the killing activity of antimicrobial peptides (LL-37, LL-31) and the D-enantiomers (D-LL-37, D-LL-31) in combination with ceftazidime (CAZ) against B. pseudomallei 1026b, H777 and a biofilm mutant M10, derived from H777 grown under biofilm-stimulating conditions was observed. Using static conditions, D-LL-31 exhibited the strongest killing activity against the three isolates in a dose-dependent manner. IC50 values for D-LL-31 ranged from 1 to 6 µM, for isolates M10, H777, and 1026b, respectively. Moreover, D-LL-31 combined with CAZ synergistically decreased the IC50 values of the peptide and antibiotic and caused also disruption of biofilms of B. pseudomallei 1026b under flow conditions. Thus a combination of D-LL-31 and CAZ may enhance the efficacy of the currently used antibiotic treatments against B. pseudomallei.

RevDate: 2019-07-08

Maquera Huacho PM, Rodriguez Herrero E, Verspecht T, et al (2019)

Terpinen-4-ol and carvacrol affect multi-species biofilm composition.

Biofouling [Epub ahead of print].

The aim of this study was to investigate the cytotoxic activity and inhibitory effect of terpinen-4-ol (T4ol) and carvacrol against single- and multi-species biofilms. The toxicity of each compound was tested on oral keratinocytes and evaluated by XTT assay. Inhibition and eradication of single-species biofilms were analyzed by crystal violet assay and the effect on multi-species biofilm composition was evaluated by qPCR. T4ol and carvacrol did not affect the epithelial cell viability, in contrast to chlorhexidine, which showed a high cytotoxic effect. Inhibition and eradication of single-species biofilms treated with T4ol and carvacrol were observed. The same inhibitory effect was observed for multi-species biofilms, especially on periodontal pathogens. In conclusion, specific concentrations of T4ol and carvacrol without toxicity towards the epithelial cells reduced the numbers of periodontal pathogens in single- and multi-species biofilms.

RevDate: 2019-07-07

Wang X, Shen X, Wang Z, et al (2019)

Viscoelasticity variation in a biofilm-mediated Bacillus subtilis suspension induced by adding polyethylene glycol.

European biophysics journal : EBJ pii:10.1007/s00249-019-01385-0 [Epub ahead of print].

Recent experiments show that synthetic polymers can influence the degree of microbial aggregation and the rheological properties of bacterial suspensions, the study of which can help us control biofilm formation. In this article, we add polyethylene glycol (PEG) with various molecular weights and concentrations into two types Bacillus subtilis cell cultures, Luria Broth (LB) and Minimal Salts glutamate glycerol (MSgg), respectively. We first observe cell clusters in cell suspensions with various concentrations of PEG, and measure cluster size in both static and dynamic fluid environments. We find that cells gather together into big clusters and most of the cells are arranged longitudinally; and the large cell clusters are divided into smaller aggregates under fluid shear. We then use a rheometer to measure the viscoelastic properties of various cell cultures, to represent the degree of aggregation of the bacterial suspensions. We find the storage modulus, the loss modulus and the viscosity of bacterial suspensions not only depend on the cell aggregation but also depend on the directionality of cellular motion.

RevDate: 2019-07-07

Zakaria BS, Lin L, BR Dhar (2019)

Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge.

The Science of the total environment, 689:691-699 pii:S0048-9697(19)33092-X [Epub ahead of print].

This study, for the first time, documented microbial community shifts in response to the changes in anode potential in a microbial electrolysis cell (MEC) operated with primary sludge. At an anode potential of -0.4 V vs. Ag/AgCl, the MEC showed COD and VSS removal efficiencies of 73 ± 1% and 75 ± 2%, respectively. The volumetric current density and specific hydrogen production rate were 23 ± 1.2 A/m3, and 145 ± 4.1 L/m3-d, respectively. The anodic microbial community was consisted of various fermentative/hydrolytic bacteria (e.g., Bacteroides and Dysgonomonas) and anode-respiring bacteria (Geobacter), while different hydrolytic/fermentative bacteria were abundant in suspension. The MEC showed substantially inferior performance along with a higher accumulation of various volatile fatty acids when the anode potential was switched to more positive values (0 V and +0.4 V). Both biofilms and suspended communities were also shifted when the anode potential was changed. Notably, at +0.4 V, Geobacter genus entirely disappeared from the biofilms, while Paludibacter species (known fermentative bacteria) were selectively enriched in biofilms. Also, the relative abundance of genus Bacteroides (known hydrolytic bacteria) substantially decreased in both biofilms and suspension, which was correlated with the inferior hydrolysis of VSS. Quantitative comparison of biofilms and suspended microbial communities at different anode potentials revealed a sharp decrease in bacterial cell numbers in anode biofilms after changing anode potential from -0.4 V to +0.4 V. By contrast, bacterial cell numbers in suspension were slightly decreased. Collectively, these results provide new insights into the role of anode potential in shaping key microbial players associated with hydrolysis/fermentation and anodic respiration processes when MECs are operated with real biowastes.

RevDate: 2019-07-07

Velsko IM, Fellows Yates JA, Aron F, et al (2019)

Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage.

Microbiome, 7(1):102 pii:10.1186/s40168-019-0717-3.

BACKGROUND: Dental calculus, calcified oral plaque biofilm, contains microbial and host biomolecules that can be used to study historic microbiome communities and host responses. Dental calculus does not typically accumulate as much today as historically, and clinical oral microbiome research studies focus primarily on living dental plaque biofilm. However, plaque and calculus reflect different conditions of the oral biofilm, and the differences in microbial characteristics between the sample types have not yet been systematically explored. Here, we compare the microbial profiles of modern dental plaque, modern dental calculus, and historic dental calculus to establish expected differences between these substrates.

RESULTS: Metagenomic data was generated from modern and historic calculus samples, and dental plaque metagenomic data was downloaded from the Human Microbiome Project. Microbial composition and functional profile were assessed. Metaproteomic data was obtained from a subset of historic calculus samples. Comparisons between microbial, protein, and metabolomic profiles revealed distinct taxonomic and metabolic functional profiles between plaque, modern calculus, and historic calculus, but not between calculus collected from healthy teeth and periodontal disease-affected teeth. Species co-exclusion was related to biofilm environment. Proteomic profiling revealed that healthy tooth samples contain low levels of bacterial virulence proteins and a robust innate immune response. Correlations between proteomic and metabolomic profiles suggest co-preservation of bacterial lipid membranes and membrane-associated proteins.

CONCLUSIONS: Overall, we find that there are systematic microbial differences between plaque and calculus related to biofilm physiology, and recognizing these differences is important for accurate data interpretation in studies comparing dental plaque and calculus.

RevDate: 2019-07-06

Shi J, Han Y, Xu C, et al (2019)

Enhanced biodegradation of coal gasification wastewater with anaerobic biofilm on polyurethane (PU), powdered activated carbon (PAC), and biochar.

Bioresource technology, 289:121487 pii:S0960-8524(19)30717-5 [Epub ahead of print].

The primary objective was to explore the feasibility of anaerobic biofilm on polyurethane (PU), powdered activated carbon (PAC), and biochar in strengthening anaerobic degradation of phenolic compounds and selected nitrogen heterocyclic compounds (NHCs) in coal gasification wastewater (CGW). When total phenols (TPh) was less than 300 mg/L, PAC-based biofilm was more efficient. Whereas, when the TPh concentration was more than 450 mg/L, PU-based biofilm performed the optimal degradation efficiency. Furthermore, microbial community structure analysis showed that PAC and biochar had little effect on the microbial community structure after 120 days of operation, while the addition of PU could lead to the enrichment of Giesbergeria, Caldisericum, Thauera, Methanolinea, and Methanoregula.

RevDate: 2019-07-06

Cui YX, Guo G, Ekama GA, et al (2019)

Elucidating the biofilm properties and biokinetics of a sulfur-oxidizing moving-bed biofilm for mainstream nitrogen removal.

Water research, 162:246-257 pii:S0043-1354(19)30583-4 [Epub ahead of print].

The sulfide-oxidizing autotrophic denitrification (SOAD) process offers a feasible alternative to mainstream heterotrophic denitrification in treating domestic sewage with insufficient organics. Previously SOAD has been successfully applied in a moving-bed biofilm reactor (MBBR). However, the biofilm properties and biokinetics are still not thoroughly understood. The present study was therefore designed to investigate these features of sulfur-oxidizing biofilms (SOBfs) cultivated in a lab-scale MBBR under stable operation for over a year. The biofilms developed were 160 μm thick, had an uneven and porous surface on which elemental sulfur (S0) accumulated, and the SOB biomass was highly diverse. The bioprocess kinetics were evaluated through 12 batch experiments. The results were interpreted by adopting a two-step sulfide oxidation model (sulfide→S0 and S0→ sulfate) with all specific rates having a linear regression coefficient of R2 > 0.9. Moreover, the inhibitory kinetic analysis revealed that 1) the maximum treatment capacity (about 480 mg S/(m2·h) and 80 mg N/(m2·h)) was observed at low sulfide level (40 mg S/L), while higher sulfide level (60-150 mg S/L) showed increasing inhibition on the oxidation of both sulfide and sulfur and denitrification. 2) The denitritation activity decreased by up to 43% when free nitrous acid reached a maximum of 8.6 μg N/L, whereas the oxidation of sulfide and sulfur did not have any significant effect. Interestingly, two physiologically diverse SOB groups were found in this special biofilm. The mechanisms of the cooperation and competition for electron donors and acceptors between these two SOB clades are proposed. The results of this study greatly enhance our understanding of the design and optimization of SOAD-MBBR for mainstream nitrogen removal.

RevDate: 2019-07-06

Liaqat I, Liaqat M, Tahir HM, et al (2019)

Motility effects biofilm formation in Pseudomonas aeruginosa and Enterobacter cloacae.

Pakistan journal of pharmaceutical sciences, 32(3):927-932.

Chronic infections caused by gram negative bacteria are the mains reasons to have morbidity and death in patients, despite using high doses of antibiotics applied to cure diseases producing by them. This study was designed to identify the role of flagella in biofilm formation Ten pure strains were collected from our lab. Morphological variation and motility assays led us to study two strains in detail. They were characterized biochemically, physiologically and genetically. Biofilm formation analysis was performed using test tube assay, congo red assay and liquid-interface coverslip assay. In order to disrupt flagella of studied strains, blending was induced for 5, 10 and 15 minutes followed by centrifugation and observing motility using motility test. Biofilm quantification of wild type (parental) and blended strains was done using test tube and liquid interface coverslip assays. 16S rRNA sequencing identified strains as Pseudomonas aeroginosa and Enterobacter cloacae. Significant biofilm formation (p>0.05) by was observed after 72 and 18 hours using test tube and liquid-interface coverslip assays respectively. Flagellar disruption showed that 15 minutes blending caused significant reduction in both strains, hence demonstrated that flagellar mediated motility could be a potent strategy to stabilize aggregate and invest resources for biofilm formation in P. aeruginosa and E. cloacae.

RevDate: 2019-07-06

Hou J, Wang C, Rozenbaum RT, et al (2019)

Bacterial Density and Biofilm Structure Determined by Optical Coherence Tomography.

Scientific reports, 9(1):9794 pii:10.1038/s41598-019-46196-7.

Optical-coherence-tomography (OCT) is a non-destructive tool for biofilm imaging, not requiring staining, and used to measure biofilm thickness and putative comparison of biofilm structure based on signal intensity distributions in OCT-images. Quantitative comparison of biofilm signal intensities in OCT-images, is difficult due to the auto-scaling applied in OCT-instruments to ensure optimal quality of individual images. Here, we developed a method to eliminate the influence of auto-scaling in order to allow quantitative comparison of biofilm densities in different images. Auto- and re-scaled signal intensities could be qualitatively interpreted in line with biofilm characteristics for single and multi-species biofilms of different strains and species (cocci and rod-shaped organisms), demonstrating qualitative validity of auto- and re-scaling analyses. However, specific features of pseudomonas and oral multi-species biofilms were more prominently expressed after re-scaling. Quantitative validation was obtained by relating average auto- and re-scaled signal intensities across biofilm images with volumetric-bacterial-densities in biofilms, independently obtained using enumeration of bacterial numbers per unit biofilm volume. The signal intensities in auto-scaled biofilm images did not significantly relate with volumetric-bacterial-densities, whereas re-scaled intensities in images of biofilms of widely different strains and species increased linearly with independently determined volumetric-bacterial-densities in the biofilms. Herewith, the proposed re-scaling of signal intensity distributions in OCT-images significantly enhances the possibilities of biofilm imaging using OCT.

RevDate: 2019-07-06

Cameron R, Claudia E, Ping W, et al (2019)

Effect of a Residual Biofilm on Release of Transforming Growth Factor β1 from Dentin.

Journal of endodontics pii:S0099-2399(19)30359-0 [Epub ahead of print].

INTRODUCTION: Several studies have reported regeneration of the pulp-dentin complex when treating noninfected root canal systems. However, current protocols applied to infected root canal systems are much less predictable for the formation of dentin. Converging lines of evidence implicate residual biofilm as an important factor for these variable histologic outcomes. Here we studied the effect of a residual polymicrobial biofilm on the release of transforming growth factor beta 1 (TGF-β1) from dentin. We hypothesized that the presence of bacterial biofilm attenuates the release of bioactive molecules from dentin.

METHODS: Using bacteria commonly found in infected immature teeth, we developed a multispecies biofilm in an organotypic root canal model. Root segments were then subjected to various irrigation or intracanal medicament protocols. Subsequently, the release of TGF-β1 from dentin was measured using the enzyme-linked immunosorbent assay.

RESULTS: Our data show that sterile root segments released greater amounts of TGF-β1 when conditioned with 17% EDTA alone (P < .001) or with the combination of 1.5% sodium hypochlorite and 17% EDTA (P < .05) compared with root segments infected with the multispecies biofilm. Similar results were also observed with the intracanal medicament protocol. Sterile root segments medicated with various concentrations of triple antibiotic paste and full-strength calcium hydroxide released greater amounts of TGF-β1 when compared with their infected counterparts.

CONCLUSIONS: This is the first study to report the detrimental effects of a residual biofilm on dentin conditioning and, therefore, the release of growth factors critical for regenerative procedures.

RevDate: 2019-07-05

Huang Y, Thompson T, Wang Y, et al (2019)

Analysis of cariogenic potential of alternative milk beverages by in vitro Streptococcus mutans biofilm model and ex vivo caries model.

Archives of oral biology, 105:52-58 pii:S0003-9969(19)30252-3 [Epub ahead of print].

OBJECTIVE: To evaluate the potential of various alternative milk beverages to support bacterial biofilm formation and acid production and cause unbalanced demineralization.

DESIGN: in vitro assays were used to examine the ability of the beverages to support Streptococcus mutans' biofilm formation and acid production from sugar fermentation and the capacity of the beverages to buffer pH changes. Biofilm formation was done using 96-well plate model. Acid production was measured using L-Lactate assay kit, and the buffering capacity was assessed by pH titration. For ex vivo caries model, enamel and dentine slabs and S. mutans biofilms were exposed to selected alternative milk beverages three times a day, 30 min each, and by the end of the experiments, slab's demineralization was assessed by loss of surface microhardness.

RESULTS: Of the alternative milk beverages tested in this study, Original Almond consistently supported the most S. mutans biofilms, followed by Chocolate Cashew Milk, while the least biofilms were measured with Unsweetened Flax Milk. The most acids and the lowest culture pH were measured with Toasted Coconut Almond Milk, while the least buffering capacity was measured with Unsweetened Coconut Milk. The results of ex vivo caries model showed that like Bovine Whole Milk, repeated exposure to Original Almond led to significant enamel and dentine slab demineralization, when compared to those exposed to saline as a control (P < 0.001).

CONCLUSIONS: These results further provide support that popular alternative milk beverages, especially those with supplemental sugars, are potentially cariogenic.

RevDate: 2019-07-05

Schoilew K, Ueffing H, Dalpke A, et al (2019)

Bacterial biofilm composition in healthy subjects with and without caries experience.

Journal of oral microbiology, 11(1):1633194 pii:1633194.

Objective:The composition of the oral microbiome differs distinctively between subjects with and without active caries. Still, caries research has mainly been focused on states of disease; aspects about how biofilm composition and structure maintain oral health still remain widely unclear. Therefore, the aim of the study was to compare the healthy oral microbiome of caries-free adult subjects with and without former caries experience using next generation sequencing methods. Methods: 46 samples were collected from subjects without any signs of untreated active caries. Samples of pooled supragingival plaque from 19 subjects without caries experience (NH; DMFT = 0) and 27 subjects with 'caries experience' (CE; DMFT > 0 [F(T)> 0; D(T)= 0]) were analyzed by 16S ribosomal RNA amplicon sequencing. Results: Subjects with caries experience did not exhibit a dramatically modified supragingival plaque microbiome. However, we observed a slight and significant modification between the two groups, validated by PERMANOVA (NH vs. CE: R2 0.04; p= 0.039). The composition of the microbiome of subjects with caries experience indicates a tendency to lower α-diversity and richness. Subjects without caries experience showed a significant higher evenness compared to patients with previous caries. LDA effect size (LEfSe) analysis demonstrated that the genus Haemophilus is significantly more frequent in patients with caries experience. For the group without caries experience LefSe analysis showed a set of 11 genera being significantly more frequent, including Corynebacterium, Fusobacterium, Capnocytophaga, Porphyromonas, Prevotella,and Leptotrichia.Conclusion: The analysis of the oral microbiome of subjects with and without caries experience indicates specific differences. With the presence of Corynebacterium and Fusobacterium subjects without caries experience exhibited more frequently organisms that are considered to be main actors in structural plaque formation and integration. The abundance of Corynebacterium might be interpreted as a signature for dental health.

RevDate: 2019-07-05

Shany-Kdoshim S, Polak D, Houri-Haddad Y, et al (2019)

Killing mechanism of bacteria within multi-species biofilm by blue light.

Journal of oral microbiology, 11(1):1628577 pii:1628577.

Objectives: The aim of the study was to characterize the immediate and delayed effects of non-coherent blue-light treatment on the composition and viability of an in vitro biofilm composed of anaerobic multispecies, as well as the mechanisms involved. Methods: A multispecies biofilm was constructed of Streptococcus sanguinis, Actinomyces naeslundii, Porphyromonas gingivalis and Fusobacterium nucleatum, test groups were exposed to blue light. The multispecies biofilm was explored with a newly developed method based on flow cytometry and confocal microscopy. The involvement of the paracrine pathway in the phototoxic mechanism was investigated by a crossover of the supernatants between mono-species P. gingivalis and F. nucleatum biofilms. Results: Blue light led to a reduction of about 50% in the viable pathogenic bacteria P. gingivalis and F. nucleatum, vs that in the non-exposed biofilm. Biofilm thickness was also reduced by 50%. The phototoxic effect of blue light on mono-species biofilm was observed in P. gingivalis, whereas F. nucleatum biofilm was unaffected. A lethal effect was obtained when the supernatant of P. gingivalis biofilm previously exposed to blue light was added to the F. nucleatum biofilm. The effect was circumvented by the addition of reactive oxygen species (ROS) scavengers to the supernatant. Conclusion: Blue-light has an impact on the bacterial composition and viability of the multispecies biofilm. The phototoxic effect of blue light on P. gingivalis in biofilm was induced directly and on F. nucleatum via ROS mediators of the paracrine pathway. This phenomenon may lead to a novel approach for 'replacement therapy,' resulting in a less periodonto-pathogenic biofilm.

RevDate: 2019-07-05

Zhu YL, Hou HM, Zhang GL, et al (2019)

AHLs Regulate Biofilm Formation and Swimming Motility of Hafnia alvei H4.

Frontiers in microbiology, 10:1330.

The aim of this study was to evaluate the role of N-acyl homoserine lactones (AHLs) in the regulation of swimming motility of Hafnia alvei H4 and its biofilm formation on 96-well plate, glass and stainless-steel surfaces. The luxI gene, which codes for an enzyme involved in AHL synthesis, was deleted to generate a luxI mutant (ΔluxI). The mutant produced no AHL, and the relative expression of the luxR gene was significantly (P < 0.05) decreased. In addition, qRT-PCR analysis showed that the relative expression of the luxR gene in ΔluxI was stimulated by the presence of exogenous AHLs (C4-HSL, C6-HSL, and 3-o-C8-HSL) added at concentrations ranging from of 50-250 μg/ml. Among the three AHLs, C6-HSL had the strongest effect. The ability of ΔluxI to form biofilm on 96-well plate, glass and stainless-steel surfaces was significantly reduced (P < 0.05) compared with the wild type (WT), but was increased when provided with 150 μg/ml C4-HSL, whereas C6-HSL and 3-o-C8-HSL had no effect. Scanning electron microscopy analysis of the biofilm revealed less bacteria adhering to the surface of stainless-steel and fewer filaments were found binding to the cells compared with the WT. Furthermore, ΔluxI also exhibited significant (P < 0.05) decrease in the expression of biofilm- and swimming motility-related genes, flgA, motA and cheA, consistent with the results observed for biofilm formation and swimming motility. Taken together, the results suggested that in H. alvei H4, C4-HSL may act as an important molecular signal through regulating the ability of the cells to form biofilm, as well as through regulating the swimming motility of the cell, and this could provide a new way to control these phenotypes of H. alvei in food processing.

RevDate: 2019-07-05

Hasegawa T, Takenaka S, Ohsumi T, et al (2019)

Effect of a novel glass ionomer cement containing fluoro-zinc-silicate fillers on biofilm formation and dentin ion incorporation.

Clinical oral investigations pii:10.1007/s00784-019-02991-0 [Epub ahead of print].

OBJECTIVES: This study is aimed at evaluating the effect of a new glass ionomer cement (GIC) containing fluoro-zinc-silicate fillers on biofilm formation and ion incorporation.

MATERIALS AND METHODS: Streptococcus mutans biofilms were developed on two GIC materials: Caredyne Restore (CD) and Fuji VII (FJ); and hydroxyapatite (HA) for 24 h at 37 °C using a flow cell system. The morphological structure and bacterial viability were analyzed using a confocal laser scanning microscopy. Bacterial adhesion during the initial 2 h was also assessed by viable cell counting. To study the ion incorporation, restored cavities prepared on the root surfaces of human incisors were subjected to the elemental mapping of the zinc and fluoride ions in the GIC-dentin interface using a wavelength-dispersive X-ray spectroscopy electron probe microanalyzer.

RESULTS: Morphological observations revealed that biofilm formation in the CD group was remarkably inhibited compared with the HA and FJ groups, exhibiting sparse, thinner biofilm clusters. The microorganisms adhering to the CD group were significantly inhibited, revealing 2.9 ± 0.4 for CD, 4.9 ± 0.2 for FJ, and 5.4 ± 0.4 log colony-forming units (CFU) for HA. The CD zinc ion incorporation depth was 72.2 ± 8.0 μm. The fluoride penetration of CD was three times deeper than that of FJ; this difference was statistically significant (p < 0.05).

CONCLUSIONS: Enhanced by the incorporation of zinc and fluoride ions, the new GIC inhibited biofilm formation by interfering with bacterial adhesion.

CLINICAL RELEVANCE: A novel GIC comprised of fluoro-zinc-silicate fillers may improve clinical outcomes, such as root caries and minimally invasive dentistry.

RevDate: 2019-07-05

Cai W, De La Fuente L, CR Arias (2019)

Transcriptome analysis of the fish pathogen Flavobacterium columnare in biofilm suggests calcium role in pathogenesis.

BMC microbiology, 19(1):151 pii:10.1186/s12866-019-1533-4.

BACKGROUND: Flavobacterium columnare is the causative agent of columnaris disease that affects cultured freshwater fishes worldwide. F. columnare easily colonizes surfaces by forming biofilm, which helps the pathogen resist antibiotic and disinfectant treatments. Previously, we had shown that increasing concentrations of calcium (Ca2+) promoted biofilm formation by F. columnare. The objective of this study was to further characterize the role of Ca2+ on biofilm formation and to compare the transcriptome profiles of planktonic and biofilm cells.

RESULTS: RNA-Seq analysis was conducted to identify genes that were differentially expressed between the following states: i) planktonic cells in control medium (P), ii) planktonic cells in calcium-enriched medium (P/Ca), and iii) biofilm cells in calcium-enriched medium (B/Ca). Overall, we identified 441 significant (FDR-adjusted p < 0.05, fold change > 2) differentially expressed genes (DEGs) between P and B/Ca samples; 112 significant DEGs between P/Ca and B/Ca samples, and 175 significant DEGs between P/Ca and P samples, corresponding to 15.87, 4.03 and 6.30% of the total protein-coding sequences, respectively. The significant DEGs fell into different functional categories including iron acquisition, oxidative stress response, extracellular protein secretion, and respiratory metabolism.

CONCLUSIONS: Our results posit Ca2+ as a critical signal in regulating bacterial surface adhesion and biofilm formation in F. columnare. Living in biofilm elicited a shift in several metabolic pathways that allowed the cells to cope with oxidative stress and nutrient starvation. In addition, Ca2+ supplementation induced the expression of putative virulence factors in F. columnare, such as extracellular protein secretion and iron acquisition.

RevDate: 2019-07-04

Romera D, Aguilera-Correa JJ, Gadea I, et al (2019)

Candida auris: a comparison between planktonic and biofilm susceptibility to antifungal drugs.

Journal of medical microbiology [Epub ahead of print].

INTRODUCTION: Candida auris is a pathogenic yeast that mainly affects immunosuppressed patients and those with implanted medical devices. This pathogen also displays elevated resistance to common antifungals and high survival and spreading capacities. Since no antifungal breakpoints have yet been defined for this pathogen, the data obtained here can be useful for further research concerning treatment or implementation of a prevention and disinfection protocol. Our aim was to study the antifungal resistance of C. auris to current antifungals in planktonic and sessile states. Using confocal laser scanning microscopy and viable biomass production, we demonstrated the ability of C. auris to develop a mature biofilm. We compared the minimal inhibitory concentration (MIC) and the minimal biofilm eradication concentration (MBEC) for the C. auris DSM 21092 strain plus two clinical isolates, and the results were compared with those obtained for Candida albicans and Candida parapsilosis, two species strongly linked to bloodstream infections and infections associated with biomaterials. We found that the clinical isolates of C. auris were resistant to fluconazole and sensitive to echinocandins and polyenes. The C. auris biofilms did not show susceptibility to any antifungal agent, showing MBECs that were up to 512-fold higher than the MICs. These findings highlight the importance of biofilm formation as a key factor underlying the resistance of this species to antifungals and suggest that the presence of implantable medical devices is one of the major risk factors in immunocompromised patients.

RevDate: 2019-07-04

Pereira-Ribeiro PM, Sued-Karam BR, Faria YV, et al (2019)

Influence of antibiotics on biofilm formation by different clones of nosocomial Staphylococcus haemolyticus.

Future microbiology [Epub ahead of print].

Staphylococcus haemolyticus is the most common organism among clinical isolatesof methicillin-resistant staphylococci. Aim: This study evaluated the ability to produce biofilm with the presence of the antibiotics (¼ minimum inhibitory concentrations) of S. haemolyticus strains isolated from blood culture. Methods: Clonal distribution was assessed in pulsed-field gel electrophoresis. PCR assays were performed to detect mecA, icaA, aap, atlE, atl, fbp genes. S. haemolyticus strains grown in the presence of the antibiotics were investigated for biofilm formation on glass, polystyrene and catheter surfaces. Results: Biofilm formation was independent of the presence of the icaA and mecA genes, pulsed-field gel electrophoresis type. Vancomycin, oxacillin, moxifloxacin, rifampicin, teicoplanin, tigecycline and linezolid did not inhibit biofilm formation on abiotic surfaces. Conclusion: This study demonstrated that the biofilm formation process is complex and may not be related to ica gene carriage. Furthermore, in this study the biofilm formation was increased in the presence of antimicrobial agents.

RevDate: 2019-07-04

Yang X, Zhang Z, Huang Z, et al (2019)

A putative LysR-type transcriptional regulator inhibits biofilm synthesis in Pseudomonas aeruginosa.

Biofouling [Epub ahead of print].

Biofilm formation is an important virulence factor which is controlled by complex regulatory circuits in Pseudomonas aeruginosa. In this work, a biofilm hyper-producing strain, P2-7, was selected from a collection of transposon insertion mutants in which the PA2121 gene was disrupted. PA2121 was predicted as a putative LysR-type regulator. Analyses showed that it was involved in early biofilm formation, mature biofilm development, and colony morphology. Quantitative measurements revealed that PA2121 repressed biosynthesis of extracellular polysaccharides (alginate, psl and pel). Furthermore, it was observed that PA2121 was self-regulated, highly expressed in the early phase of biofilm development, and subject to the negative regulation by a biofilm synthesis regulator SrpA that binds directly to the PA2121 gene promoter. Collectively, this study proposes that PA2121 is a novel biofilm synthesis repressor (BsrA) in P. aeruginosa.

RevDate: 2019-07-02

Chew SY, Ho KL, Cheah YK, et al (2019)

Physiologically Relevant Alternative Carbon Sources Modulate Biofilm Formation, Cell Wall Architecture, and the Stress and Antifungal Resistance of Candida glabrata.

International journal of molecular sciences, 20(13): pii:ijms20133172.

Flexibility in carbon metabolism is pivotal for the survival and propagation of many human fungal pathogens within host niches. Indeed, flexible carbon assimilation enhances pathogenicity and affects the immunogenicity of Candida albicans. Over the last decade, Candida glabrata has emerged as one of the most common and problematic causes of invasive candidiasis. Despite this, the links between carbon metabolism, fitness, and pathogenicity in C. glabrata are largely unexplored. Therefore, this study has investigated the impact of alternative carbon metabolism on the fitness and pathogenic attributes of C. glabrata. We confirm our previous observation that growth on carbon sources other than glucose, namely acetate, lactate, ethanol, or oleate, attenuates both the planktonic and biofilm growth of C. glabrata, but that biofilms are not significantly affected by growth on glycerol. We extend this by showing that C. glabrata cells grown on these alternative carbon sources undergo cell wall remodeling, which reduces the thickness of their β-glucan and chitin inner layer while increasing their outer mannan layer. Furthermore, alternative carbon sources modulated the oxidative stress resistance of C. glabrata as well as the resistance of C. glabrata to an antifungal drug. In short, key fitness and pathogenic attributes of C. glabrata are shown to be dependent on carbon source. This reaffirms the perspective that the nature of the carbon sources available within specific host niches is crucial for C. glabrata pathogenicity during infection.

RevDate: 2019-07-03

Blanco-Cabra N, Vega-Granados K, Moya-Andérico L, et al (2019)

Novel Oleanolic and Maslinic Acids derivatives as a promising treatment against bacterial biofilm in nosocomial infections: An in Vitro and in Vivo study.

ACS infectious diseases [Epub ahead of print].

Oleanolic Acid (OA) and Maslinic Acid (MA) are pentacyclic triterpenic compounds that abound in the industrial olive-oil waste. These compounds have renowned antimicrobial properties and lack cytotoxicity in eukaryotic cells as well as resistance mechanisms in bacteria. Despite these advantages, their antimicrobial activity has only been tested in vitro, and derivatives improving this activity have not been reported. In this work, a set of 14 OA and MA C-28 amide derivatives have been synthesized. Two of these derivatives, MA-HDA and OA-HDA, increase the in vitro antimicrobial activity of the parent compounds while reducing their toxicity in most of the Gram-positive bacteria tested, including a methicillin-resistant Staphylococcus aureus-MRSA. MA-HDA also shows an enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model of infection. A preliminary attempt to elucidate their mechanism of action revealed that these compounds are able to penetrate and damage the bacterial cell membrane. More significantly, their capacity to reduce antibiofilm formation in catheters has also been demonstrated in two sets of conditions: a static and a more challenged continuous-flow S. aureus biofilm.

RevDate: 2019-07-03

Banerjee P, Chanchal , D Jain (2019)

Sensor I Regulated ATPase Activity of FleQ Is Essential for Motility to Biofilm Transition in Pseudomonas aeruginosa.

ACS chemical biology [Epub ahead of print].

Members of the AAA+ (ATPase associated with various cellular activities) family of ATPases couple chemical energy derived from ATP hydrolysis for generation of mechanical force, resulting in conformational changes. The hydrolysis is brought about by highly conserved domains and motifs. The sensor I motif is critical for sensing and hydrolysis of the nucleotide. Pseudomonas aeruginosa FleQ is an ATPase that is a positive regulator of flagellar gene expression. We have determined the crystal structures of the ATPase domain of wild-type FleQ and sensor I mutants H287N and H287A in complex with ATPγS and Mg2+ to 2.4, 1.95, and 2.25 Å resolution, respectively. The structural data highlight the role of sensor I in regulating the ATPase activity. The in vitro and in vivo data demonstrate that the moderate ATPase activity of FleQ due to the presence of histidine in sensor I is essential for maintaining the monotrichous phenotype and for the rapid motility to biofilm transition.

RevDate: 2019-07-02

Vogeleer P, Vincent AT, Chekabab SM, et al (2019)

Regulation of waaH by PhoB during Pi starvation promotes biofilm formation by Escherichia coli O157:H7.

Journal of bacteriology pii:JB.00093-19 [Epub ahead of print].

In open environments such as water, enterohemorrhagic Escherichia coli O157:H7 responds to inorganic phosphate (Pi) starvation by inducing the Pho regulon controlled by PhoB. This activates the phosphate-specific transport (Pst) system that contains a high-affinity Pi transporter. In the Δpst mutant, PhoB is constitutively activated and regulates the expression of genes in the Pho regulon. Here we show that Pi starvation and deletion of the pst system enhances E. coli O157:H7 biofilm formation. Among differentially expressed genes of EDL933 grown in Pi starvation conditions and in the Δpst mutant, we have found that a member of the PhoB regulon, waaH, predicted to encode a glycosyltransferase, was highly expressed. Interestingly, WaaH contributed to biofilm formation of E. coli O157:H7 during both Pi starvation and in the Δpst mutant. In the Δpst mutant, the presence of waaH was associated with lipopolysaccharide (LPS) R3 core type modifications whereas in E. coli O157:H7, waaH overexpression had no effect on LPS structure during Pi starvation. Therefore, waaH participates to E. coli O157:H7 biofilm formation during Pi starvation but its biochemical role remains to be clarified. This study highlights the importance of the Pi-starvation stress response to biofilm formation, which may contribute to the persistence of E. coli O157:H7 in the environment.IMPORTANCE Enterohemorrhagic Escherichia coli O157:H7 is a human pathogen that causes bloody diarrhea that can result in renal failure. Outside of mammalian hosts E. coli O157:H7 survives for extended periods of time in nutrient-poor environments, likely as part of biofilms. In E. coli K-12, the levels of free extracellular inorganic phosphate (Pi) affect biofilm formation; however, it was unknown whether Pi influences biofilm formation by E. coli O157:H7. Our results show that upon Pi starvation, PhoB activates waaH expression, which favors biofilm formation by E. coli O157:H7. These findings suggest that WaaH might be a potential target to controlling biofilm formation. Altogether, our work demonstrates how adaptation to Pi starvation allows E. coli O157:H7 to occupy different ecological niches.

RevDate: 2019-07-02

Riau AK, Aung TT, Setiawan M, et al (2019)

Surface Immobilization of Nano-Silver on Polymeric Medical Devices to Prevent Bacterial Biofilm Formation.

Pathogens (Basel, Switzerland), 8(3): pii:pathogens8030093.

: Bacterial biofilm on medical devices is difficult to eradicate. Many have capitalized the anti-infective capability of silver ions (Ag+) by incorporating nano-silver (nAg) in a biodegradable coating, which is then laid on polymeric medical devices. However, such coating can be subjected to premature dissolution, particularly in harsh diseased tissue microenvironment, leading to rapid nAg clearance. It stands to reason that impregnating nAg directly onto the device, at the surface, is a more ideal solution. We tested this concept for a corneal prosthesis by immobilizing nAg and nano-hydroxyapatite (nHAp) on poly(methyl methacrylate), and tested its biocompatibility with human stromal cells and antimicrobial performance against biofilm-forming pathogens, Pseudomonas aeruginosa and Staphylococcus aureus. Three different dual-functionalized substrates-high Ag (referred to as 75:25 HAp:Ag); intermediate Ag (95:5 HAp:Ag); and low Ag (99:1 HAp:Ag) were studied. The 75:25 HAp:Ag was effective in inhibiting biofilm formation, but was cytotoxic. The 95:5 HAp:Ag showed the best selectivity among the three substrates; it prevented biofilm formation of both pathogens and had excellent biocompatibility. The coating was also effective in eliminating non-adherent bacteria in the culture media. However, a 28-day incubation in artificial tear fluid revealed a ~40% reduction in Ag+ release, compared to freshly-coated substrates. The reduction affected the inhibition of S. aureus growth, but not the P. aeruginosa. Our findings suggest that Ag+ released from surface-immobilized nAg diminishes over time and becomes less effective in suppressing biofilm formation of Gram-positive bacteria, such as S. aureus. This advocates the coating, more as a protection against perioperative and early postoperative infections, and less as a long-term preventive solution.

RevDate: 2019-07-01

Marini E, Di Giulio M, Ginestra G, et al (2019)

Efficacy of carvacrol against resistant rapidly growing mycobacteria in the planktonic and biofilm growth mode.

PloS one, 14(7):e0219038 pii:PONE-D-19-06520.

Rapidly growing mycobacteria (RGM) are environmental bacteria found worldwide with a propensity to produce skin and soft-tissue infections. Among them, the most clinically relevant species is Mycobacterium abscessus. Multiple resistance to antibiotics and the ability to form biofilm contributes considerably to the treatment failure. The search of novel anti-mycobacterial agents for the control of biofilm growth mode is crucial. The aim of the present study was to evaluate the activity of carvacrol (CAR) against planktonic and biofilm cells of resistant RGM strains. The susceptibility of RGM strains (n = 11) to antibiotics and CAR was assessed by MIC/MBC evaluation. The CAR activity was estimated by also vapour contact assay. The effect on biofilm formation and preformed biofilm was measured by evaluation of bacterial growth, biofilm biomass and biofilm metabolic activity. MIC values were equal to 64 μg/mL for most of RGM isolates (32-512 μg/mL), MBCs were 2-4 times higher than MICs, and MICs of vapours were lower (16 μg/mL for most RGM isolates) than MICs in liquid phase. Regarding the biofilm, CAR at concentrations of 1/2 × MIC and 1/4 × MIC showed a strong inhibition of biofilm formation (61-77%) and at concentration above the MIC (2-8 × MIC) produced significant inhibition of 4- and 8-day preformed biofilms. In conclusion, CAR could have a potential use, also in vapour phase, for the control of RGM.

RevDate: 2019-07-01

Simcox LJ, Pereira RPA, Wellington EMH, et al (2019)

Boron Doped Diamond as a Low Biofouling Material in Aquatic Environments: Assessment of Pseudomonas aeruginosa Biofilm Formation.

ACS applied materials & interfaces [Epub ahead of print].

Boron doped diamond (BDD), given the robustness of the material, is becoming an electrode of choice for applications which require long-term electrochemical monitoring of analytes in aqueous environments. However, despite the extensive work in this area, there are no studies which directly assess the biofilm formation (biofouling) capabilities of the material, which is an essential consideration because biofouling often causes deterioration in the sensor performance. Pseudomonas aeruginosa is one of the most prevalent bacterial pathogens linked to water-related diseases, with a strong capacity for forming biofilms on surfaces that are exposed to aquatic environments. In this study, we comparatively evaluate the biofouling capabilities of oxygen-terminated (O-)BDD against materials commonly employed as either the packaging or sensing element in water quality sensors, with an aim to identify factors which control biofilm formation on BDD. We assess the monospecies biofilm formation of P. aeruginosa in two different growth media, Luria-Bertani, a high nutrient source and drinking water, a low nutrient source, at two different temperatures (20 and 37 °C). Multispecies biofilm formation is also investigated. The performance of O-BDD, when tested against all other materials, promotes the lowest extent of P. aeruginosa monospecies biofilm formation, even with corrections made for total surface area (roughness). Importantly, O-BDD shows the lowest water contact angle of all materials tested, that is, greatest hydrophilicity, strongly suggesting that for these bacterial species, the factors controlling the hydrophilicity of the surface are important in reducing bacterial adhesion. This was further proven by keeping the surface topography fixed and changing surface termination to hydrogen (H-), to produce a strongly hydrophobic surface. A noticeable increase in biofilm formation was found. Doping with boron also results in changes in hydrophobicity/hydrophilicity compared to the undoped counterpart, which in turn affects the bacterial growth. For practical electrochemical sensing applications in aquatic environments, this study highlights the extremely beneficial effects of employing smooth, O-terminated (hydrophilic) BDD electrodes.

RevDate: 2019-07-01

Santos T, Viala D, Chambon C, et al (2019)

Listeria monocytogenes Biofilm Adaptation to Different Temperatures Seen Through Shotgun Proteomics.

Frontiers in nutrition, 6:89.

Listeria monocytogenes is a foodborne pathogen that can cause invasive severe human illness (listeriosis) in susceptible patients. Most human listeriosis cases appear to be caused by consumption of refrigerated ready-to-eat foods. Although initial contamination levels in foods are usually low, the ability of these bacteria to survive and multiply at low temperatures allows it to reach levels high enough to cause disease. This study explores the set of proteins that might have an association with L. monocytogenes adaptation to different temperatures. Cultures were grown in biofilm, the most widespread mode of growth in natural and industrial realms. Protein extractions were performed from three different growth temperatures (10, 25, and 37°C) and two growth phases (early stage and mature biofilm). L. monocytogenes subproteomes were targeted using three extraction methods: trypsin-enzymatic shaving, biotin-labeling and cell fractionation. The different subproteomes obtained were separated and analyzed by shotgun proteomics using high-performance liquid chromatography combined with tandem mass spectrometry (LC-OrbiTrap LTQVelos, ThermoFisher Scientific). A total of 141 (biotinylation), 98 (shaving) and 910 (fractionation) proteins were identified. Throughout the 920 unique proteins identified, many are connected to basic cell functions, but some are linked with thermoregulation. We observed some noteworthy protein abundance shifts associated with the major adaptation to cold mechanisms present in L. monocytogenes, namely: the role of ribosomes and the stressosome with a higher abundance of the general stress protein Ctc (Rl25) and the general stress transcription factor sigma B (σB), changes in cell fluidity and motility seen by higher levels of foldase protein PrsA2 and flagellin (FlaA), the uptake of osmolytes with a higher abundance of glycine betaine (GbuB) and carnitine transporters (OpucA), and the relevance of the overexpression of chaperone proteins such as cold shock proteins (CspLA and Dps). As for 37°C, we observed a significantly higher percentage of proteins associated with transcriptional or translational activity present in higher abundance upon comparison with the colder settings. These contrasts of protein expression throughout several conditions will enrich databases and help to model the regulatory circuitry that drives adaptation of L. monocytogenes to environments.

RevDate: 2019-06-29

Barreiro P, González P, JS Pozo-Antonio (2019)

IR irradiation to remove a sub-aerial biofilm from granitic stones using two different laser systems: An Nd: YAG (1064 nm) and an Er:YAG (2940 nm).

The Science of the total environment, 688:632-641 pii:S0048-9697(19)32879-7 [Epub ahead of print].

A sub-aerial biofilm (SAB) developed on a granite commonly found in the built cultural heritage of the NW Iberian Peninsula was extracted with 2 different IR irradiations using an Nd:YAG laser at 1064 nm and an Er:YAG laser at 2940 nm. The methodology was based on the application of only one scan in order to evaluate the effect of the laser cleaning operated by applying different consecutive laser scanning and the suitability of these lasers as quick tools. The aim of this comparative study was twofold. The first goal was to find the most satisfactory level of extraction by comparing the results obtained by the different laser sources (IR wavelengths). The other aim was to investigate the by-effects induced by both lasers on each granite-forming mineral. Evaluations were made using stereomicroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and scanning electron microscopy with energy-dispersive x-ray spectroscopy. The results were interpreted in terms of SAB extraction and damage induced on the granite. The results showed that the Nd:YAG laser achieved the most successful level of cleaning, because it extracted the most SAB, while causing the least amount of damage to the surfaces. Regardless of the fluence applied, the Er:YAG laser did not completely extract the SAB in only one scan; in addition, a more intense melting of biotite grains was found, producing amorphous fusion crusts and losing the distinction of the cleavage planes.

RevDate: 2019-06-29

Gonçalves B, Azevedo NM, Henriques M, et al (2019)

Hormones modulate Candida vaginal isolates biofilm formation and decrease their susceptibility to azoles and hydrogen peroxide.

Medical mycology pii:5525196 [Epub ahead of print].

Vulvovaginal candidiasis (VVC) is an infection usually caused by Candida albicans and increasingly by Candida glabrata, which has an intrinsically high resistance to commonly used antifungals. Candida species possess virulence factors that contribute to VVC development, as the ability to form biofilms in vaginal walls and intrauterine devices. It is known that VVC is promoted by conditions that increase the hormones levels, during pregnancy, however, the effects of hormones on Candida cells are poorly studied, especially in C. glabrata. Thus, the influence of progesterone and β-estradiol, at normal cycle and pregnancy concentrations, on biofilm formation and resistance of C. albicans and C. glabrata vaginal isolates, was analyzed using acidic conditions (pH 4). Biofilms of C. albicans developed in the presence of hormones presented reduced biomass (up to 65%) and impaired cells ability to produce filamentous forms. On the other hand, C. glabrata presented high adaptation to the presence of hormones, which did not affect its biofilm formation. Additionally, hormones impaired the susceptibility of C. albicans and C. glabrata cells to azoles, with potential clinical significance in the presence of pregnancy hormone levels. A similar result was obtained for the susceptibility to hydrogen peroxide, a biological vaginal barrier against Candida growth. Overall, the results of this study suggest that hormones may act as environmental cues promoting Candida protection from vaginal defenses and harmful conditions, what may have implications in Candida vaginal pathogenicity and treatment of VVC, especially in C. glabrata infections due to its high adaptability to vaginal conditions.

RevDate: 2019-06-29

Suryaletha K, Narendrakumar L, John J, et al (2019)

Decoding the proteomic changes involved in the biofilm formation of Enterococcus faecalis SK460 to elucidate potential biofilm determinants.

BMC microbiology, 19(1):146 pii:10.1186/s12866-019-1527-2.

BACKGROUND: Enterococcus faecalis is a major clinically relevant nosocomial bacterial pathogen frequently isolated from polymicrobial infections. The biofilm forming ability of E. faecalis attributes a key role in its virulence and drug resistance. Biofilm cells are phenotypically and metabolically different from their planktonic counterparts and many aspects involved in E. faecalis biofilm formation are yet to be elucidated. The strain E. faecalis SK460 used in the present study is esp (Enterococcal surface protein) and fsr (two-component signal transduction system) negative non-gelatinase producing strong biofilm former isolated from a chronic diabetic foot ulcer patient. We executed a label-free quantitative proteomic approach to elucidate the differential protein expression pattern at planktonic and biofilm stages of SK460 to come up with potential determinants associated with Enterococcal biofilm formation.

RESULTS: The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of proteomic data revealed that biofilm cells expressed higher levels of proteins which are associated with glycolysis, amino acid biosynthesis, biosynthesis of secondary metabolites, microbial metabolism in diverse environments and stress response factors. Besides these basic survival pathways, LuxS-mediated quorum sensing, arginine metabolism, rhamnose biosynthesis, pheromone and adhesion associated proteins were found to be upregulated during the biofilm transit from planktonic stages. The selected subsets were validated by quantitative real-time PCR. In silico functional interaction analysis revealed that the genes involved in upregulated pathways pose a close molecular interaction thereby coordinating the regulatory network to thrive as a biofilm community.

CONCLUSIONS: The present study describes the first report of the quantitative proteome analysis of an esp and fsr negative non gelatinase producing E. faecalis. Proteome analysis evidenced enhanced expression of glycolytic pathways, stress response factors, LuxS quorum signaling system, rhamnopolysaccharide synthesis and pheromone associated proteins in biofilm phenotype. We also pointed out the relevance of LuxS quorum sensing and pheromone associated proteins in the biofilm development of E. faecalis which lacks the Fsr quorum signaling system. These validated biofilm determinants can act as potential inhibiting targets in Enterococcal infections.

RevDate: 2019-06-28

Shi LD, Wang M, Li ZY, et al (2019)

Dissolved oxygen has no inhibition on methane oxidation coupled to selenate reduction in a membrane biofilm reactor.

Chemosphere, 234:855-863 pii:S0045-6535(19)31379-7 [Epub ahead of print].

Methane oxidation coupled to selenate reduction has been suggested as a promising technology to bio-remediate selenium contaminated environments. However, the effect of dissolved oxygen (DO) on this process remained unclear. Here, we investigate the feasibility of selenate removal at two distinct DO concentrations. A membrane biofilm reactor (MBfR) was initially fed with ∼5 mg Se/L and then lowered to ∼1 mg Se/L of selenate, under anoxic condition containing ∼0.2 mg/L of influent DO. Selenate removal reached approximately 90% without selenite accumulation after one-month operation. Then 6-7 mg/L of DO was introduced and showed no apparent effect on selenate reduction in the subsequent operation. Electron microscopy suggested elevated oxygen exposure did not affect microbial shapes. 16S rDNA sequencing showed the aerobic methanotroph Methylocystis increased, while possible selenate reducers, Ignavibacterium and Bradyrhizobium, maintained stable after oxygen boost. Gene analysis indicated that nitrate/nitrite reductases positively correlated with selenate removal flux and were not remarkably affected by oxygen addition. Reversely, enzymes related with aerobic methane oxidation were obviously improved. This study provides a potential technology for selenate removal from oxygenated environments in a methane-based MBfR.

RevDate: 2019-06-28

Jack AA, Nordli HR, Powell LC, et al (2019)

Cellulose nanofibril formulations incorporating a low molecular weight alginate oligosaccharide modify bacterial biofilm development.

Biomacromolecules [Epub ahead of print].

Cellulose nanofibrils (CNFs) from wood pulp are a renewable material possessing advantages for biomedical applications, due to their customizable porosity, mechanical strength, translucency and environmental biodegradability. Here we investigated the growth of multi-species wound biofilms on CNF formulated as aerogels and films incorporating the low molecular weight alginate oligosaccharide OligoG CF-5/20 to evaluate their structural and antimicrobial properties. Overnight microbial cultures were adjusted to 2.8 x 109 colony forming units (cfu) mL-1 in Mueller Hinton broth and growth rates of P. aeruginosa PAO1 and S. aureus 1061A monitored for 24 h in CNF dispersions sterilized by γ-irradiation. Two CNF formulations were prepared (20 g m-2) with CNF as air-dried films or freeze-dried aerogels, with or without incorporation of an antimicrobial alginate oligosaccharide (OligoG CF-5/20) as a surface coating or bio-nanocomposite respectively. The materials were structurally characterized by Scanning Electron Microscopy (SEM) and laser profilometry (LP). The antimicrobial properties of the formulations were assessed using single- and mixed-species biofilms grown on the materials and analysed using LIVE/DEAD® staining with confocal laser scanning microscopy (CLSM) and COMSTAT software. OligoG-CNF suspensions significantly decreased the growth of both bacterial strains at OligoG concentrations >2.58% (P<0.05). SEM showed that aerogel-OligoG bio-nanocomposite formulations had a more open 3-dimensional structure, while LP showed film formulations coated with OligoG were significantly smoother than untreated films or films incorporating PEG400 as a plasticizer (P<0.05). CLSM of biofilms grown on films incorporating OligoG demonstrated altered biofilm architecture, with reduced biomass and decreased cell-viability. The OligoG-CNF formulations as aerogels or films both inhibited pyocyanin production (P<0.05). These novel CNF formulations or bio-nanocomposites were able to modify bacterial growth, biofilm development and virulence factor production in vitro. These data support the potential of OligoG and CNF bio-nanocomposites for use in biomedical applications where prevention of infection or biofilm growth is required.

RevDate: 2019-06-28

Ng CK, Karahan HE, Loo SCJ, et al (2019)

Biofilm-Templated Heteroatom-Doped Carbon-Palladium Nanocomposite Catalyst for Hexavalent Chromium Reduction.

ACS applied materials & interfaces [Epub ahead of print].

In this study, we report an interdisciplinary and novel strategy toward biofilm engineering for the development of a biofilm-templated heteroatom-doped catalytic system through bioreduction and biofilm matrix-facilitated immobilization of the in situ-formed catalytic nanoparticles followed by controlled pyrolysis. We showed that (i) even under room temperature and bulk aerobic conditions, Shewanella oneidensis MR-1 biofilms reduced Pd(II) to form Pd(0) nanocrystals (∼10 to 20 nm) that were immobilized in the biofilm matrix and in cellular membranes, (ii) the MR-1 biofilms with the immobilized Pd(0) nanocrystals exhibited nanocatalytic activity, (iii) exposure to Pd(II) greatly increased the rate of cell detachment from the biofilm and posed a risk of biofilm dispersal, (iv) controlled pyrolysis (carbonization) of the biofilm led to the formation of a stable heteroatom-doped carbon-palladium (C-Pd) nanocomposite catalyst, and (v) the biofilm-templated C-Pd nanocomposite catalyst exhibited a high Cr(VI) reduction activity and maintained a high reduction rate over multiple catalytic cycles. Considering that bacteria are capable of synthesizing a wide range of metal and metalloid nanoparticles, the biofilm-templated approach for the fabrication of the catalytic C-Pd nanocomposite we have demonstrated here should prove to be widely applicable for the production of different nanocomposites that are of importance to various environmental applications.

RevDate: 2019-06-28

Pham DTN, Khan F, Phan TTV, et al (2019)

Biofilm inhibition, modulation of virulence and motility properties by FeOOH nanoparticle in Pseudomonas aeruginosa.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] pii:10.1007/s42770-019-00108-z [Epub ahead of print].

Biofilm formation is one of the resistance mechanisms of Pseudomonas aeruginosa against antimicrobial compounds. Biofilm formation also characterizes for the infection and pathogenesis of P. aeruginosa, along with production of various virulence factors. With recent development of nanotechnology, the present study aims to employ the synthetic iron nanoparticle (FeOOH-NP) as an active agent to inhibit the formation of P. aeruginosa biofilm. The FeOOH-NP was synthesized and characterized with rod shape and average size of 40 nm. Inhibition of biofilm formation by the FeOOH-NP is in a concentration-dependent manner, with inhibition of biofilm formation increased as the FeOOH-NP concentration increased. Microscopic observations also confirmed the disruption of the biofilm architecture in the presence of the FeOOH-NP. In addition, the presence of the FeOOH-NP was also found to modulate bacterial motility as well as some other important virulence factors produced simultaneously with biofilm formation. These findings provide insights to anti-biofilm effect of a new iron NP, contributing to the search for an effective agent to combat P. aeruginosa infections resulted from biofilm formation.

RevDate: 2019-06-28

Fallatah H, Elhaneid M, Ali-Boucetta H, et al (2019)

Antibacterial effect of graphene oxide (GO) nano-particles against Pseudomonas putida biofilm of variable age.

Environmental science and pollution research international pii:10.1007/s11356-019-05688-9 [Epub ahead of print].

Graphene oxide (GO) has been reported to possess antibacterial activity; therefore, its accumulation in the environment could affect microbial communities such as biofilms. The susceptibility of biofilms to antimicrobials is known to depend on the stage of biofilm maturity. The aim of this study was to investigate the effect of GO nano-particles on Pseudomonas putida KT2440 biofilm of variable age. FT-IR, UV-vis, and Raman spectroscopy confirmed the oxidation of graphene while XPS confirmed the high purity of the synthesised GO over 6 months. Biofilms varying in maturity (24, 48, and 72 h) were formed using a CDC reactor and were treated with GO (85 μg/mL or 8.5 μg/mL). The viability of P. putida was monitored by culture on media and the bacterial membrane integrity was assessed using flow cytometry. P. putida cells were observed using confocal microscopy and SEM. The results showed that GO significantly reduced the viability of 48-h biofilm and detached biofilm cells associated with membrane damage while the viability was not affected in 24- and 72-h biofilms and detached biofilm cells. The results showed that susceptibility of P. putida biofilm to GO varied according to age which may be due to changes in the physiological state of cells during maturation. Graphical abstract.

RevDate: 2019-06-28

Jeong SY, Lee CH, Yi T, et al (2019)

Effects of Quorum Quenching on Biofilm Metacommunity in a Membrane Bioreactor.

Microbial ecology pii:10.1007/s00248-019-01397-5 [Epub ahead of print].

Quorum quenching (QQ) has received attention for the control of biofilms, e.g., biofilms that cause biofouling in membrane bioreactors (MBRs). Despite the efficacy of QQ on biofouling, it is elusive how QQ influences biofilm formation on membranes. A pilot-scale QQ-MBR and non-QQ-MBR were identically operated for 4 days and 8 days to destructively sample the membranes. QQ prolonged the membrane filterability by 43% with no harmful influence on MBR performance. qPCR showed no effect of QQ on microbial density during either of these time periods. Community comparisons revealed that QQ influenced the bacterial and fungal community structures, and the fungal structure corresponded with the bacterial structure. Metacommunity and spatial analyses showed that QQ induced structural variation rather than compositional variation of bacteria and fungi. Moreover, QQ considerably enhanced the bacterial dispersal across membrane during the early development. As the dispersal enhancement by QQ counteracted the ecological drift, it eliminated the distance-decay relationship, reflecting a neutral theory archetype of metacommunity. Network analyses showed that QQ substantially reduced the amount and magnitude of interactions, e.g., competition and cooperation, for bacteria and fungi, and weakened their network structures, irrespective of time. Additionally, QQ suppressed the growth of specific microbial species (e.g., Acinetobacter), abundant and widespread at the early stage. These findings suggest that QQ influenced the community dynamics at the regional and local levels, correspondingly the ecological selection and dispersal processes, during the biofilm development.

RevDate: 2019-06-27

Jewell ML, Fickas B, Jewell H, et al (2019)

Implant Surface Options and Biofilm Mitigation Strategies.

Plastic and reconstructive surgery, 144(1S Utilizing a Spectrum of Cohesive Implants in Aesthetic and Reconstructive Breast Surgery):13S-20S.

Two important topics in breast augmentation and reconstruction relate to device surface texture and practices to mitigate biofilm contamination of implants. Breast augmentation can be considered a manufacturing process where planning concepts of process engineering and quality can be used to produce great outcomes. This article reviews the options available for surgeons with regards to device surface texture selection and practices to mitigate biofilm contamination of implants at the time of surgery.

RevDate: 2019-06-27

Pal S, Verma J, Mallick S, et al (2019)

Absence of the glycosyltransferase WcaJ in Klebsiella pneumoniae ATCC13883 affects biofilm formation, increases polymyxin resistance and reduces murine macrophage activation.

Microbiology (Reading, England) [Epub ahead of print].

Multidrug-resistant Klebsiella pneumoniae has emerged as one of the deadliest opportunistic nosocomial pathogens that forms biofilm for the establishment of chronic K. pneumoniae infections. Herein, we made an attempt to identify the genes involved in biofilm formation in the strain K. pneumoniae ATCC13883. To achieve this, we constructed mini-Tn5 transposon insertion mutants and screened them for biofilm production. We observed that the biofilm formation was enhanced in the mutant where the wcaJ gene was disrupted. WcaJ is the initiating enzyme of colanic acid synthesis and loads the first sugar (glucose-1-P) on the lipid carrier undecaprenyl phosphate. The absence of this glycosyltransferase results in the absence of colanic acid, which renders a non-mucoid phenotype to the mutant. Further, to determine the effect of mucoidy on antibiotic susceptibility, we tested the sensitivity of the strains towards different groups of antibiotics. Unlike the mucoid strains, the resistance of the non-mucoid cells was greater for polymyxins, but less for quinolones. Capsular polysaccharides are known to have a protective effect against phagocytosis, therefore we assessed the role of colanic acid in virulence by conducting infection studies on murine macrophages. Surprisingly, the ΔwcaJ strain was less efficient in macrophage activation and was not readily phagocytosed. Thus, the presence of colanic acid appeared to increase the immunogenicity of K. pneumoniae. Overall, the results indicate that the presence of colanic acid increases the vulnerability of K. pneumoniae towards both polymyxins and macrophages, implying that the mucoid strains are less threatening as compared to their high biofilm forming non-mucoid counterparts.

RevDate: 2019-06-27

Zeng S, Constant P, Yang D, et al (2019)

Cpn60.1 (GroEL1) Contributes to Mycobacterial Crabtree Effect: Implications for Biofilm Formation.

Frontiers in microbiology, 10:1149.

Biofilm formation is a survival strategy for microorganisms facing a hostile environment. Under biofilm, bacteria are better protected against antibacterial drugs and the immune response, increasing treatment difficulty, as persistent populations recalcitrant to chemotherapy are promoted. Deciphering mechanisms leading to biofilms could, thus, be beneficial to obtain new antibacterial drug candidates. Here, we show that mycobacterial biofilm formation is linked to excess glycerol adaptation and the concomitant establishment of the Crabtree effect. This effect is characterized by respiratory reprogramming, ATP downregulation, and secretion of various metabolites including pyruvate, acetate, succinate, and glutamate. Interestingly, the Crabtree effect was abnormal in a mycobacterial strain deficient for Cpn60.1 (GroEL1). Indeed, this mutant strain had a compromised ability to downregulate ATP and secreted more pyruvate, acetate, succinate, and glutamate in the culture medium. Importantly, the mutant strain had higher intracellular pyruvate and produced more toxic methylglyoxal, suggesting a glycolytic stress leading to growth stasis and consequently biofilm failure. This study demonstrates, for the first time, the link between mycobacterial biofilm formation and the Crabtree effect.

RevDate: 2019-06-26

Tang Y, Zhang Z, Rittmann BE, et al (2019)

Kinetics of anaerobic methane oxidation coupled to denitrification in the membrane biofilm reactor.

Biotechnology and bioengineering [Epub ahead of print].

Anaerobic oxidation of methane coupled to denitrification (AOM-D) in a membrane biofilm reactor (MBfR), a platform used for efficiently coupling gas delivery and biofilm development, has attracted attention in recent years due to the low cost and high availability of methane. However, experimental studies have shown that the nitrate removal flux in the CH4 -based MBfR (<1.0 g N/m2 -day) is about one order of magnitude smaller than that in the H2 -based MBfR (1.1-6.7 g N/m2 -day). A one-dimensional multispecies biofilm model predicts that the nitrate-removal flux in the CH4 -based MBfR is limited to <1.7 g N/m2 -day, consistent with the experimental studies reported in the literature. The model also determines the two major limiting factors for the nitrate removal flux: the methane half-maximum-rate concentration (K2) and the specific maximum methane utilization rate of the AOM-D syntrophic consortium (kmax2), with kmax2 being more important. Model simulations show that increasing kmax2 to > 3 g COD/g cell-day (from its current 1.8 g COD/g cell-day) and developing a new membrane with doubled methane-delivery capacity (Dm) could bring the nitrate-removal flux to ≥ 4.0 g N/m2 -day, which is close to the nitrate removal flux for the H2 -based MBfR. Further increase of the maximum nitrate-removal flux can be achieved when Dm and kmax2 increase together. This article is protected by copyright. All rights reserved.

RevDate: 2019-06-26

Nuryastuti T, Umaroh N, Asdie RH, et al (2019)

Pan-drug-resistant and biofilm-producing strain of Burkholderia pseudomallei: first report of melioidosis from a diabetic patient in Yogyakarta, Indonesia [Response to Letter].

International medical case reports journal, 12:171-172 pii:213150.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.


Order from Amazon

This is a must read book for anyone with an interest in invasion biology. The full title of the book lays out the author's premise — The New Wild: Why Invasive Species Will Be Nature's Salvation. Not only is species movement not bad for ecosystems, it is the way that ecosystems respond to perturbation — it is the way ecosystems heal. Even if you are one of those who is absolutely convinced that invasive species are actually "a blight, pollution, an epidemic, or a cancer on nature", you should read this book to clarify your own thinking. True scientific understanding never comes from just interacting with those with whom you already agree. R. Robbins

Electronic Scholarly Publishing
21454 NE 143rd Street
Woodinville, WA 98077

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )