Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Reynolds Number

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 19 Aug 2019 at 01:30 Created: 

Reynolds Number

It is well known that relative size greatly affects how organisms interact with the world. Less well known, at least among biologists, is that at sufficiently small sizes, mechanical interaction with the environment becomes difficult and then virtually impossible. In fluid dynamics, an important dimensionless parameter is the Reynolds Number (abbreviated Re), which is the ratio of inertial to viscous forces affecting the movement of objects in a fluid medium (or the movement of a fluid in a pipe). Since Re is determined mainly by the size of the object (pipe) and the properties (density and viscosity) of the fluid, organisms of different sizes exhibit significantly different Re values when moving through air or water. A fish, swimming at a high ratio of inertial to viscous forces, gives a flick of its tail and then glides for several body lengths. A bacterium, "swimming" in an environment dominated by viscosity, possesses virtually no inertia. When the bacterium stops moving its flagellum, the bacterium "coasts" for about a half of a microsecond, coming to a stop in a distance less than a tenth the diameter of a hydrogen atom. Similarly, the movement of molecules (nutrients toward, wastes away) in the vicinity of a bacterium is dominated by diffusion. Effective stirring — the generation of bulk flow through mechanical means — is impossible at very low Re. An understanding of the constraints imposed by life at low Reynolds numbers is essentially for understanding the prokaryotic biosphere.

Created with PubMed® Query: "reynolds number" NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2019-08-16

Lambert WB, Stanek MJ, Gurka R, et al (2019)

Leading-edge vortices over swept-back wings with varying sweep geometries.

Royal Society open science, 6(7):190514 pii:rsos190514.

Micro air vehicles are used in a myriad of applications, such as transportation and surveying. Their performance can be improved through the study of wing designs and lift generation techniques including leading-edge vortices (LEVs). Observation of natural fliers, e.g. birds and bats, has shown that LEVs are a major contributor to lift during flapping flight, and the common swift (Apus apus) has been observed to generate LEVs during gliding flight. We hypothesize that nonlinear swept-back wings generate a vortex in the leading-edge region, which can augment the lift in a similar manner to linear swept-back wings (i.e. delta wing) during gliding flight. Particle image velocimetry experiments were performed in a water flume to compare flow over two wing geometries: one with a nonlinear sweep (swift-like wing) and one with a linear sweep (delta wing). Experiments were performed at three spanwise planes and three angles of attack at a chord-based Reynolds number of 26 000. Streamlines, vorticity, swirling strength, and Q-criterion were used to identify LEVs. The results show similar LEV characteristics for delta and swift-like wing geometries. These similarities suggest that sweep geometries other than a linear sweep (i.e. delta wing) are capable of creating LEVs during gliding flight.

RevDate: 2019-08-14

Brown AI, DA Sivak (2019)

Theory of Nonequilibrium Free Energy Transduction by Molecular Machines.

Chemical reviews [Epub ahead of print].

Biomolecular machines are protein complexes that convert between different forms of free energy. They are utilized in nature to accomplish many cellular tasks. As isothermal nonequilibrium stochastic objects at low Reynolds number, they face a distinct set of challenges compared with more familiar human-engineered macroscopic machines. Here we review central questions in their performance as free energy transducers, outline theoretical and modeling approaches to understand these questions, identify both physical limits on their operational characteristics and design principles for improving performance, and discuss emerging areas of research.

RevDate: 2019-08-13

Berg O, Singh K, Hall MR, et al (2019)

Thermodynamics of the bladderwort feeding strike-suction power from elastic energy storage.

Integrative and comparative biology pii:5548213 [Epub ahead of print].

The carnivorous plant bladderwort exemplifies the use of accumulated elastic energy to power motion: respiration-driven pumps slowly load the walls of its suction traps with elastic energy (~1 h). During a feeding strike, this energy is released suddenly to accelerate water (~ 1 ms). However, due to the traps' small size and concomitant low Reynolds number, a significant fraction of the stored energy may be dissipated as viscous friction. Such losses and the mechanical reversibility of Stokes flow are thought to degrade the feeding success of other suction feeders in this size range, such as larval fish. In contrast, triggered bladderwort traps are generally successful. By mapping the energy budget of a bladderwort feeding strike, we illustrate how this smallest of suction feeders can perform like an adult fish. The elastic energy stored in loaded bladders-pressure-volume work performed during the loading process-is in the range of 1 µJ, as measured via the volume evacuated during loading, and literature values of internal pressure. We determined the kinetic energy present in the fluid during suction events from flow fields obtained by Particle Image Velocimetry. Such observations are confounded by the difficult-to-resolve timescale and internal flows, so we obtained independent estimates from mathematical and mechanical models. At the beginning of a feeding strike, we find that 0.5 mW of power are delivered by the elastic recoil mechanism, and the same amount appears as kinetic energy in the flow field. A power deficit would represent viscous dissipation heating the fluid by friction. Approximate solution of the Navier-Stokes equations for an idealized bladderwort strike suggests that less than 20% of energy is lost to friction on the timescale relevant to prey capture. This discrepancy would indeed be difficult to detect experimentally. However, even this upper limit is small in comparison with the 60% losses calculated for fish larvae of similar size, the suction of which is assumed to be muscle powered (and for which elastic energy accumulation has not been demonstrated). Our estimates of elastic energy storage and frictional losses during suction events support the hypothesis that small suction feeders convert a large proportion of the elastic energy stored in the trap walls into kinetic energy of the inspired water, with little energy thermalized due to friction.

RevDate: 2019-08-09

Alazzam A, Al-Khaleel M, Riahi MK, et al (2019)

Dielectrophoresis Multipath Focusing of Microparticles through Perforated Electrodes in Microfluidic Channels.

Biosensors, 9(3): pii:bios9030099.

This paper presents focusing of microparticles in multiple paths within the direction of the flow using dielectrophoresis. The focusing of microparticles is realized through partially perforated electrodes within the microchannel. A continuous electrode on the top surface of the microchannel is considered, while the bottom side is made of a circular meshed perforated electrode. For the mathematical model of this microfluidic channel, inertia, buoyancy, drag and dielectrophoretic forces are brought up in the motion equation of the microparticles. The dielectrophoretic force is accounted for through a finite element discretization taking into account the perforated 3D geometry within the microchannel. An ordinary differential equation is solved to track the trajectories of the microparticles. For the case of continuous electrodes using the same mathematical model, the numerical simulation shows a very good agreement with the experiments, and this confirms the validation of focusing of microparticles within the proposed perforated electrode microchannel. Microparticles of silicon dioxide and polystyrene are used for this analysis. Their initial positions and radius, the Reynolds number, and the radius of the pore in perforated electrodes mainly conduct microparticles trajectories. Moreover, the radius of the pore of perforated electrode is the dominant factor in the steady state levitation height.

RevDate: 2019-08-06

Samanta T, Tian H, VM Nakariakov (2019)

Evidence for Vortex Shedding in the Sun's Hot Corona.

Physical review letters, 123(3):035102.

Vortex shedding is an oscillating flow that is commonly observed in fluids due to the presence of a blunt body in a flowing medium. Numerical simulations have shown that the phenomenon of vortex shedding could also develop in the magnetohydrodynamic (MHD) domain. The dimensionless Strouhal number, the ratio of the blunt body diameter to the product of the period of vortex shedding and the speed of a flowing medium, is a robust indicator for vortex shedding, and, generally of the order of 0.2 for a wide range of Reynolds number. Using an observation from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we report a wavelike or oscillating plasma flow propagating upward against the Sun's gravitational force. A newly formed shrinking loop in the postflare region possibly generates the oscillation of the upflow in the wake of the hot and dense loop through vortex shedding. The computed Strouhal number is consistent with the prediction from previous MHD simulations. Our observation suggests the possibility of vortex shedding in the solar corona.

RevDate: 2019-08-06

Yu X, Li Y, Liu Y, et al (2019)

Flow Patterns of Viscoelastic Fracture Fluids in Porous Media: Influence of Pore-Throat Structures.

Polymers, 11(8): pii:polym11081291.

Viscoelastic surfactant (VES) fluid and hydrolyzed polyacryamide (HPAM) solution are two of the most common fracturing fluids used in the hydraulic fracturing development of unconventional reservoirs. The filtration of fracturing fluids in porous media is mainly determined by the flow patterns in pore-throat structures. In this paper, three different microdevices analogue of porous media allow access to a large range of Deborah number (De) and concomitantly low Reynolds number (Re). Continuous pore-throat structures were applied to study the feedback effect of downstream structure on upstream flow of VES fluid and HPAM solution with Deborah (De) number from 1.11 to 146.4. In the infinite straight channel, flow patterns between VES fluids and HPAM solution were similar. However, as pore length shortened to 800 μm, flow field of VES fluid exhibited the triangle shape with double-peaks velocity patterns. The flow field of HPAM solution presented stable and centralized streamlines when Re was larger than 4.29 × 10-2. Additionally, when the pore length was further shortened to 400 μm, double-peaks velocity patterns were vanished for VES fluid and the stable convergent flow characteristic of HPAM solution was observed with all flow rates.

RevDate: 2019-08-05

Feng X, Ren Y, Hou L, et al (2019)

Tri-fluid mixing in a microchannel for nanoparticle synthesis.

Lab on a chip [Epub ahead of print].

It is becoming more difficult to use bulk mixing and bi-fluid micromixing in multi-step continuous-flow reactions, multicomponent reactions, and nanoparticle synthesis because they typically involve multiple reactants. To date, most micromixing studies, both passive and active, have focused on how to efficiently mix two fluids, while micromixing of three or more fluids together (multi-fluid mixing) has been rarely explored. This study is the first on tri-fluid mixing in microchannels. We investigated tri-fluid mixing in three microchannel models: a straight channel, a classical staggered herringbone mixing (SHM) channel, and a three-dimensional (3D) X-crossing microchannel. Numerical simulations and experiments were jointly conducted. A two-step experimental process was performed to determine the tri-fluid mixing efficiencies of these microchannels. We found that the SHM cannot significantly enhance mixing of three streams especially for a Reynolds number (Re) higher than 10. However, the 3D X-crossing channel based on splitting-and-recombination (SAR) showed effective tri-mixing performance over a wide Re range up to 275 (with a corresponding flow rate of 1972.5 μL min-1), thereby enabling high microchannel throughput. Furthermore, this tri-fluid micromixing process was used to synthesize a kind of Si-based nanoparticle. This achieved a narrower particle size distribution than traditional bulk mixing. Therefore, SAR-based tri-fluid mixing is an alternative for chemical and biochemical reactions where three reactants need to be mixed.

RevDate: 2019-08-03

Henein C, Awwad S, Ibeanu N, et al (2019)

Hydrodynamics of Intravitreal Injections into Liquid Vitreous Substitutes.

Pharmaceutics, 11(8): pii:pharmaceutics11080371.

Intravitreal injections have become the cornerstone of retinal care and one of the most commonly performed procedures across all medical specialties. The impact of hydrodynamic forces of intravitreal solutions when injected into vitreous or vitreous substitutes has not been well described. While computational models do exist, they tend to underestimate the starting surface area of an injected bolus of a drug. Here, we report the dispersion profile of a dye bolus (50 µL) injected into different vitreous substitutes of varying viscosities, surface tensions, and volumetric densities. A novel 3D printed in vitro model of the vitreous cavity of the eye was designed to visualize the dispersion profile of solutions when injected into the following vitreous substitutes-balanced salt solution (BSS), sodium hyaluronate (HA), and silicone oils (SO)-using a 30G needle with a Reynolds number (Re) for injection ranging from approximately 189 to 677. Larger bolus surface areas were associated with faster injection speeds, lower viscosity of vitreous substitutes, and smaller difference in interfacial surface tensions. Boluses exhibited buoyancy when injected into standard S1000. The hydrodynamic properties of liquid vitreous substitutes influence the initial injected bolus dispersion profile and should be taken into account when simulating drug dispersion following intravitreal injection at a preclinical stage of development, to better inform formulations and performance.

RevDate: 2019-08-05

Gvozdić B, Dung OY, van Gils DPM, et al (2019)

Twente mass and heat transfer water tunnel: Temperature controlled turbulent multiphase channel flow with heat and mass transfer.

The Review of scientific instruments, 90(7):075117.

A new vertical water tunnel with global temperature control and the possibility for bubble and local heat and mass injection has been designed and constructed. The new facility offers the possibility to accurately study heat and mass transfer in turbulent multiphase flow (gas volume fraction up to 8%) with a Reynolds-number range from 1.5 × 104 to 3 × 105 in the case of water at room temperature. The tunnel is made of high-grade stainless steel permitting the use of salt solutions in excess of 15% mass fraction. The tunnel has a volume of 300 l. The tunnel has three interchangeable measurement sections of 1 m height but with different cross sections (0.3 × 0.04 m2, 0.3 × 0.06 m2, and 0.3 × 0.08 m2). The glass vertical measurement sections allow for optical access to the flow, enabling techniques such as laser Doppler anemometry, particle image velocimetry, particle tracking velocimetry, and laser-induced fluorescent imaging. Local sensors can be introduced from the top and can be traversed using a built-in traverse system, allowing, for example, local temperature, hot-wire, or local phase measurements. Combined with simultaneous velocity measurements, the local heat flux in single phase and two phase turbulent flows can thus be studied quantitatively and precisely.

RevDate: 2019-08-01

O'Neill G, NS Tolley (2019)

The Complexities of Nasal Airflow - Theory and Practice.

Journal of applied physiology (Bethesda, Md. : 1985) [Epub ahead of print].

The objective of this study was to investigate the effects of nasal valve area, valve stiffness and turbinate region cross-sectional area on airflowrate, nasal resistance, flow limitation and inspiratory 'hysteresis' by the use of a mathematical model of nasal airflow. The model of O'Neill and Tolley (1988) describing the effects of valve area and stiffness on the nasal pressure-flow relationship was improved by the incorporation of additional terms involving i) airflow through the turbinate region, ii) the dependency of the flow coefficients for the valve and turbinate region on the Reynolds number and iii) effects of unsteady flow. The model was found to provide a good fit for normal values for nasal resistance and for pressure-flow curves reported in the literature for both congested and decongested states. Also, by showing the relative contribution of the nasal valve and turbinate region to nasal resistance, the model sheds light in explaining the generally poor correlation between nasal resistance measurements and the results from acoustic rhinometry. Furthermore, by proposing different flow conditions for the acceleration and deceleration phases of inspiration, the model produces an inspiratory loop (commonly referred to as 'hysteresis') consistent with those reported in the literature. With simulation of nasal flaring, the magnitude of the loop, the nasal resistance and flow limitation all show a similar change as observed in the experimental results.

RevDate: 2019-07-31

R Ferreira R, Fukui H, Chow R, et al (2019)

The cilium as a force sensor-myth versus reality.

Journal of cell science, 132(14): pii:132/14/jcs213496.

Cells need to sense their mechanical environment during the growth of developing tissues and maintenance of adult tissues. The concept of force-sensing mechanisms that act through cell-cell and cell-matrix adhesions is now well established and accepted. Additionally, it is widely believed that force sensing can be mediated through cilia. Yet, this hypothesis is still debated. By using primary cilia sensing as a paradigm, we describe the physical requirements for cilium-mediated mechanical sensing and discuss the different hypotheses of how this could work. We review the different mechanosensitive channels within the cilium, their potential mode of action and their biological implications. In addition, we describe the biological contexts in which cilia are acting - in particular, the left-right organizer - and discuss the challenges to discriminate between cilium-mediated chemosensitivity and mechanosensitivity. Throughout, we provide perspectives on how quantitative analysis and physics-based arguments might help to better understand the biological mechanisms by which cells use cilia to probe their mechanical environment.

RevDate: 2019-08-03

Jain K (2019)

Transition to turbulence in an oscillatory flow through stenosis.

Biomechanics and modeling in mechanobiology pii:10.1007/s10237-019-01199-1 [Epub ahead of print].

Onset of flow transition in a sinusoidally oscillating flow through a rigid, constant area circular pipe with a smooth sinusoidal obstruction in the center of the pipe is studied by performing direct numerical simulations, with resolutions close to the Kolmogorov microscales. The studied pipe is stenosed in the center with a 75% reduction in area in two distinct configurations-one that is symmetric to the axis of the parent pipe and the other that is offset by 0.05 diameters to introduce an eccentricity, which disturbs the flow thereby triggering the onset of flow transition. The critical Reynolds number at which the flow transitions to turbulence for a zero-mean oscillatory flow through a stenosis is shown to be nearly tripled in comparison with studies of pulsating unidirectional flow through the same stenosis. The onset of transition is further explored with three different flow pulsation frequencies resulting in a total of 90 simulations conducted on a supercomputer. It is found that the critical Reynolds number at which the oscillatory flow transitions is not affected by the pulsation frequencies. The locations of flow breakdown and re-stabilization post-stenosis are, however, respectively shifted closer to the stenosis throat with increasing pulsation frequencies. The results show that oscillatory physiological flows, while more stable, exhibit fluctuations due to geometric complexity and have implications in studies of dispersion and solute transport in the cerebrospinal fluid flow and understanding of pathological conditions.

RevDate: 2019-07-29

Ito MR, Duan C, A Wissa (2019)

The function of the alula on engineered wings: a detailed experimental investigation of a bioinspired leading-edge device.

Bioinspiration & biomimetics [Epub ahead of print].

Birds fly in dynamic flight conditions while maintaining aerodynamic efficiency. This agility is in part due to specialized feather systems that function as flow control devices during adverse conditions such as high-angle of attack maneuvers. In this paper, we present an engineered three-dimensional leading-edge device inspired by one of these specialized groups of feathers known as the alula. Wind tunnel results show that, similar to the biological alula, the leading-edge alula-inspired device (LEAD) increases the wing's ability to maintain higher pressure gradients by modifying the near-wall flow. It also generates tip vortices that modify the turbulence on the upper-surface of the wing, delaying flow separation. The effect of the LEAD location and morphology on lift production and wake velocity profile are investigated using force and hot-wire anemometer measurements, respectively. Results show lift improvements up to 32% and 37% under post and deep stall conditions, respectively. Despite the observed drag penalties of up to 39%, the aerodynamic efficiency, defined as the lift-to-drag ratio, is maintained and sometimes improved with the addition of the LEAD to a wing. This is to be expected as the LEAD is a post-stall device, suitable for high angles of attack maneuvers, where maintaining lift production is more critical than drag reduction. The LEAD also accelerates the flow over the wing and reduces the wake velocity deficit, indicating attenuated flow separation. This work presents a detailed experimental investigation of an engineered three dimensional leading-edge device that combines the functionality of traditional two dimensional slats and vortex generators. Such a device can be used to not only extend the flight envelope of Unmanned Aerial Vehicles (UAVs), but to also study the role and function of the biological alula.

RevDate: 2019-07-26

Krishnam U, Sharma V, PK Jha (2019)

The Reynolds number modulated low frequency dynamical modes of aqueous medium embedded Spherical Virus and implications to detecting and killing viruses.

Journal of biomolecular structure & dynamics [Epub ahead of print].

The effect of high and low Reynolds number is studied on low frequency dynamical modes of a spherical virus embedded in an aqueous medium using classical Lamb's model which is based on the elastic continuum model. The elastic continuum model at nanometre scale results in to the two types of quantized dynamical modes. Some of these modes are Raman active and can be observed in low frequency Raman spectroscopic measurements. To calculate the vibrational modes of a virus we have used with material parameters of lysozyme crystal in water. The obvious size effect on the vibrational modes is observed. The estimated damping time which is of the order of picosecond varies with Reynolds number and shows a high value for a critical Reynolds number suggesting the high probability to detect or kill the virus using corresponding virus-water configuration.

RevDate: 2019-07-25

Liu G, Xue Q, X Zheng (2019)

Phase-difference on seal whisker surface induces hairpin vortices in the wake to suppress force oscillation.

Bioinspiration & biomimetics [Epub ahead of print].

Seals are able to use their uniquely shaped whiskers to track hydrodynamic trails generated 30 seconds ago and detect hydrodynamic velocities as low as 245 µm/s. The high sensibility has long thought to be related to the wavy shape of the whiskers. This work revisited the hydrodynamics of a seal whisker model in a uniform flow, and discovered a new mechanism of seal whiskers in reducing self-induced noises, which is different from the long thought of the effect of the wavy shape. It was reported that the major and minor axes of the elliptical cross sections of seal whisker are out of phase by approximately 180 degrees. Three dimensional numerical simulations of laminar flow (Reynolds number range: 150~500) around seal-whisker-like cylinders were performed to examine the effect of the phase-difference on hydrodynamic forces and wake structures. It was found that the phase-difference induced hairpin vortices in the wake over a wide range of geometric and flow parameters (wavelength, wavy amplitude and Reynolds number), therefore substantially reducing lift-oscillations and self-induced noises. The formation mechanism of the hairpin vortices was analyzed and is discussed in details. The results provide valuable insights into an innovative vibration reduction and hydrodynamic sensing mechanism.

RevDate: 2019-07-24

Jian X, Zhang W, Deng Q, et al (2019)

Turbulent lithosphere deformation in the Tibetan Plateau.

Physical review. E, 99(6-1):062122.

In this work, we show that the Tibetan Plateau deformation demonstrates turbulence-like statistics, e.g., spatial invariance across continuous scales. A dual-power-law behavior is evident to show the existence of two possible conservation laws for the enstrophy-like cascade in the range 500≲r≲2000km and kinetic-energy-like cascade in the range 50≲r≲500km. The measured second-order structure-function scaling exponents ζ(2) are similar to their counterparts in the Fourier scaling exponents observed in the atmosphere, where in the latter case the earth's rotation is relevant. The turbulent statistics observed here for nearly zero-Reynolds-number flow can be interpreted by the geostrophic turbulence theory. Moreover, the intermittency correction is recognized with an intensity close to that of the hydrodynamic turbulence of high-Reynolds-number turbulent flows, implying a universal scaling feature of very different turbulent flows. Our results not only shed new light on the debate regarding the mechanism of the Tibetan Plateau deformation but also lead to new challenges for the geodynamic modeling using Newton or non-Newtonian models because the observed turbulence-like features have to be taken into account.

RevDate: 2019-07-18

Dölger J, Kiørboe T, A Andersen (2019)

Dense Dwarfs versus Gelatinous Giants: The Trade-Offs and Physiological Limits Determining the Body Plan of Planktonic Filter Feeders.

The American naturalist, 194(2):E30-E40.

Most marine plankton have a high energy (carbon) density, but some are gelatinous with approximately 100 times more watery bodies. How do those distinctly different body plans emerge, and what are the trade-offs? We address this question by modeling the energy budget of planktonic filter feeders across life-forms, from micron-sized unicellular microbes such as choanoflagellates to centimeter-sized gelatinous tunicates such as salps. We find two equally successful strategies, one being small with high energy density (dense dwarf) and the other being large with low energy density (gelatinous giant). The constraint that forces large-but not small-filter feeders to be gelatinous is identified as a lower limit to the size-specific filter area, below which the energy costs lead to starvation. A further limit is found from the maximum size-specific motor force that restricts the access to optimum strategies. The quantified constraints are discussed in the context of other resource-acquisition strategies. We argue that interception feeding strategies can be accessed by large organisms only if they are gelatinous. On the other hand, organisms that use remote prey sensing do not need to be gelatinous, even if they are large.

RevDate: 2019-07-18

Samson JE, Miller LA, Ray D, et al (2019)

A novel mechanism of mixing by pulsing corals.

The Journal of experimental biology pii:jeb.192518 [Epub ahead of print].

The dynamic pulsation of the xeniid corals is one of the most fascinating phenomena observed in coral reefs. We quantify for the first time the flow near the tentacles of these soft corals whose active pulsations are thought to enhance their symbionts' photosynthetic rates by up to an order of magnitude. These polyps are about 1 cm in diameter and pulse at frequencies between about 0.5 and 1 Hz. As a result, the frequency-based Reynolds number calculated using the tentacle length and pulse frequency is on the order of 10 and rapidly decays as one moves away from the polyp. This introduces the question of how these corals minimize the reversibility of the flow and bring in new volumes of fluid during each pulse. We estimate that the Péclet number of the bulk flow generated by the coral as being on the order of 100-1000 while the flow between the bristles of the tentacles is on the order of 10. This illustrates the importance of advective transport in removing oxygen waste. Flow measurements using particle image velocimetry reveal that the individual polyps generate a jet of water with positive vertical velocities that do not go below 0.1 cm/s and with average volumetric flow rates of about 0.71 cm3/s. Our results show that there is nearly continual flow in the radial direction towards the polyp with only about 3.3% back flow. 3D numerical simulations uncover a region of slow mixing between the tentacles during expansion. We estimate that the average flow that moves through the bristles of the tentacles is about 0.03 cm/s. The combination of nearly continual flow towards the polyp, slow mixing between the bristles, and the subsequent ejection of this fluid volume into an upward jet ensures the polyp continually samples new water with sufficient time for exchange to occur.

RevDate: 2019-07-17

Liao P, Xing L, Zhang S, et al (2019)

Magnetically Driven Undulatory Microswimmers Integrating Multiple Rigid Segments.

Small (Weinheim an der Bergstrasse, Germany) [Epub ahead of print].

Mimicking biological locomotion strategies offers important possibilities and motivations for robot design and control methods. Among bioinspired microrobots, flexible microrobots exhibit remarkable efficiency and agility. These microrobots traditionally rely on soft material components to achieve undulatory propulsion, which may encounter challenges in design and manufacture including the complex fabrication processes and the interfacing of rigid and soft components. Herein, a bioinspired magnetically driven microswimmer that mimics the undulatory propulsive mechanism is proposed. The designed microswimmer consists of four rigid segments, and each segment is connected to the succeeding segment by joints. The microswimmer is fabricated integrally by 3D laser lithography without further assembly, thereby simplifying microrobot fabrication while enhancing structural integrity. Experimental results show that the microswimmer can successfully swim forward along guided directions via undulatory locomotion in the low Reynolds number (Re) regime. This work demonstrates for the first time that the flexible characteristic of microswimmers can be emulated by 3D structures with multiple rigid segments, which broadens possibilities in microrobot design. The proposed magnetically driven microswimmer can potentially be used in biomedical applications, such as medical diagnosis and treatment in precision medicine.

RevDate: 2019-07-18

Hoell C, Löwen H, Menzel AM, et al (2019)

Creeping motion of a solid particle inside a spherical elastic cavity: II. Asymmetric motion.

The European physical journal. E, Soft matter, 42(7):89 pii:10.1140/epje/i2019-11853-4.

An analytical method is proposed for computing the low-Reynolds-number hydrodynamic mobility function of a small colloidal particle asymmetrically moving inside a large spherical elastic cavity, the membrane of which is endowed with resistance toward shear and bending. In conjunction with the results obtained in the first part (A. Daddi-Moussa-Ider, H. Löwen, S. Gekle, Eur. Phys. J. E 41, 104 (2018)), in which the axisymmetric motion normal to the surface of an elastic cavity is investigated, the general motion for an arbitrary force direction can now be addressed. The elastohydrodynamic problem is formulated and solved using the classic method of images through expressing the hydrodynamic flow fields as a multipole expansion involving higher-order derivatives of the free-space Green's function. In the quasi-steady limit, we demonstrate that the particle self-mobility function of a particle moving tangent to the surface of the cavity is larger than that predicted inside a rigid stationary cavity of equal size. This difference is justified by the fact that a stationary rigid cavity introduces additional hindrance to the translational motion of the encapsulated particle, resulting in a reduction of its hydrodynamic mobility. Furthermore, the motion of the cavity is investigated, revealing that the translational pair (composite) mobility, which linearly couples the velocity of the elastic cavity to the force exerted on the solid particle, is solely determined by membrane shear properties. Our analytical predictions are favorably compared with fully-resolved computer simulations based on a completed-double-layer boundary integral method.

RevDate: 2019-08-05

Novelli GL, Ferrari LA, Vargas GG, et al (2019)

A synergistic analysis of drag reduction on binary polymer mixtures containing guar gum.

International journal of biological macromolecules, 137:1121-1129 pii:S0141-8130(19)31890-2 [Epub ahead of print].

Drag reduction by the addition of polymer additives has been widely studied. However, there are only a few studies on binary polymer mixtures, here named blends. In this work, xanthan gum, polyacrylamide and poly(ethylene oxide) were associated with guar gum and drag reduction was used as a parameter to determine the synergistic interaction between polymers. The aim was to verify the relation of the synergy with the rigidity of the polymeric chains, the molecular weights and the magnitude of the molecular interactions between the studied polymers. To that end, several ratios of mixtures were tested at different Reynolds numbers in a rotational rheometer with double-gap concentric cylinders geometry. Finally, experiments were done to verify the behaviour of the blends over time at a fixed Reynolds number. From all these tests, it was documented that blends containing rigid chain polymers show positive synergism in the interaction in at least one of the ratios and that this interaction is more pronounced when the molecular weights are closer and intermolecular forces are stronger. It was also noted that, in general, blends are great substitutes for solutions containing only one type of polymer.

RevDate: 2019-07-24

Mazinani S, Al-Shimmery A, Chew YMJ, et al (2019)

3D Printed Fouling-Resistant Composite Membranes.

ACS applied materials & interfaces, 11(29):26373-26383.

Fouling remains a long-standing unsolved problem that hinders the widespread use of membrane applications in industry. This article reports the use of numerical simulations coupled with extensive material synthesis and characterization to fabricate fouling-resistant 3D printed composite membranes. The membranes consist of a thin polyethersulfone selective layer deposited onto a 3D printed flat and double sinusoidal (wavy) support. Fouling and cleaning of the composite membranes were tested by using bovine serum albumin solution in a cross-flow ultrafiltration setup. The transmembrane pressure was regulated at 1 bar and the cross-flow Reynolds number (Re) varied between 400 and 1000. In comparison to the flat membrane, the wavy membrane showed superior performance in terms of pure water permeance (PWP) (10% higher) and permeance recovery ratio (87% vs 53%) after the first filtration cycle at Re = 1000. Prolong testing showed that the wavy membrane could retain approximately 87% of its initial PWP after 10 complete filtration cycles. This impressive fouling-resistant behavior is attributed to the localized fluid turbulence induced by the 3D printed wavy structure. These results show that not only the lifetime of membrane operations could be favorably extended but also the operational costs and environmental damage of membrane-based processes could also be significantly reduced.

RevDate: 2019-07-09

Chajwa R, Menon N, S Ramaswamy (2019)

Kepler Orbits in Pairs of Disks Settling in a Viscous Fluid.

Physical review letters, 122(22):224501.

We show experimentally that a pair of disks settling at negligible Reynolds number (∼10^{-4}) displays two classes of bound periodic orbits, each with transitions to scattering states. We account for these dynamics, at leading far-field order, through an effective Hamiltonian in which gravitational driving endows orientation with the properties of momentum. This treatment is successfully compared against the measured properties of orbits and critical parameters of transitions between types of orbits. We demonstrate a precise correspondence with the Kepler problem of planetary motion for a wide range of initial conditions, find and account for a family of orbits with no Keplerian analog, and highlight the role of orientation as momentum in the many-disk problem.

RevDate: 2019-07-07

Ren Z, Hu W, Dong X, et al (2019)

Multi-functional soft-bodied jellyfish-like swimming.

Nature communications, 10(1):2703 pii:10.1038/s41467-019-10549-7.

The functionalities of the untethered miniature swimming robots significantly decrease as the robot size becomes smaller, due to limitations of feasible miniaturized on-board components. Here we propose an untethered jellyfish-inspired soft millirobot that could realize multiple functionalities in moderate Reynolds number by producing diverse controlled fluidic flows around its body using its magnetic composite elastomer lappets, which are actuated by an external oscillating magnetic field. We particularly investigate the interaction between the robot's soft body and incurred fluidic flows due to the robot's body motion, and utilize such physical interaction to achieve different predation-inspired object manipulation tasks. The proposed lappet kinematics can inspire other existing jellyfish-like robots to achieve similar functionalities at the same length and time scale. Moreover, the robotic platform could be used to study the impacts of the morphology and kinematics changing in ephyra jellyfish.

RevDate: 2019-06-25

Klusak E, NJ Quinlan (2019)

High-Resolution Measurements of Leakage Flow Inside the Hinge of a Large-scale Bileaflet Mechanical Heart Valve Hinge Model.

Cardiovascular engineering and technology pii:10.1007/s13239-019-00423-4 [Epub ahead of print].

PURPOSE: It is believed that non-physiological leakage flow through hinge gaps during diastole contributes to thrombus formation in Bileaflet Mechanical Heart Valves (BMHVs). Because of the small scale and difficulty of experimental access, fluid dynamics inside the hinge cavity has not yet been characterised in detail. The objective is to investigate small-scale structure inside the hinge experimentally, and gain insight into its role in stimulating cellular responses.

METHODS: An optically accessible scaled-up model of a BMHV hinge was designed and built, preserving dynamic similarity to a clinical BMHV. Particle Image Velocimetry (PIV) was used to visualize and quantify the flow fields inside the hinge at physiological Reynolds number and dimensionless pressure drop. The flow was measured at in-plane and out-of-plane spatial resolution of 32 and 86 μm, respectively, and temporal resolution of [Formula: see text] RESULTS: Likely flow separation on the ventricular surface of the cavity has been observed for the first time, and is a source of unsteadiness and perhaps turbulence. The shear stress found in all planes exceeds the threshold of platelet activation, ranging up to 168 Pa.

CONCLUSIONS: The scale-up approach provided new insight into the nature of the hinge flow and enhanced understanding of its complexity. This study revealed flow features that may induce blood element damage.

RevDate: 2019-06-28

Cafiero G, JC Vassilicos (2019)

Non-equilibrium turbulence scalings and self-similarity in turbulent planar jets.

Proceedings. Mathematical, physical, and engineering sciences, 475(2225):20190038.

We study the self-similarity and dissipation scalings of a turbulent planar jet and the theoretically implied mean flow scalings. Unlike turbulent wakes where such studies have already been carried out (Dairay et al. 2015 J. Fluid Mech. 781, 166-198. (doi:10.1017/jfm.2015.493); Obligado et al. 2016 Phys. Rev. Fluids1, 044409. (doi:10.1103/PhysRevFluids.1.044409)), this is a boundary-free turbulent shear flow where the local Reynolds number increases with distance from inlet. The Townsend-George theory revised by (Dairay et al. 2015 J. Fluid Mech. 781, 166-198. (doi:10.1017/jfm.2015.493)) is applied to turbulent planar jets. Only a few profiles need to be self-similar in this theory. The self-similarity of mean flow, turbulence dissipation, turbulent kinetic energy and Reynolds stress profiles is supported by our experimental results from 18 to at least 54 nozzle sizes, the furthermost location investigated in this work. Furthermore, the non-equilibrium dissipation scaling found in turbulent wakes, decaying grid-generated turbulence, various instances of periodic turbulence and turbulent boundary layers (Dairay et al. 2015 J. Fluid Mech. 781, 166-198. (doi:10.1017/jfm.2015.493); Vassilicos 2015 Annu. Rev. Fluid Mech. 95, 114. (doi:10.1146/annurev-fluid-010814-014637); Goto & Vassilicos 2015 Phys. Lett. A3790, 1144-1148. (doi:10.1016/j.physleta.2015.02.025); Nedic et al. 2017 Phys. Rev. Fluids2, 032601. (doi:10.1103/PhysRevFluids.2.032601)) is also observed in the present turbulent planar jet and in the turbulent planar jet of (Antonia et al. 1980 Phys. Fluids23, 863055. (doi:10.1063/1.863055)). Given these observations, the theory implies new mean flow and jet width scalings which are found to be consistent with our data and the data of (Antonia et al. 1980 Phys. Fluids23, 863055. (doi:10.1063/1.863055)). In particular, it implies a hitherto unknown entrainment behaviour: the ratio of characteristic cross-stream to centreline streamwise mean flow velocities decays as the -1/3 power of streamwise distance in the region, where the non-equilibrium dissipation scaling holds.

RevDate: 2019-07-12

Garwood RJ, Behnsen J, Haysom HK, et al (2019)

Olfactory flow in the sturgeon is externally driven.

Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 235:211-225.

Fluid dynamics plays an important part in olfaction. Using the complementary techniques of dye visualisation and computational fluid dynamics (CFD), we investigated the hydrodynamics of the nasal region of the sturgeon Huso dauricus. H. dauricus offers several experimental advantages, including a well-developed, well-supported, radial array (rosette) of visible-by-eye olfactory sensory channels. We represented these features in an anatomically accurate rigid model derived from an X-ray scan of the head of a preserved museum specimen. We validated the results from the CFD simulation by comparing them with data from the dye visualisation experiments. We found that flow through both the nasal chamber and, crucially, the sensory channels could be induced by an external flow (caused by swimming in vivo) at a physiologically relevant Reynolds number. Flow through the nasal chamber arises from the anatomical arrangement of the incurrent and excurrent nostrils, and is assisted by the broad, cartilage-supported, inner wall of the incurrent nostril. Flow through the sensory channels arises when relatively high speed flow passing through the incurrent nostril encounters the circular central support of the olfactory rosette, decelerates, and is dispersed amongst the sensory channels. Vortices within the olfactory flow may assist odorant transport to the sensory surfaces. We conclude that swimming alone is sufficient to drive olfactory flow in H. dauricus, and consider the implications of our results for the three other extant genera of sturgeons (Acipenser, Pseudoscaphirhynchus and Scaphirhynchus), and for other fishes with olfactory rosettes.

RevDate: 2019-06-26

Man Y, E Kanso (2019)

Morphological transitions of axially-driven microfilaments.

Soft matter, 15(25):5163-5173.

The interactions of microtubules with motor proteins are ubiquitous in cellular and sub-cellular processes that involve motility and cargo transport. In vitro motility assays have demonstrated that motor-driven microtubules exhibit rich dynamical behaviors from straight to curved configurations. Here, we theoretically investigate the dynamic instabilities of elastic filaments, with free-ends, driven by single follower forces that emulate the action of molecular motors. Using the resistive force theory at low Reynolds number, and a combination of numerical techniques with linear stability analysis, we show the existence of four distinct regimes of filament behavior, including a novel buckled state with locked curvature. These successive instabilities recapitulate the full range of experimentally-observed microtubule behavior, implying that neither structural nor actuation asymmetry are needed to elicit this rich repertoire of motion.

RevDate: 2019-06-19

He G, Wang J, A Rinoshika (2019)

Orthogonal wavelet multiresolution analysis of the turbulent boundary layer measured with two-dimensional time-resolved particle image velocimetry.

Physical review. E, 99(5-1):053105.

The turbulent boundary layer flow measured by two-dimensional time-resolved particle image velocimetry is analyzed using the discrete orthogonal wavelet method. The Reynolds number of the turbulent boundary layer based on the friction velocity is Re_{τ}=235. The flow field is decomposed into a number of wavelet levels which have different characteristic scales. The velocity statistics and coherent structures at different wavelet levels are investigated. It is found that the fluctuation intensities and their peak locations differ for varying scales. The proper orthogonal decomposition (POD) of different wavelet components reveals a cascade of scales of coherent structures, especially the small-scale ones that are usually difficult to be identified in POD modes of the undecomposed flow field. The interactions among the scales are investigated in terms of large-scale amplitude modulations of the small-scale structures. In previous studies the velocity fluctuations are separated into two parts, the large scale and the small scale, divided usually by the boundary layer thickness. In the present study, however, the scales smaller than the boundary layer thickness are further separated. Therefore, the modulation analysis is a refined investigation that differentiates the modulation effects on separated small scales. The results reveal that the modulation effects vary among the small scales.

RevDate: 2019-06-19

Puljiz M, AM Menzel (2019)

Displacement field around a rigid sphere in a compressible elastic environment, corresponding higher-order Faxén relations, as well as higher-order displaceability and rotateability matrices.

Physical review. E, 99(5-1):053002.

An efficient route to the displacement field around a rigid spherical inclusion in an infinitely extended homogeneous elastic medium is presented in a slightly alternative way when compared to some common textbook methods. Moreover, two Faxén relations of next-higher order beyond the stresslet are calculated explicitly for compressible media. They quantify higher-order moments involving the force distribution on a rigid spherical particle in a deformed elastic medium. As a consequence, additional contributions to the distortions of the deformed elastic medium are identified that are absent to lower order. Furthermore, the displaceability and rotateability matrices for an ensemble of rigid spheres are calculated up to (including) sixth order in inverse particle separation distance. These matrices describe the interactions mediated between the rigid embedded particles by the elastic environment. In this way, additional coupling effects are identified that are absent to lower order, particularly when rotations and torques are involved. All methods and results can formally be transferred to the corresponding case of incompressible hydrodynamic low-Reynolds-number Stokes flow by considering the limit of an incompressible environment. The roles of compressibility of the embedding medium and of the here additionally derived higher-order contributions are highlighted by some selected example configurations.

RevDate: 2019-06-19

Nie D, J Lin (2019)

Discontinuity in the sedimentation system with two particles having different densities in a vertical channel.

Physical review. E, 99(5-1):053112.

The two-dimensional lattice Boltzmann method was used to numerically study a sedimentation system with two particles having different densities in a vertical channel for Galileo numbers in the range of 5≤Ga≤15 (resulting in a Reynolds number, based on the settling velocity, approximately ranging between 0.6 and 7). Two types of periodic motion, differing from each other in terms of the size of the limit cycle, the magnitude of the time period, and their changes upon increasing the density difference between particles, are identified depending on whether there is a wake effect. The most prominent features of this system are discontinuous changes in the settling velocity (6.7≤Ga<9.7) and time period of oscillation (10.5≤Ga≤15) at a critical value of the density difference between particles. The first discontinuity results in an abrupt increase in the Reynolds number, associated with a Hopf bifurcation without the presence of vortex shedding. The second discontinuity is accompanied by the disappearance of "abnormal rotation" (referring to the situation in which a particle appears to roll up a wall when settling) of the heavy particle, which directly results from a sharp increase in the amplitude of oscillation induced by the enhanced wake effect at another critical density difference between particles. The wall effects on these discontinuous changes were also examined.

RevDate: 2019-06-19

Wang L, FB Tian (2019)

Numerical simulation of flow over a parallel cantilevered flag in the vicinity of a rigid wall.

Physical review. E, 99(5-1):053111.

Flow over a parallel cantilevered flag in the vicinity of a rigid wall is numerically studied using an immersed boundary-lattice Boltzmann method (IB-LBM) in two-dimensional domain, where the dynamics of the fluid and structure are, respectively, solved by the LBM and a finite-element method (FEM), with a penalty IB to handle the fluid-structure interaction (FSI). Specifically, a benchmark case considering a plate attached to the downstream of a stationary cylinder is first conducted to validate the current solver. Then, the wall effects on the flag are systemically studied, considering the effects of off-wall distance, structure-to-fluid mass ratio, bending rigidity, and Reynolds number. Three flapping modes, including symmetrical flapping, asymmetrical flapping, and chaotic flapping, along with a steady state are observed in the simulations. It is found that the flag is vibrating or stable with a mean angle inclined in the fluid when it is mounted in the vicinity of a rigid wall. The mean inclined angle first increases in the steady state and then decreases in the unsteady state with the off-wall distance. In the unsteady regime, the dependency of the inclined angle on the off-wall distance is similar to that of the gradient of the fluid velocity. In addition, the rigid wall near the flag decreases the lift and drag generation and further stabilizes the flag-fluid system. Contrarily, the flag inertia destabilizes the flag, and large flag inertia induces chaotic vibrating modes.

RevDate: 2019-06-18

Zhang H, Li X, Chuai R, et al (2019)

Chaotic Micromixer Based on 3D Horseshoe Transformation.

Micromachines, 10(6): pii:mi10060398.

To improve the efficiency of mixing under laminar flow with a low Reynolds number (Re), a novel three-dimensional Horseshoe Transformation (3D HT) was proposed as the basis for the design of a micromixer. Compared with the classical HT, the Lyapunov exponent of the 3D HT, which was calculated based on a symbolic dynamic system, proved the chaotic enhancement. Based on the 3D HT, a micromixer with a mixing length of 12 mm containing six mixing units was obtained by sequentially applying "squeeze", "stretch", "twice fold", "inverse transformation", and "intersection" operations. Numerical simulation and Peclet Number (Pe) calculations indicated that when the squeeze amplitude 0 < α < 1/2, 0 < β < 1/2, the stretch amplitude γ > 4, and Re ≥ 1, the mass transfer in the mixer was dominated by convective diffusion induced by chaotic flow. When Re = 10, at the outlet of the mixing chamber, the simulated mixing index was 96.4%, which was far less than the value at Re = 0.1 (σ = 0.041). Microscope images of the mixing chamber and the curve trend of pH buffer solutions obtained from a mixing experiment were both consistent with the results of the simulation. When Re = 10, the average mixing index of the pH buffer solutions was 91.75%, which proved the excellent mixing efficiency of the mixer based on the 3D HT.

RevDate: 2019-07-03

Belut E, Sánchez Jiménez A, Meyer-Plath A, et al (2019)

Indoor dispersion of airborne nano and fine particles: Main factors affecting spatial and temporal distribution in the frame of exposure modeling.

Indoor air [Epub ahead of print].

A particle exposure experiment inside a large climate-controlled chamber was conducted. Data on spatial and temporal distribution of nanoscale and fine aerosols in the range of mobility diameters 8-600 nm were collected with high resolution, for sodium chloride, fluorescein sodium, and silica particles. Exposure scenarios studied included constant and intermittent source emissions, different aggregation conditions, high (10 h-1) and low (3.5 h-1) air exchange rates (AERs) corresponding to chamber Reynolds number, respectively, equal to 1 × 105 and 3 × 104 . Results are presented and analyzed to highlight the main determinants of exposure and to determine whether the assumptions underlying two-box models hold under various scenarios. The main determinants of exposure found were the source generation rate and the ventilation rate. The effect of particles nature was indiscernible, and the decrease of airborne total number concentrations attributable to surface deposition was estimated lower than 2% when the source was active. A near-field/far-field structure of aerosol concentration was always observed for the AER = 10 h-1 but for AER = 3.5 h-1 , a single-field structure was found. The particle size distribution was always homogeneous in space but a general shift of particle diameter (-8% to +16%) was observed between scenarios in correlation with the AER and with the source position, presumably largely attributable to aggregation.

RevDate: 2019-06-14

Aghilinejad A, Aghaamoo M, X Chen (2019)

On the transport of particles/cells in high-throughput deterministic lateral displacement devices: Implications for circulating tumor cell separation.

Biomicrofluidics, 13(3):034112 pii:012903BMF.

Deterministic lateral displacement (DLD), which takes advantage of the asymmetric bifurcation of laminar flow around the embedded microposts, has shown promising capabilities in separating cells and particles of different sizes. Growing interest in utilizing high-throughput DLD devices for practical applications, such as circulating tumor cell separation, necessitates employing higher flow rates in these devices, leading to operating in moderate to high Reynolds number (Re) regimes. Despite extensive research on DLD devices in the creeping regime, limited research has focused on the physics of flow, critical size of the device, and deformable cell behavior in DLD devices at moderate to high Re. In this study, the transport behavior of particles/cells is investigated in realistic high-throughput DLD devices with hundreds of microposts by utilizing multiphysics modeling. A practical formula is proposed for the prediction of the device critical size, which could serve as a design guideline for high-throughput DLD devices. Then, the complex hydrodynamic interactions between a deformable cell and DLD post arrays are investigated. A dimensionless index is utilized for comparing different post designs to quantify the cell-post interaction. It is shown that the separation performances in high-throughput devices are highly affected by Re as well as the micropost shapes. These findings can be utilized for the design and optimization of high-throughput DLD microfluidic devices.

RevDate: 2019-07-29

Tshumah-Mutingwende RRMS, F Takahashi (2019)

Physio-chemical effects of freshwaters on the dissolution of elementary mercury.

Environmental pollution (Barking, Essex : 1987), 252(Pt A):627-636 pii:S0269-7491(19)30920-0 [Epub ahead of print].

Elemental mercury (Hg0) is widely used by Artisanal and small-scale gold miners (ASGMs) to extract gold from ore. Due to the unavailability of appropriate waste disposal facilities, Hg0-rich amalgamation tailings are often discharged into nearby aquatic systems where the Hg0 droplets settle in bottom sediment and sediment-water interfaces. Hg0 dissolution and following biogeochemical transformations to methylmercury (MeHg) have been concerned owing to its potential risk to human health and the ecosystem. For reliable estimates of Hg exposure to human bodies using pollutant environmental fate and transport models, knowledge of the Hg0 dissolution rate is important. However, only limited literature is available. Therefore, it was investigated in this study. Dissolution tests in a 'dark chamber' revealed that an increase in medium pH resulted in a decrease in the dissolution rate, whereas, a large Hg0 droplet surface area (SA) and high Reynolds number (Re) resulted in a faster dissolution. A multivariate first order dissolution model of the form:kˆ=-7.9×10-5[pH]+7.0×10-4[logRe]+7.9×10-4[SA]-2.5×10-3 was proposed (adjusted R2 = 0.99). The Breusch-Pagan and White heteroscedasticity tests revealed that the model residuals are homoscedastic (p-value = 0.05) at the 5% significance level. Parameter sensitivity analysis suggests that slow mercury dissolution from the Hg0 droplets to aquatic systems might mask emerging environmental risk of mercury. Even after mercury usage in ASGM is banned, mercury dissolution and following contamination will continue for about 40 years or longer owing to previously discharged Hg0 droplets.

RevDate: 2019-07-22

Almohammadi H, A Amirfazli (2019)

Droplet impact: Viscosity and wettability effects on splashing.

Journal of colloid and interface science, 553:22-30 pii:S0021-9797(19)30665-4 [Epub ahead of print].

HYPOTHESES: The wettability of a surface affects the splashing behavior of a droplet upon impact onto a surface only when surface exhibits either a very high or a very low contact angle. Viscosity affects the splashing threshold in a non-monotony way.

EXPERIMENTS: To examine the roles of drop viscosity and surface wettability on splashing, a wide range of liquid viscosities (1-100 cSt), surface wettabilities (from hydrophilic to hydrophobic), drop velocities (0.5-3.3 m/s), and liquid surface tensions (∼20 and 70 mN/m) were examined. High speed imaging was used.

FINDINGS: Wettability affects the splashing threshold at very extreme limits of the wettability i.e. at very high or very low contact angle values; however, the wettability effect is less prominent on spreading-splashing regime map. For drops of any surface tension impacting surfaces with any wettability, an increase in viscosity (up to ∼5 cSt or Reynolds number of 2000) promotes splashing; whereas using liquids with viscosities larger than 5 cSt, suppress splashing. We explained such behaviors using evolution of the lamella rim, dynamic contact angle, and velocity of the expanding lamella. Finally, to predict the splashing, we developed a general empirical relationship which explains all of ours, and previously reported data.

RevDate: 2019-06-06

Siddiqui AA, M Turkyilmazoglu (2019)

A New Theoretical Approach of Wall Transpiration in the Cavity Flow of the Ferrofluids.

Micromachines, 10(6): pii:mi10060373.

An idea of permeable (suction/injection) chamber is proposed in the current work to control the secondary vortices appearing in the well-known lid-driven cavity flow by means of the water based ferrofluids. The Rosensweig model is conveniently adopted for the mathematical analysis of the physical problem. The governing equation of model is first transformed into the vorticity transport equation. A special finite difference method in association with the successive over-relaxation method (SOR) is then employed to numerically simulate the flow behavior. The effects of intensity of magnetic source (controlled by the Stuart number), aspect ratio of the cavity, rate of permeability (i.e., α p = V 0 U), ratio of speed of suction/injection V 0 to the sliding-speed U of the upper wall of a cavity, and Reynolds number on the ferrofluid in the cavity are fully examined. It is found that the secondary vortices residing on the lower wall of the cavity are dissolved by the implementation of the suction/injection chamber. Their character is dependent on the rate of permeability. The intensity of magnetic source affects the system in such a way to alter the flow and to transport the fluid away from the magnetic source location. It also reduces the loading effects on the walls of the cavity. If the depth of cavity (or the aspect ratio) is increased, the secondary vortices join together to form a single secondary vortex. The number of secondary vortices is shown to increase if the Reynolds number is increased for both the clear fluid as well as the ferrofluids. The suction and injection create resistance in settlement of solid ferroparticles on the bottom. The results obtained are validated with the existing data in the literature and satisfactory agreement is observed. The presented problem may find applications in biomedical, pharmaceutical, and engineering industries.

RevDate: 2019-07-23

Arumuru V, Dash JN, Dora D, et al (2019)

Vortex Shedding Optical Flowmeter based on Photonic Crystal Fiber.

Scientific reports, 9(1):8313 pii:10.1038/s41598-019-40464-2.

In the present work we propose a PCF (photonic crystal fiber) based Modal interferometer detector for sensing low flow velocity by detecting the frequency of vortices shed from a bluff body. The proposed novel design encapsulates the interferometric arm inside a metal casing to protect the sensor from harsh process fluids. The characterization of the developed probe is conducted under no flow conditions using a piezo actuator to evaluate the sensor response over wide frequency range (0-500 Hz). The developed sensors shows a reasonably flat response in the tested frequency range. Experiments are conducted by employing the developed sensor behind a bluff body of a vortex flowmeter to measure the frequency of the shed vortices and hence, the fluid flow rate. The low flow rate sensitivity of the vortex flowmeter is improved many folds by using the present sensor and the minimum Reynolds number detected is Re = 5000. A linear trend is observed between the frequency of the vortices and the flow velocity which is desirable for fluid flow measurement. The PCF based interferometric sensor with metal encapsulation makes the vortex flowmeter, sensitive at low flow rates, robust and economical to be used in industrial application.

RevDate: 2019-07-23

Farouk B, Antao DS, N Hasan (2019)

Acoustically driven oscillatory flow fields in a cylindrical resonator at resonance.

The Journal of the Acoustical Society of America, 145(5):2932.

Generation and development of acoustic waves in an air-filled cylindrical resonator driven by a conical electro-mechanical speaker are studied experimentally and simulated numerically. The driving frequencies of the speaker are chosen such that a standing wave field is produced at each chosen frequency in the resonator. The amplitude of the generated acoustic (pressure) waves is measured along the axis of the resonator by a fast response piezo-resistive pressure transducer, while the radial distribution of the oscillatory axial velocities is measured at the corresponding velocity anti-node locations by a constant temperature hot-film anemometer. For the cases studied, the acoustic Reynolds number ranged between 20.0 and 60.0 and the flow fields were always found to be in the laminar regime. The flow field in the resonator is also simulated by a high-fidelity numerical scheme with low numerical diffusion. Formation of the standing wave and quasi-steady acoustic streaming are numerically simulated by solving the fully compressible form of the Navier-Stokes equations. The effects of the sound field intensity (i.e., input power to the speaker) and driving frequency on the standing wave field and the resultant formation process of the streaming structures are also investigated.

RevDate: 2019-05-31

Kaneda Y, Yamamoto Y, Y Tsuji (2019)

Linear Response Theory for One-Point Statistics in the Inertial Sublayer of Wall-Bounded Turbulence.

Physical review letters, 122(19):194502.

The idea of linear response theory well known in the statistical mechanics for thermal equilibrium systems is applied to one-point statistics in the inertial sublayer of wall-bounded turbulence (WBT). A close analogy between the energy transfer from large to small scales in isotropic turbulence and the momentum transfer in the wall normal direction in WBT plays a key role in the application. The application gives estimates of the influence of the finite Reynolds number on the statistics. The estimates are consistent with data by high-resolution direct numerical simulations of turbulent channel flow.

RevDate: 2019-06-13

Fadel M, Daurelle JV, Fourmond V, et al (2019)

A new electrochemical cell with a uniformly accessible electrode to study fast catalytic reactions.

Physical chemistry chemical physics : PCCP, 21(23):12360-12371.

The electrochemical study of fast catalytic reactions is limited by mass transport when using the conventional electrochemical cell with a rotating disk electrode (RDE). To overcome this issue, it is important to find a new device with improved transport properties that respects electrochemical constraints. We used numerical simulations of computational fluid dynamics to design a new electrochemical cell based on the so-called "jet flow" design for the kinetic studies of catalytic chemical reactions at the surface of an electrode. The new cell is characterized by a high, reliable and uniform mass transport over the electroactive part of its surface. We investigated the effects of the nozzle and the electrode diameters, the nozzle-electrode distance and the Reynolds number on the performance of the jet-electrode in the flow system. Through the optimization of the geometry of this jet electrode cell, we achieved a factor of 3 enhancement in transport compared to the rotating disk electrode. We succeeded in constructing the designed electrode, characterized it with electrochemical techniques, and found an excellent agreement between the transport properties deduced from the numerical simulations and those from the measurements.

RevDate: 2019-06-05

Wang P, Zhang Q, Wang M, et al (2019)

Atomistic insights into cesium chloride solution transport through the ultra-confined calcium-silicate-hydrate channel.

Physical chemistry chemical physics : PCCP, 21(22):11892-11902.

The transport of water and ions in the gel pores of calcium silicate hydrate (C-S-H) determines the durability of cement material. In this study, molecular dynamics was employed to investigate the capillary imbibition process of CsCl solution in the C-S-H channel. The advanced frontier of CsCl solution flow inside the C-S-H capillary shows a concave meniscus shape, which reflects the hydrophilic properties of the C-S-H substrate. Reynolds number calculations show that the transport process is laminar flow and dominated by viscous forces. The invading depth of the CsCl solution deviates from the theoretical prediction of the classic Lucas-Washburn (L-W) equation, but the modified theoretical equation, by incorporating the effect of slip length, dynamic contact angle, and effective viscosity into the L-W equation, can describe the penetration curve of the solution very well. The validity of our developed theoretical equation was confirmed by additional systems with different ion concentrations. In addition, the local structure of ions was analyzed to elucidate the effect of ion concentration on the transport process. The adsorption and accumulation of ions retard the transport process of water. With an increase in the ionic concentration, the effects of immobilization and cluster accumulation became more pronounced, further reducing the transport rate of water. This study provides fundamental insight into the transport behavior of liquid in the gel pores of cement-based material.

RevDate: 2019-07-23

Zhang J, Liu H, Y Ba (2019)

Numerical Study of Droplet Dynamics on a Solid Surface with Insoluble Surfactants.

Langmuir : the ACS journal of surfaces and colloids, 35(24):7858-7870.

Surfactants are widely used in many industrial processes, where the presence of surfactants not only reduces the interfacial tension between fluids but also alters the wetting properties of solid surfaces. To understand how the surfactants influence the droplet motion on a solid surface, a hybrid method for interfacial flows with insoluble surfactants and contact-line dynamics is developed. This method solves immiscible two-phase flows through a lattice Boltzmann color-gradient model and simultaneously solves the convection-diffusion equation for surfactant concentration through a finite difference method. In addition, a dynamic contact angle formulation that describes the dependence of the local contact angle on the surfactant concentration is derived, and the resulting contact angle is enforced by a geometrical wetting condition. Our method is first used to simulate static contact angles for a droplet resting on a solid surface, and the results show that the presence of surfactants can significantly modify surface wettability, especially when the surface is more hydrophilic or more hydrophobic. This is then applied to simulate a surfactant-laden droplet moving on a substrate subject to a linear shear flow for varying effective capillary number (Cae), Reynolds number (Re), and surface wettability, where the results are often compared with those of a clean droplet. For varying Cae, the simulations are conducted by considering a neutral surface. At low values of Cae, the droplet eventually reaches a steady deformation and moves at a constant velocity. In either a clean or surfactant-laden case, the moving velocity of the droplet linearly increases with the moving wall velocity, but the slope is always higher (i.e., the droplet moves faster) in the surfactant-laden case where the droplet exhibits a bigger deformation. When Cae is increased beyond a critical value (Cae,c), the droplet breakup would happen. The presence of surfactants is found to decrease the value of Cae,c, but it shows a non-monotonic effect on the droplet breakup. An increase in Re is able to increase not only droplet deformation but also surfactant dilution. The role of surfactants in the droplet behavior is found to greatly depend upon the surface wettability. For a hydrophilic surface, the presence of surfactants can decrease the wetting length and enables the droplet to reach a steady state faster; while for a hydrophobic surface, it increases the wetting length and delays the departure of the droplet from the solid surface.

RevDate: 2019-07-23

Tian C, Wang X, Liu Y, et al (2019)

In Situ Grafting Hydrophilic Polymeric Layer for Stable Drag Reduction.

Langmuir : the ACS journal of surfaces and colloids, 35(22):7205-7211.

Developing drag reduction techniques has attracted great attention because of their need in practical applications. However, many of the proposed strategies exhibit some inevitable limitations, especially for long period of adhibition. In this work, the dynamic but stable drag reduction effect of superhydrophilic hydrogel-coated iron sphere falling freely in a cylindrical water tank was investigated. The absolute instantaneous velocities and displacements of either the hydrogel-encapsulated or unmodified iron sphere falling freely in water were monitored via a high-speed video. It was revealed that, in the range of Reynolds number from 104 to 106, the optimized hydrogel-coated iron sphere with uniform stability could reduce the resistance by up to 40%, which was mainly due to the boundary slip of water and the delayed boundary separation that resulted from the coated hydrogel. Besides, the deliberate experiments and analysis further indicated that the superhydrophilic hydrogel layer accompanied by the emergence of the drag crisis has largely effected the distribution of flow field at the boundary around the sphere. More importantly, the drag reduction behavior based on the proposed method was thermodynamically stable and resistant to external stimulus, including fluidic oscillator and hydrodynamic pressure. The effective long-term drag reduction performance of the hydrophilic substrate can be expected, correspondingly, and also provides a novel preliminary protocol and avenues for the development of durable drag reduction technologies.

RevDate: 2019-06-18

Li H, Huang B, M Wu (2019)

Experimental and Numerical Investigations on the Flow Characteristics within Hydrodynamic Entrance Regions in Microchannels.

Micromachines, 10(5): pii:mi10050317.

Flow characteristics within entrance regions in microchannels are important due to their effect on heat and mass transfer. However, relevant research is limited and some conclusions are controversial. In order to reveal flow characteristics within entrance regions and to provide empiric correlation estimating hydrodynamic entrance length, experimental and numerical investigations were conducted in microchannels with square cross-sections. The inlet configuration was elaborately designed in a more common pattern for microdevices to diminish errors caused by separation flow near the inlet and fabrication faults so that conclusions which were more applicable to microchannels could be drawn. Three different microchannels with hydraulic diameters of 100 μm, 150 μm, and 200 μm were investigated with Reynolds (Re) number ranging from 0.5 to 50. For the experiment, deionized water was chosen as the working fluid and microscopic particle image velocimetry (micro-PIV) was adopted to record and analyze velocity profiles. For numerical simulation, the test-sections were modeled and incompressible laminar Navier-Stokes equations were solved with commercial software. Strong agreement was achieved between the experimental data and the simulated data. According to the results of both the experiments and the simulations, new correlations were proposed to estimate entrance length. Re numbers ranging from 12.5 to 15 was considered as the transition region where the relationship between entrance length and Re number converted. For the microchannels and the Reynolds number range investigated compared with correlations for conventional channels, noticeable deviation was observed for lower Re numbers (Re < 12.5) and strong agreement was found for higher Re numbers (Re > 15).

RevDate: 2019-06-20

Xin C, Yang L, Li J, et al (2019)

Conical Hollow Microhelices with Superior Swimming Capabilities for Targeted Cargo Delivery.

Advanced materials (Deerfield Beach, Fla.), 31(25):e1808226.

Inspired by flagellate microorganisms in nature, the microhelix is considered as an ideal model for transportation in fluid environment with low Reynolds number. However, how to promote the swimming and loading capabilities of microhelices with controllable geometries remains challenging. In this study, a novel kind of conical hollow microhelices is proposed and a method is developed to rapidly fabricate these microhelices with controllable parameters by femtosecond vortex beams generated from spatial light modulation along helical scanning. Conical hollow microhelices with designable heights (H = 45-75 µm), diameters (D = 6-18 µm), pitch numbers (Pi = 2-4), taper angles (T = 0.1-0.6 rad), and pitch periods (ΔP = 10-30 µm) are efficiently fabricated. In addition, compared with straight microhelices, the forward swimming capability of conical microhelices increases by 50% and the lateral drift of the conical hollow microhelices is reduced by 70%. Finally, the capabilities of these conical hollow microhelices for nanocargo loading and release by the inner hollow core, as well as transportation of neural stem cells by the outer surface are demonstrated. This work provides new insights into faster and simultaneous transportation of multicargoes for hybrid drug delivery, targeted therapy, and noninvasive surgery in vivo.

RevDate: 2019-07-23

Feng Y, Gao Y, Tang K, et al (2019)

Numerical investigation on turbulent oscillatory flow through a jet pump.

The Journal of the Acoustical Society of America, 145(3):1417.

A jet pump with an asymmetrical channel can induce a time-averaged pressure drop in oscillatory flow, which can effectively suppress Gedeon streaming in looped thermoacoustic engines. In this work, the flow characteristics and time-averaged pressure drop caused by a jet pump in turbulent oscillatory flow are investigated through numerical simulation. Through the analysis of the dimensionless governing equations, the emphasis is put on the effects of Womersley number and maximum acoustic Reynolds number on the performance of the jet pump. Meanwhile, the steady flow resistance coefficients are also measured numerically. The results indicate that the oscillatory flow resistance coefficients are relatively insensitive to Womersley number when it is less than 46. Moreover, the oscillatory flow resistance coefficients agree well with the steady state flow results, which validate the quasi-static assumption in turbulent oscillatory flow. However, further increasing Womersley number will lead to a reduction in the time-averaged pressure drop. The simulation method and results, as well as the hydrodynamic mechanism beneath the results, are presented and discussed in detail.

RevDate: 2019-07-23

Ramadan AB, Abd El-Rahman AI, AS Sabry (2019)

Assessment of the transition k-k-ω model application to transitional oscillatory pipe flows.

The Journal of the Acoustical Society of America, 145(3):1195.

The flow transition from laminar to turbulent inside of typical thermoacoustic devices influences the heat-exchange capacities of these devices and dramatically impacts overall performances as well. A few measurements [Eckmann and Grotberg (1991), J. Fluid Mech. 222, 329-350; Hino, Sawamoto, and Takasu (1976). J. Fluid Mech. 75, 193-207] and direct simulations [Feldmann and Wagner (2012). J. Turbul. 13(32), 1-28; Feldmann and Wagner (2016a). New Results in Numerical and Experimental Fluid Mechanics X, pp. 113-122] were reported that describe the transitional oscillatory flows; however, almost no turbulence model has been developed that enables accurate detection and characterization of the reported intermittent turbulent fluctuations. The present work aims to assess the applicability of the k-kL-ω transition model to transitional oscillatory pipe flows. A sinusoidal pressure gradient is introduced into ANSYS finite-volume solver for flow field simulation at different acoustic frequencies, while a friction Reynolds number of 1440 is retained. The stationary turbulent and the laminar oscillatory pipe flows are first considered for validation and model calibration against published LDA measurements [Durst, Kikura, Lekakis, Jovanovic, and Ye (1996). Exp. Fluids 20, 417-428] and DNS results [Feldmann and Wagner (2012). J. Turbul. 13(32), 1-28] in addition to the Sexl's laminar-flow theory [Sexl (1930). Zeitschrift Phys. 61(5), 349-362]. Investigation of the total fluctuation kinetic energy of transitional oscillations reveals the appearance of intermittent fluctuations within the near-wall region at Wo = 13 during deceleration, while fully turbulent oscillations are predicted in the entire pipe domain at Wo = 5. Although the present results are qualitatively in good agreement with reported experimental [Eckmann and Grotberg (1991). J. Fluid Mech. 222, 329-350] and DNS findings [Feldmann and Wagner (2012). J. Turbul. 13(32), 1-28], the velocity profiles show poor agreement with corresponding DNS data during flow acceleration at Wo = 5.

RevDate: 2019-07-23

Zhou T, Sun Y, Fattah R, et al (2019)

An experimental study of trailing edge noise from a pitching airfoil.

The Journal of the Acoustical Society of America, 145(4):2009.

In this study, the far-field noise from a pitching NACA 0012 airfoil was measured at a Reynolds number of 6.6 × 104. The pitching motion was in sinusoidal functions with a mean incident angle of 0°. Cases with the pitching amplitude varying from 7.5° to 15° and frequency from 3 to 8 Hz were tested, corresponding to the reduced frequency from 0.094 to 0.25. A microphone was placed in the far-field and the particle image velocimetry technique was utilized to study the flow structures near the trailing edge. The short-time Fourier transformation results of the noise signals revealed that a high-level narrow-band noise hump occurred at a specific angle of attack in a pitching cycle. At the corresponding moment, a coherent vortex street convecting on the airfoil surface was observed, and the vortex shedding frequency was in good agreement with the central frequency of the noise hump. The occurrence of the noise humps was attributed to the laminar boundary layer separation. In one pitching period, the moment when the narrow-band noise hump occurs is independent from the pitching amplitude and it is delayed as the pitching frequency increases. Larger pitching frequency or amplitude results in lower peak level of the noise humps.

RevDate: 2019-05-03

Gao Y, Yang X, Fu C, et al (2019)

10 kHz simultaneous PIV/PLIF study of the diffusion flame response to periodic acoustic forcing.

Applied optics, 58(10):C112-C120.

Response of a laminar diffusion dimethyl-ether flame forced by an acoustic field is provided. A forcing frequency of 100 Hz, which is chosen based on the typical thermo-acoustic instability frequency in a practical combustor, is applied to the flame at a Reynolds number of 250. The development of the forced vortical structures present in this flame has been investigated utilizing a burst mode laser with a repetition rate of 10 kHz. Flame/vortex interaction is visualized by planar laser-induced fluorescence (PLIF) of formaldehyde, which is used to identify the early-stage fuel decomposition in the flame. The flame structure is also correlated with the velocity field, which is obtained utilizing particle imaging velocimetry (PIV). The resulting phase-resolved and time-averaged velocity and vortex images indicate that the amplitude of excitation has pronounced effects on the flame via modifying the local heat release.

RevDate: 2019-05-03

Wang S, Liu X, Wang G, et al (2019)

High-repetition-rate burst-mode-laser diagnostics of an unconfined lean premixed swirling flame under external acoustic excitation.

Applied optics, 58(10):C68-C78.

Lean premixed swirling flames are important in practical combustors, but a commonly encountered problem of practical swirl combustors is thermo-acoustic instability, which may cause internal structure damage to combustors. In this research, a high-repetition-rate burst-mode laser is used for simultaneous particle image velocimetry and planar laser-induced fluorescence measurement in an unconfined acoustically excited swirl burner. The time-resolved flow field and transient flame response to the acoustic perturbation are visualized at 20 kHz, offering insight into the heat release rate oscillation. The premixed mixture flow rate and acoustic modulation are varied to study the effects of Reynolds number, Strouhal number, and acoustic modulation amplitude on the swirling flame. The results suggest that the Strouhal number has a notable effect on the periodic movements of the inner recirculation zone and swirling flame configuration.

RevDate: 2019-07-23

Mozhi Devan Padmanathan A, Sneha Ravi A, Choudhary H, et al (2019)

Predictive Framework for the Spreading of Liquid Drops and the Formation of Liquid Marbles on Hydrophobic Particle Bed.

Langmuir : the ACS journal of surfaces and colloids, 35(20):6657-6668.

In this work, we have developed a model to describe the behavior of liquid drops upon impaction on hydrophobic particle bed and verified it experimentally. Poly(tetrafluoroethylene) (PTFE) particles were used to coat drops of water, aqueous solutions of glycerol (20, 40, and 60% v/v), and ethanol (5 and 12% v/v). The experiments were conducted for Weber number (We) ranging from 8 to 130 and Reynolds number (Re) ranging from 370 to 4460. The bed porosity was varied from 0.8 to 0.6. The experimental values of βmax (ratio of the diameter at the maximum spreading condition to the initial drop diameter) were estimated from the time-lapsed images captured using a high-speed camera. The theoretical βmax was estimated by making energy balances on the liquid drop. The proposed model accounts for the energy losses due to viscous dissipation and crater formation along with a change in kinetic energy and surface energy. A good agreement was obtained between the experimental βmax and the estimated theoretical βmax. The proposed model yielded a least % absolute average relative deviation (% AARD) of 5.5 ± 4.3 compared to other models available in the literature. Further, it was found that the liquid drops impacting on particle bed are completely coated with PTFE particles with βmax values greater than 2.

RevDate: 2019-07-25

Hatoum H, Mo XM, Crestanello JA, et al (2019)

Modeling of the Instantaneous Transvalvular Pressure Gradient in Aortic Stenosis.

Annals of biomedical engineering, 47(8):1748-1763.

The simplified and modified Bernoulli equations break down in estimating the true pressure gradient across the stenotic aortic valve due to their over simplifying assumptions of steady and inviscid conditions as well as the fundamental nature in which aortic valves are different than idealized orifices. Nevertheless, despite having newer models based on time-dependent momentum balance across an orifice, the simplified and modified Bernoulli continue to be the clinical standard because to date, they remain the only models clinically implementable. The objective of this study is to (1) illustrate the fundamental considerations necessary to accurately model the time-dependent instantaneous pressure gradient across a fixed orifice and (2) propose empirical corrections when applying orifice based models to severely stenotic aortic valves. We introduce a general model to predict the time-dependent instantaneous pressure gradient across an orifice that explicitly model the Reynolds number dependence of both the steady and unsteady terms. The accuracy of this general model is assessed with respect to previous models through pulse duplicator experiments on a round orifice model as well as an explanted stenotic surgical aortic valve both with geometric areas of 0.6 cm2 (less than 1 cm2 which is the threshold for stenosis determination) over cardiac outputs of 3 and 5 L/min and heart rates of 60, 90 and 120 bpm. The model and the raw experimental data corresponding to the orifice showed good agreement over a wide range of cardiac outputs and heart rates (R2 exceeding 0.91). The derived average and peak transvalvular pressure gradients also demonstrated good agreement with no significant differences between the respective peaks (p > 0.09). The new model proposed holds promise with its physical and closed form representation of pressure drop, however accurate modeling of the time-variability of the valve area is necessary for the model to be applied on stenotic valves.

RevDate: 2019-06-12

Heidarinejad G, Roozbahani MH, M Heidarinejad (2019)

Studying airflow structures in periodic cylindrical hills of human tracheal cartilaginous rings.

Respiratory physiology & neurobiology, 266:103-114.

The objective of this study is to assess tracheobronchial flow features with the cartilaginous rings during a light exercising. Tracheobronchial is part of human's body airway system that carries oxygen-rich air to human's lungs as well as takes carbon dioxide out of the human's lungs. Consequently, evaluation of the flow structures in tracheobronchial is important to support diagnosis of tracheal disorders. Computational Fluid Dynamics (CFD) allows evaluating effectiveness of tracheal cartilage rings in human body under different configurations. This study utilizes Large Eddy Simulation (LES) to model an anatomically-based human large conducting airway model with and without cartilaginous rings at the breathing conditions at Reynolds number of 5,176 in trachea region. It is observed that small recirculating areas shaped between rings cavities. While these recirculating areas are decaying, similar to periodic 2D-hills, the cartilaginous rings contribute to the construction of a vortical flow structure in the main flow. The separated vortically-shaped zone creates a wake in the flow and passes inside of the next ring cavity and disturb its boundary layer. At last, the small recirculation flow impinges onto tracheal wall. The outcome of this impinge flow is a latitudinal rotating flow perpendicular to the main flow in a cavity between the two cartilaginous rings crest which appear and disappear within a hundredth of a second. Kelvin-Helmholtz instability is observed in trachea caused by shear flow created behind of interaction between these flow structures near to tracheal wavy wall and main flow. A comparison of the results between a smooth wall model named simplified model and a rough wall model named modified model shows that these structures do not exist in simplified model, which is common in modeling tracheobronchial flow. This study proposes to consider macro surface roughness to account for the separating and rotating instantaneous flow structures. Finally, solving trachea airflow with its cartilages can become one of major issues in measuring the validity and capability of solving flow in developing types of sub-grid scale models as a turbulence studies benchmark.

RevDate: 2019-04-24

Vasilopoulos K, Sarris IE, P Tsoutsanis (2019)

Assessment of air flow distribution and hazardous release dispersion around a single obstacle using Reynolds-averaged Navier-Stokes equations.

Heliyon, 5(4):e01482 pii:e01482.

The flow around a cubical building, with a pollution source at the central point of the top of the cube, is studied. The Reynolds-averaged Navier-Stokes and species concentration equations are solved for Reynolds number, Re = 40,000, is based on the height of the cube. The predictions obtained with the standard, the Kato-Launder, and the low-Reynolds number k-epsilon models are examined with various wall functions for the near wall treatment of the flow. Results are compared against Martinuzzi and Tropea measurements (J. of Fluids Eng., 115, 85-92, 1993) for the flow field and against Li and Meroney (J. of Wind Eng. and Industrial Aerodynamics, 81, 333-345, 1983) experiments and Gaussian models for the concentration distribution. It is found that the present unstructured mesh model performs similarly to the structured mesh models. Results from the Kato-Launder model are closer to the experimental data for the flow patterns and contaminant distribution on the cube's roof. However, the Kato-Launder model has an over-prediction for the recirculation zone and the contaminant distribution windward of the cube. The standard k-epsilon and the low-Reynolds number k-epsilon models predict similar flow patterns and are closer to the experimental data of the cube's windward and side face.

RevDate: 2019-04-24

Martins Afonso M, Mitra D, D Vincenzi (2019)

Kazantsev dynamo in turbulent compressible flows.

Proceedings. Mathematical, physical, and engineering sciences, 475(2223):20180591.

We consider the kinematic fluctuation dynamo problem in a flow that is random, white-in-time, with both solenoidal and potential components. This model is a generalization of the well-studied Kazantsev model. If both the solenoidal and potential parts have the same scaling exponent, then, as the compressibility of the flow increases, the growth rate decreases but remains positive. If the scaling exponents for the solenoidal and potential parts differ, in particular if they correspond to typical Kolmogorov and Burgers values, we again find that an increase in compressibility slows down the growth rate but does not turn it off. The slow down is, however, weaker and the critical magnetic Reynolds number is lower than when both the solenoidal and potential components display the Kolmogorov scaling. Intriguingly, we find that there exist cases, when the potential part is smoother than the solenoidal part, for which an increase in compressibility increases the growth rate. We also find that the critical value of the scaling exponent above which a dynamo is seen is unity irrespective of the compressibility. Finally, we realize that the dimension d = 3 is special, as for all other values of d the critical exponent is higher and depends on the compressibility.

RevDate: 2019-06-10

Zhang M, Zhang W, Wu Z, et al (2019)

Comparison of Micro-Mixing in Time Pulsed Newtonian Fluid and Viscoelastic Fluid.

Micromachines, 10(4): pii:mi10040262.

Fluid mixing plays an essential role in many microfluidic applications. Here, we compare the mixing in time pulsing flows for both a Newtonian fluid and a viscoelastic fluid at different pulsing frequencies. In general, the mixing degree in the viscoelastic fluid is higher than that in the Newtonian fluid. Particularly, the mixing in Newtonian fluid with time pulsing is decreased when the Reynolds number Re is between 0.002 and 0.01, while it is enhanced when Re is between 0.1 and 0.2 compared with that at a constant flow rate. In the viscoelastic fluid, on the other hand, the time pulsing does not change the mixing degree when the Weissenberg number Wi ≤ 20, while a larger mixing degree is realized at a higher pulsing frequency when Wi = 50.

RevDate: 2019-04-24

Duran-Matute M, van Gorp MD, GJF van Heijst (2019)

Wavelength selection of vortex ripples in an oscillating cylinder: The effect of curvature and background rotation.

Physical review. E, 99(3-1):033105.

We present results of laboratory experiments on the formation, evolution, and wavelength selection of vortex ripples. These ripples formed on a sediment bed at the bottom of a water-filled oscillating cylindrical tank mounted on top of a rotating table. The table is made to oscillate sinusoidally in time, while a constant background rotation was added for some experiments. The changes in bed thickness are measured using a light attenuation technique. It was found that the wavelength normalized with the excursion length depends on both a Reynolds number and the Strouhal number. This differs from straight or annular geometries where the wavelength is proportional to the excursion length. The flow in an oscillating cylinder has the peculiarity that it develops a secondary flow in the radial direction that depends on the excursion length. The effect of this secondary circulation is evident in the radial transport for small values of the Strouhal number or in the orientation of the ripples for strong enough background rotation. Additionally, ripples in an oscillating cylinder present a rich dynamic behavior where the number of ripples can oscillate even with constant forcing parameters.

RevDate: 2019-04-24

Dutta AK, Ramachandran G, S Chaudhuri (2019)

Investigating thermoacoustic instability mitigation dynamics with a Kuramoto model for flamelet oscillators.

Physical review. E, 99(3-1):032215.

In this paper, we present experimental observations and phenomenological modeling of the intermittent dynamics that emerge while mitigating thermoacoustic instability by rotating the otherwise static swirler in a lean premixed, laboratory-scale combustor. Starting with a self-excited thermoacoustically unstable combustor, here we find that a progressive increase in swirler rotation rate does not uniformly decrease amplitudes of coherent, sinusoidal pressure or heat-release-rate oscillations. Instead, these oscillations emerge as high-amplitude bursts separated by low-amplitude noise in the signal. At increased rotational speeds, the high-amplitude coherent oscillations become scarce and their duration in the signal reduces. The velocity field from high-speed particle image velocimetry and simultaneous pressure and chemiluminescence data support these observations. Such an intermittent route to instability mitigation is reminiscent of the opposite transition implemented by changing the Reynolds number from a fully chaotic state to a fully unstable state. To model such dynamics phenomenologically, we discretize the swirling turbulent premixed flame into an ensemble of flamelet oscillators arranged circumferentially around the center body of the swirler. The Kuramoto model is proposed for these flamelet oscillators which is subsequently used to analyze their synchronization dynamics. The order parameter r, which is a measure of the synchronization between the oscillator phases, provides critical insights on the transition from the thermoacoustically unstable to stable states via intermittency. Finally, it is shown that the Kuramoto model for flamelet oscillator can qualitatively reproduce the time-averaged and intermittent dynamics while transitioning from the state of thermoacoustic instability to a state of incoherent noisy oscillations.

RevDate: 2019-04-24

Shaik VA, AM Ardekani (2019)

Swimming sheet near a plane surfactant-laden interface.

Physical review. E, 99(3-1):033101.

In this work we analyze the velocity of a swimming sheet near a plane surfactant-laden interface by assuming the Reynolds number and the sheet's deformation to be small. We observe a nonmonotonic dependence of the sheet's velocity on the Marangoni number (Ma) and the surface Péclet number (Pe_{s}). For a sheet passing only transverse waves, the swimming velocity increases with an increase in Ma for any fixed Pe_{s}. When Pe_{s} is increasing, on the other hand, the swimming velocity of the same sheet either increases (at large Ma) or it initially increases and then decreases (at small Ma). This dependence of the swimming velocity on Ma and Pe_{s} is altered if the sheet is passing longitudinal waves in addition to the transverse waves along its surface.

RevDate: 2019-07-01

Cheng JL, Au JS, MJ MacDonald (2019)

Peripheral artery endothelial function responses to altered shear stress patterns in humans.

Experimental physiology, 104(7):1126-1135.

NEW FINDINGS: What is the central question of this study? What is the effect of altered shear stress pattern, with or without concurrent neurohumoral and metabolic activation, on the acute endothelial function response assessed via brachial artery flow-mediated dilatation? What is the main finding and its importance? Despite generating distinctive shear stress patterns (i.e. increases in anterograde only, anterograde only with neurohumoral and metabolic activation, and both anterograde and retrograde), similar acute improvements were observed in the brachial artery flow-mediated dilatation response in all conditions, indicating that anterograde and/or turbulent shear stress might be the essential element to induce acute increases in endothelial function.

ABSTRACT: Endothelial function is influenced by both the direction and the magnitude of shear stress. Acute improvements in endothelial function have mostly been attributed to increased anterograde shear, whereas results from many interventional models in humans suggest that enhancing shear stress in an oscillatory manner (anterograde and retrograde) might be optimal. Here, we determined the acute brachial artery shear stress (SS) and flow-mediated dilatation (FMD) responses to three shear-altering interventions [passive heat stress (HEAT), mechanical forearm compression (CUFF) and handgrip exercise (HGEX)] and examined the relationship between changes in oscillatory shear index (OSI) and changes in FMD. During separate visits, 10 young healthy men (22 ± 3 years old) underwent 10 min of HEAT, CUFF or HGEX in their left forearm. Anterograde and retrograde SS, Reynolds number, OSI and FMD were assessed at rest and during/after each intervention. Anterograde SS increased during all interventions in a stepwise manner (P < 0.05 between interventions), with the change in HGEX (∆37.7 ± 12.2 dyn cm-2 , P < 0.05) > CUFF (∆25.1 ± 11.9 dyn cm-2 , P < 0.05) > HEAT (∆14.5 ± 7.9 dyn cm-2 , P < 0.05). Retrograde SS increased during CUFF (∆-19.6 ± 4.3 dyn cm-2 , P < 0.05). Anterograde blood flow was turbulent (i.e. Reynolds number ≥ |2000|) during all interventions (P < 0.05). The relative FMD improved after all interventions (P = 0.01), and there was no relationship between ∆OSI and ∆FMD. We elicited changes in SS profiles including increased anterograde SS (HEAT and HGEX) and both increased anterograde and retrograde SS (CUFF); regardless of the SS pattern, FMD improved to the same extent. These findings suggest that the presence of anterograde and/or turbulent SS might be the key to optimizing endothelial function in acute assessment protocols.

RevDate: 2019-04-16

Wei D, Dehnavi PG, Aubin-Tam ME, et al (2019)

Is the Zero Reynolds Number Approximation Valid for Ciliary Flows?.

Physical review letters, 122(12):124502.

Stokes equations are commonly used to model the hydrodynamic flow around cilia on the micron scale. The validity of the zero Reynolds number approximation is investigated experimentally with a flow velocimetry approach based on optical tweezers, which allows the measurement of periodic flows with high spatial and temporal resolution. We find that beating cilia generate a flow, which fundamentally differs from the stokeslet field predicted by Stokes equations. In particular, the flow velocity spatially decays at a faster rate and is gradually phase delayed at increasing distances from the cilia. This indicates that the quasisteady approximation and use of Stokes equations for unsteady ciliary flow are not always justified and the finite timescale for vorticity diffusion cannot be neglected. Our results have significant implications in studies of synchronization and collective dynamics of microswimmers.

RevDate: 2019-04-16

Shekar A, McMullen RM, Wang SN, et al (2019)

Critical-Layer Structures and Mechanisms in Elastoinertial Turbulence.

Physical review letters, 122(12):124503.

Simulations of elastoinertial turbulence (EIT) of a polymer solution at low Reynolds number are shown to display localized polymer stretch fluctuations. These are very similar to structures arising from linear stability (Tollmien-Schlichting modes) and resolvent analyses, i.e., critical-layer structures localized where the mean fluid velocity equals the wave speed. Computations of self-sustained nonlinear Tollmien-Schlichting waves reveal that the critical layer exhibits stagnation points that generate sheets of large polymer stretch. These kinematics may be the genesis of similar structures in EIT.

RevDate: 2019-04-14

M AA, M V (2019)

Demand factor definition-A dimensionless parameter for Vertical Axis Wind Turbines.

MethodsX, 6:567-581 pii:S2215-0161(19)30048-2.

The use of dimensionless numbers like Reynolds Number, Froude Number and Webber Number has historically simplified the process of comparison of phenomena irrespective of their scales and in their classification into different categories. This paper deals with the derivational aspects of a dimensionless parameter named "Demand Factor" for optimization of Vertical Axis Wind Turbine (VAWT). •The input parameters considered in this derivation are power, wind velocity, the aspect ratio of the turbine, density of air and viscosity of air and the output parameters are length of the blade, number of blades, chord length, aerofoil shape, radius of the turbine and angular velocity at rated speed.•Four rounds of variable definition trials are carried out through the arrangement of the input parameters on the numerator and denominator positions. With the filtering out of unsuitable combinations at different stages of elimination, out of 32 combinations the expression that holds the potential to represent demand factor was identified. The process of carrying out single point optimization based on Demand factor expression is discussed along with the steps involved in numerically calculating output parameters.•The expression of Demand factor developed provides a different perspective on the process of design and optimization of VAWTs.

RevDate: 2019-06-10

Wang Y, Wang Y, Z Cheng (2019)

Direct Numerical Simulation of Gas-Liquid Drag-Reducing Cavity Flow by the VOSET Method.

Polymers, 11(4): pii:polym11040596.

Drag reduction by polymer is an important energy-saving technology, which can reduce pumping pressure or promote the flow rate of the pipelines transporting fluid. It has been widely applied to single-phase pipelines, such as oil pipelining, district heating systems, and firefighting. However, the engineering application of the drag reduction technology in two-phase flow systems has not been reported. The reason is an unrevealed complex mechanism of two-phase drag reduction and lack of numerical tools for mechanism study. Therefore, we aim to propose governing equations and numerical methods of direct numerical simulation (DNS) for two-phase gas-liquid drag-reducing flow and try to explain the reason for the two-phase drag reduction. Efficient interface tracking method-coupled volume-of-fluid and level set (VOSET) and typical polymer constitutive model Giesekus are combined in the momentum equation of the two-phase turbulent flow. Interface smoothing for conformation tensor induced by polymer is used to ensure numerical stability of the DNS. Special features and corresponding explanations of the two-phase gas-liquid drag-reducing flow are found based on DNS results. High shear in a high Reynolds number flow depresses the efficiency of the gas-liquid drag reduction, while a high concentration of polymer promotes the efficiency. To guarantee efficient drag reduction, it is better to use a high concentration of polymer drag-reducing agents (DRAs) for high shear flow.

RevDate: 2019-04-10

Stocking JB, Laforsch C, Sigl R, et al (2018)

The role of turbulent hydrodynamics and surface morphology on heat and mass transfer in corals.

Journal of the Royal Society, Interface, 15(149):20180448.

Corals require efficient heat and mass transfer with the overlying water column to support key biological processes, such as nutrient uptake and mitigation of thermal stress. Transfer rates are primarily determined by flow conditions, coral morphology and the physics of the resulting fluid-structure interaction, yet the relationship among these parameters is poorly understood especially for wave-dominated coral habitats. To investigate the interactive effects of these factors on fluxes of heat and mass, we measure hydrodynamic characteristics in situ over three distinct surface morphologies of massive stony corals in a Panamanian reef. Additionally, we implement a numerical model of flow and thermal transport for both current and wave conditions past a natural coral surface, as well as past three simplified coral morphologies with varying ratios of surface roughness spacing-to-height. We find oscillatory flow enhances rates of heat and mass transfer by 1.2-2.0× compared with unidirectional flow. Additionally, increases in Reynolds number and in surface roughness ratio produce up to a 3.3× and a 2.0× enhancement, respectively. However, as waves begin to dominate the flow regime relative to unidirectional currents, the underlying physical mechanisms mediating transfer rates shift from predominantly turbulence-driven to greater control by inertial accelerations, resulting in larger heat and mass transfer for small surface roughness ratios. We show that for rough corals in wave-dominated flows, novel trade-off dynamics for heat and mass transfer exist between broadly spaced roughness that enhances turbulence production versus narrowly spaced roughness that produces greater surface area. These findings have important implications for differential survivorship during heat-induced coral bleaching, particularly as thermal stress events become increasingly common with global climate change.

RevDate: 2019-04-10

Tuttle LJ, Robinson HE, Takagi D, et al (2019)

Going with the flow: hydrodynamic cues trigger directed escapes from a stalking predator.

Journal of the Royal Society, Interface, 16(151):20180776.

In the coevolution of predator and prey, different and less well-understood rules for threat assessment apply to freely suspended organisms than to substrate-dwelling ones. Particularly vulnerable are small prey carried with the bulk movement of a surrounding fluid and thus deprived of sensory information within the bow waves of approaching predators. Some planktonic prey have solved this apparent problem, however. We quantified cues generated by the slow approach of larval clownfish (Amphiprion ocellaris) that triggered a calanoid copepod (Bestiolina similis) to escape before the fish could strike. To estimate water deformation around the copepod immediately preceding its jump, we represented the body of the fish as a rigid sphere in a hydrodynamic model that we parametrized with measurements of fish size, approach speed and distance to the copepod. Copepods of various developmental stages (CII-CVI) were sensitive to the water flow caused by the live predator, at deformation rates as low as 0.04 s-1. This rate is far lower than that predicted from experiments that used artificial predator-mimics. Additionally, copepods localized the source, with 87% of escapes directed away (greater than or equal to 90°) from the predator. Thus, copepods' survival in life-threatening situations relied on their detection of small nonlinear signals within an environment of locally linear deformation.

RevDate: 2019-04-10

Nguyen H, Koehl MAR, Oakes C, et al (2019)

Effects of cell morphology and attachment to a surface on the hydrodynamic performance of unicellular choanoflagellates.

Journal of the Royal Society, Interface, 16(150):20180736.

Choanoflagellates, eukaryotes that are important predators on bacteria in aquatic ecosystems, are closely related to animals and are used as a model system to study the evolution of animals from protozoan ancestors. The choanoflagellate Salpingoeca rosetta has a complex life cycle with different morphotypes, some unicellular and some multicellular. Here we use computational fluid dynamics to study the hydrodynamics of swimming and feeding by different unicellular stages of S. rosetta: a swimming cell with a collar of prey-capturing microvilli surrounding a single flagellum, a thecate cell attached to a surface and a dispersal-stage cell with a slender body, long flagellum and short collar. We show that a longer flagellum increases swimming speed, longer microvilli reduce speed and cell shape only affects speed when the collar is very short. The flux of prey-carrying water into the collar capture zone is greater for swimming than sessile cells, but this advantage decreases with collar size. Stalk length has little effect on flux for sessile cells. We show that ignoring the collar, as earlier models have done, overestimates flux and greatly overestimates the benefit to feeding performance of swimming versus being attached, and of a longer stalk for attached cells.

RevDate: 2019-04-10

Asadzadeh SS, Nielsen LT, Andersen A, et al (2019)

Hydrodynamic functionality of the lorica in choanoflagellates.

Journal of the Royal Society, Interface, 16(150):20180478.

Choanoflagellates are unicellular eukaryotes that are ubiquitous in aquatic habitats. They have a single flagellum that creates a flow toward a collar filter composed of filter strands that extend from the cell. In one common group, the loricate choanoflagellates, the cell is suspended in an elaborate basket-like structure, the lorica, the function of which remains unknown. Here, we use Computational Fluid Dynamics to explore the possible hydrodynamic function of the lorica. We use the choanoflagellate Diaphaoneca grandis as a model organism. It has been hypothesized that the function of the lorica is to prevent refiltration (flow recirculation) and to increase the drag and, hence, increase the feeding rate and reduce the swimming speed. We find no support for these hypotheses. On the contrary, motile prey are encountered at a much lower rate by the loricate organism. The presence of the lorica does not affect the average swimming speed, but it suppresses the lateral motion and rotation of the cell. Without the lorica, the cell jiggles from side to side while swimming. The unsteady flow generated by the beating flagellum causes reversed flow through the collar filter that may wash away captured prey while it is being transported to the cell body for engulfment. The lorica substantially decreases such flow, hence it potentially increases the capture efficiency. This may be the main adaptive value of the lorica.

RevDate: 2019-04-10

Asadzadeh SS, Larsen PS, Riisgård HU, et al (2019)

Hydrodynamics of the leucon sponge pump.

Journal of the Royal Society, Interface, 16(150):20180630.

Leuconoid sponges are filter-feeders with a complex system of branching inhalant and exhalant canals leading to and from the close-packed choanocyte chambers. Each of these choanocyte chambers holds many choanocytes that act as pumping units delivering the relatively high pressure rise needed to overcome the system pressure losses in canals and constrictions. Here, we test the hypothesis that, in order to deliver the high pressures observed, each choanocyte operates as a leaky, positive displacement-type pump owing to the interaction between its beating flagellar vane and the collar, open at the base for inflow but sealed above. The leaking backflow is caused by small gaps between the vaned flagellum and the collar. The choanocyte pumps act in parallel, each delivering the same high pressure, because low-pressure and high-pressure zones in the choanocyte chamber are separated by a seal (secondary reticulum). A simple analytical model is derived for the pump characteristic, and by imposing an estimated system characteristic we obtain the back-pressure characteristic that shows good agreement with available experimental data. Computational fluid dynamics is used to verify a simple model for the dependence of leak flow through gaps in a conceptual collar-vane-flagellum system and then applied to models of a choanocyte tailored to the parameters of the freshwater demosponge Spongilla lacustris to study its flows in detail. It is found that both the impermeable glycocalyx mesh covering the upper part of the collar and the secondary reticulum are indispensable features for the choanocyte pump to deliver the observed high pressures. Finally, the mechanical pump power expended by the beating flagellum is compared with the useful (reversible) pumping power received by the water flow to arrive at a typical mechanical pump efficiency of about 70%.

RevDate: 2019-04-24

Janke T, Koullapis P, Kassinos SC, et al (2019)

PIV measurements of the SimInhale benchmark case.

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 133:183-189.

Particle Image Velocimetry (PIV) measurements with the aim of providing experimental data for the SimInhale benchmark case are presented within this work. We, therefore, present a refractive index matched, transparent model of the benchmark geometry, in which the velocity and turbulent kinetic energy fields are examined at flow rates comparable to 15, 30 and 60 L/min (Re ≈ 1000-4500) in air. Furthermore, these results are compared with Large Eddy Simulations (LES). The results reveal a Reynolds number independence of the qualitative velocity field in the range covered within this work. Good agreement is found between the PIV and LES data, with a slight over-prediction of turbulent kinetic energies by the simulations. The obtained experimental data will be part of a common, publicly accessible ERCOFTAC database along with additional results published recently.

RevDate: 2019-06-10

Mancini V, Bergersen AW, Vierendeels J, et al (2019)

High-Frequency Fluctuations in Post-stenotic Patient Specific Carotid Stenosis Fluid Dynamics: A Computational Fluid Dynamics Strategy Study.

Cardiovascular engineering and technology, 10(2):277-298.

PURPOSE: Screening of asymptomatic carotid stenoses is performed by auscultation of the carotid bruit, but the sensitivity is poor. Instead, it has been suggested to detect carotid bruit as neck's skin vibrations. We here take a first step towards a computational fluid dynamics proof-of-concept study, and investigate the robustness of our numerical approach for capturing high-frequent fluctuations in the post-stenotic flow. The aim was to find an ideal solution strategy from a pragmatic point of view, balancing accuracy with computational cost comparing an under-resolved direct numerical simulation (DNS) approach vs. three common large eddy simulation (LES) models (static/dynamic Smagorinsky and Sigma).

METHOD: We found a reference solution by performing a spatial and temporal refinement study of a stenosed carotid bifurcation with constant flow rate. The reference solution [Formula: see text] was compared against LES for both a constant and pulsatile flow.

RESULTS: Only the Sigma and Dynamic Smagorinsky models were able to replicate the flow field of the reference solution for a pulsatile simulation, however the computational cost of the Sigma model was lower. However, none of the sub-grid scale models were able to replicate the high-frequent flow in the peak-systolic constant flow rate simulations, which had a higher mean Reynolds number.

CONCLUSIONS: The Sigma model was the best combination between accuracy and cost for simulating the pulsatile post-stenotic flow field, whereas for the constant flow rate, the under-resolved DNS approach was better. These results can be used as a reference for future studies investigating high-frequent flow features.

RevDate: 2019-04-05
CmpDate: 2019-04-05

Ma J, Xu L, Tian FB, et al (2019)

Dynamic characteristics of a deformable capsule in a simple shear flow.

Physical review. E, 99(2-1):023101.

The dynamic characteristics of a two-dimensional deformable capsule in a simple shear flow are studied with an immersed boundary-lattice Boltzmann method. Simulations are conducted by varying the Reynolds number (Re) from 0.0125 to 2000 and the dimensionless shear rate (G) from 0.001 to 0.5. The G-Re plane can be divided into four regions according to the deformation dependence on the parameters considered: viscous dominant, inertia dominant, transitional, and anomalous regions. There are four typical dynamic behaviors over the G-Re plane: steady deformation, prerupture state, quasisteady deformation, and continuous elongation. Analysis indicates that the pressure distribution and its variations due to the interplay of the fluid inertia force, the viscous shear stress, and the membrane elastic force determines the complex behaviors of the capsule. The effects of the bending rigidity and the internal-to-external viscosity ratio on the dynamics of the capsule are further studied. It is found that the capsule experiences smaller deformation when the higher bending rigidity is included, and the low bending rigidity does not have a remarkable influence on the capsule deformation. The capsule normally experiences smaller deformation due to the increase of the internal-to-external viscosity ratio.

RevDate: 2019-04-05
CmpDate: 2019-04-05

Pereira M, Gissinger C, S Fauve (2019)

1/f noise and long-term memory of coherent structures in a turbulent shear flow.

Physical review. E, 99(2-1):023106.

A shear flow of liquid metal (Galinstan) is driven in an annular channel by counter-rotating traveling magnetic fields imposed at the end caps. When the traveling velocities are large, the flow is turbulent and its azimuthal component displays random reversals. Power spectra of the velocity field exhibit a 1/f^{α} power law on several decades and are related to power-law probability distributions P(τ)∼τ^{-β} of the waiting times between successive reversals. This 1/f type spectrum is observed only when the Reynolds number is large enough. In addition, the exponents α and β are controlled by the symmetry of the system; a continuous transition between two different types of Flicker noise is observed as the equatorial symmetry of the flow is broken, in agreement with theoretical predictions.

RevDate: 2019-03-29

Tang X, D Staack (2019)

Bioinspired mechanical device generates plasma in water via cavitation.

Science advances, 5(3):eaau7765 pii:aau7765.

Nature can generate plasma in liquids more efficiently than human-designed devices using electricity, acoustics, or light. In the animal world, snapping shrimp can induce cavitation that collapses to produce high pressures and temperatures, leading to efficient plasma formation with photon and shock wave emission via energy focusing. Here, we report a bioinspired mechanical device that mimics the plasma generation technique of the snapping shrimp. This device was manufactured using additive manufacturing based on micro-x-ray computed tomography of a snapping shrimp claw molt. A spring fixture was designed to reliably actuate the claw with appropriate force and velocity to produce a high-speed water jet that matches the cavitation number and Reynolds number of the shrimp. Light emission and shocks were imaged, which indicate that our device reproduces the shrimp's plasma generation technique and is more efficient than other plasma generation methods.

RevDate: 2019-03-29

Nagaraju G, M Garvandha (2019)

Magnetohydrodynamic viscous fluid flow and heat transfer in a circular pipe under an externally applied constant suction.

Heliyon, 5(2):e01281 pii:e01281.

An analytical investigation of two-dimensional heat transfer behavior of an axisymmetric incompressible dissipative viscous fluid flow in a circular pipe is considered. The flow is subjected to an externally applied uniform suction over the pipe wall in the transverse direction and a constant magnetic field opposite to the wall. The reduced Navier-Stokes equations in the cylindrical system are applied for the velocity and temperature fields. Constant wall temperature is considered as the thermal boundary condition. The velocity components are expressed into stream function and its solution is acquired by the Homotopy analysis method (HAM). The effects of magnetic body force parameter(M), suction Reynolds number (Re), Prandtl number (Pr)and Eckert number (Ec) on velocity and temperature are examined and are presented in a graphical frame. Streamlines, isotherms and pressure contours are likewise pictured. It is observed that with increasing suction Reynold number decelerates axial flow, whereas it enhances the radial flow. The temperature distribution increases with an increase in Prandtl number, whereas it decreases with an increase in Eckert number (viscous dissipation effect).

RevDate: 2019-06-18
CmpDate: 2019-03-18

El-Sapa S (2019)

Settling slip velocity of a spherical particle in an unbounded micropolar fluid.

The European physical journal. E, Soft matter, 42(3):32 pii:10.1140/epje/i2019-11791-1.

The gravitational settling of small spherical particles in an unbounded micropolar fluid with slip surfaces is considered. The motion is studied under the assumption of low Reynolds number. The slip boundary conditions on velocity and microrotation at the surface of the spherical particle is used. The solution for the stream function of the fluid flow is obtained analytically. The settling velocity is obtained and is plotted against the Knudsen number for various values of the micropolarity parameter and constants depending on the material of the solid surface. The problem of rotational motion of a particle with slip surface is also solved and the torque coefficient acting on the spherical particle is obtained and is plotted against Knudsen number for different values of micropolarity parameter, spin parameter, and the material constants. The correction to the Basset equation for settling velocity under gravity for slip particle in micropolar fluids is discussed with the range of Knudsen number which has been proven with known results available in the literature.

RevDate: 2019-04-19

Sun J, Liu C, B Bhushan (2019)

A review of beetle hindwings: Structure, mechanical properties, mechanism and bioinspiration.

Journal of the mechanical behavior of biomedical materials, 94:63-73.

Insects have a small mass and size and a low flying Reynolds number. Consequently, they serve as an excellent bionic representation of a micro air vehicle (MAV). Coleoptera (popularly referred to as beetles) have different characteristics from other flying insects. Not only can they fly at a low Reynolds number, but they also have deployable hindwings, which directly leads to a reduction in the size of their bodies. In narrow working spaces or unfavorable environments, a beetle's hindwings can fold automatically under the hard elytron. When the environment becomes conducive to flight, the hindwings can extend and help the beetle take off. This characteristic provides inspiration for the design of a bionic deployable wing system. In this paper, the structures and mechanical properties of hindwings and the mechanism of hindwing movement are reviewed, in addition to research on bioinspired deployable wings.

RevDate: 2019-03-15

Sepehr H, Nikrityuk P, Breakey D, et al (2019)

Numerical study of crude oil batch mixing in a long channel.

Petroleum science, 16(1):187-198.

The main objective of this work is to predict the mixing of two different miscible oils in a very long channel. The background to this problem relates to the mixing of heavy and light oil in a pipeline. As a first step, a 2D channel with an aspect ratio of 250 is considered. The batch-mixing of two miscible crude oils with different viscosities and densities is modeled using an unsteady laminar model and unsteady RANS model available in the commercial CFD solver ANSYS-Fluent. For a comparison, a LES model was used for a 3D version of the 2D channel. The distinguishing feature of this work is the Lagrangian coordinate system utilized to set no-slip wall boundary conditions. The global CFD model has been validated against classical analytical solutions. Excellent agreement has been achieved. Simulations were carried out for a Reynolds number of 6300 (calculated using light oil properties) and a Schmidt number of 10 4 . The results show that, in contrast to the unsteady RANS model, the LES and unsteady laminar models produce comparable mixing dynamics for two oils in the channel. Analysis of simulations also shows that, for a channel length of 100 m and a height of 0.4 m, the complete mixing of two oils across the channel has not been achieved. We showed that the mixing zone consists of the three different mixing sub-zones, which have been identified using the averaged mass fraction of the heavy oil along the flow direction. The first sub-zone corresponds to the main front propagation area with a length of several heights of the channel. The second and third sub-zones are characterized by so-called shear-flow-driven mixing due to the Kelvin-Helmholtz vortices occurring between oils in the axial direction. It was observed that the third sub-zone has a steeper mass fraction gradient of the heavy oil in the axial direction in comparison with the second sub-zone, which corresponds to the flow-averaged mass fraction of 0.5 for the heavy oil.

RevDate: 2019-03-29

Kawale D, Jayaraman J, PE Boukany (2019)

Microfluidic rectifier for polymer solutions flowing through porous media.

Biomicrofluidics, 13(1):014111 pii:013901BMF.

Fluidic rectification refers to anisotropic flow resistance upon changing the flow direction. Polymeric solutions, in contrast to Newtonian fluids, can exhibit an anisotropic flow resistance in microfluidic devices by tuning the channel shape at low Reynolds number. Such a concept has not been investigated in an anisotropic porous medium. We have developed a fluidic rectifier based on an anisotropic porous medium consisting of a periodic array of triangular pillars that can operate at a low Reynolds number. Rectification is achieved, when the type of high Weissenberg number elastic instabilities changes with the flow direction. The flow resistance differs across the two directions of the anisotropic porous medium geometry. We have identified the type of elastic instabilities that appear in both forward and backward directions. Particularly, we found a qualitative relation between the dead-zone instability and the onset of fluidic rectification.

RevDate: 2019-04-28

Faris Abdullah M, Zulkifli R, Harun Z, et al (2019)

Impact of the TiO₂ Nanosolution Concentration on Heat Transfer Enhancement of the Twin Impingement Jet of a Heated Aluminum Plate.

Micromachines, 10(3): pii:mi10030176.

Here, the researchers carried out an experimental analysis of the effect of the TiO₂ nanosolution concentration on the heat transfer of the twin jet impingement on an aluminum plate surface. We used three different heat transfer enhancement processes. We considered the TiO₂ nanosolution coat, aluminum plate heat sink, and a twin jet impingement system. We also analyzed several other parameters like the nozzle spacing, nanosolution concentration, and the nozzle-to-plate distance and noted if these parameters could increase the heat transfer rate of the twin jet impingement system on a hot aluminum surface. The researchers prepared different nanosolutions, which consisted of varying concentrations, and coated them on the metal surface. Thereafter, we carried out an X-ray diffraction (XRD) and a Field Emission Scanning Electron Microscopy (FESEM) analysis for determining the structure and the homogeneous surface coating of the nanosolutions. This article also studied the different positions of the twin jets for determining the maximal Nusselt number (Nu). The researchers analyzed all the results and noted that the flow structure of the twin impingement jets at the interference zone was the major issue affecting the increase in the heat transfer rate. The combined influence of the spacing and nanoparticle concentration affected the flow structure, and therefore the heat transfer properties, wherein the Reynolds number (1% by volume concentration) maximally affected the Nusselt number. This improved the performance of various industrial and engineering applications. Hypothesis: Nusselt number was affected by the ratio of the nanoparticle size to the surface roughness. Heat transfer characteristics could be improved if the researchers selected an appropriate impingement system and selected the optimal levels of other factors. The surface coating with the TiO₂ nanosolution also positively affected the heat transfer rate.

RevDate: 2019-04-18

Hamid AH, Javed T, N Ali (2019)

Numerical study of hydromagnetic axisymmetric peristaltic flow at high Reynolds number and wave number.

Biophysical reviews, 11(2):139-147.

The computational study of MHD peristaltic motion is investigated for axisymmetric flow problem. The developed model is present in the form of partial differential equations. Then obtained partial differential equations are transferred into stream-vorticity (ψ - ω) form. Then Galerkin Finite element method is used to find the computational results of governing problem. The current study is compared with the existing well-known results at low Reynolds number and wave number. It is revealed that the present results are in well agreement with existing results in the literature. So, it is effective for higher values of Reynolds number and wave number. The variations of streamline are present graphically against high Reynolds number. It concludes that high Reynolds number and Hartmann number increase pressure rise per unit wavelength in positive pumping region sharply.

RevDate: 2019-04-05
CmpDate: 2019-04-05

Luo X, Yin H, Ren J, et al (2019)

Enhanced mixing of binary droplets induced by capillary pressure.

Journal of colloid and interface science, 545:35-42.

The mixing of binary droplets is of paramount importance in microfluidic systems. In order to reveal the mixing mechanism of two free droplets suspended in the immiscible phase, we have developed a novel experimental setup to study the internal mixing in coalescing droplets with varying interfacial tension differences and droplet sizes. It is confirmed that the interfacial energy of droplets supports the jet flow and liquid bridge expansion during the coalescence of droplets. The increase of interfacial tension difference can increase the intensity of jet flow accompanied with slower liquid bridge expansion, which enhances the mixing of droplets. The decrease of droplet size can increase the initial velocity of jet flow. However, the intensity of jet flow decreases due to the rapid expansion of the liquid bridge, which results in weaker internal mixing. On this basis, a Reynolds number incorporating the jet velocity and droplet size is proposed to characterize the vortex size, which represents the degree of droplet mixing. This study presents an effective approach for enhancing the mixing of droplets.

RevDate: 2019-04-28

Ye C, Liu J, Wu X, et al (2019)

Hydrophobicity Influence on Swimming Performance of Magnetically Driven Miniature Helical Swimmers.

Micromachines, 10(3): pii:mi10030175.

Helical microswimmers have been involved in a wide variety of applications, ranging from in vivo tasks such as targeted drug delivery to in vitro tasks such as transporting micro objects. Over the past decades, a number of studies have been established on the swimming performance of helical microswimmers and geometrical factors influencing their swimming performance. However, limited studies have focused on the influence of the hydrophobicity of swimmers' surface on their swimming performance. In this paper, we first demonstrated through theoretical analysis that the hydrophobicity of swimmer's surface material of the swimmer does affect its swimming performance: the swimmer with more hydrophobic surface is exerted less friction drag torque, and should therefore exhibit a higher step-out frequency, indicating that the swimmer with more hydrophobic surface should have better swimming performance. Then a series of experiments were conducted to verify the theoretical analysis. As a result, the main contribution of this paper is to demonstrate that one potential approach to improve the helical microswimmers' swimming performance could be making its surface more hydrophobic.

RevDate: 2019-04-16

Xia Z, Xiao Y, Yang Z, et al (2019)

Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Hybrid Laser Ablation and Silanization Process.

Materials (Basel, Switzerland), 12(5): pii:ma12050765.

A super-hydrophobic aluminum alloy surface with decorated pillar arrays was obtained by hybrid laser ablation and further silanization process. The as-prepared surface showed a high apparent contact angle of 158.2 ± 2.0° and low sliding angle of 3 ± 1°. Surface morphologies and surface chemistry were explored to obtain insights into the generation process of super-hydrophobicity. The main objective of this current work is to investigate the maximum spreading factor of water droplets impacting on the pillar-patterned super-hydrophobic surface based on the energy conservation concept. Although many previous studies have investigated the droplet impacting behavior on flat solid surfaces, the empirical models were proposed based on a few parameters including the Reynolds number (Re), Weber number (We), as well as the Ohnesorge number (Oh). This resulted in limitations for the super-hydrophobic surfaces due to the ignorance of the geometrical parameters of the pillars and viscous energy dissipation for liquid flow within the pillar arrays. In this paper, the maximum spreading factor was deduced from the perspective of energy balance, and the predicted results were in good agreement with our experimental results with a mean error of 4.99% and standard deviation of 0.10.

RevDate: 2019-07-23

Yang G, Hou C, Zhao M, et al (2019)

Comparison of convective heat transfer for Kagome and tetrahedral truss-cored lattice sandwich panels.

Scientific reports, 9(1):3731 pii:10.1038/s41598-019-39704-2.

The aim of this paper is to make a thorough comparison between Kagome and tetrahedral truss-cored lattices both experimentally and numerically. Two titanium sandwich panels -one cored with the Kagome lattice and the other with the tetrahedral lattice -are manufactured by 3D printing technology. Comparisons of the thermal insulation, the inner flow pattern and the heat transfer between the two sandwich panels are completed subsequently according to the results from forced convective experiments and numerical simulation. Within the Reynolds number range of interest for this study, the Kagome lattice exhibits excellent heat dissipation compared with the tetrahedral lattice. In particular, when the cooling air flows in the direction OB of the two sandwich panels, the Kagome lattice provides an 8~37% higher overall Nusselt number for the sandwich panel compared to the tetrahedral lattice. The superiority of the Kagome lattice comes from a unique configuration in which the centre vertex acting as the vortex generator not only disturbs the primary flow but also induces more serious flow stagnation and separation. The complex fluid flow behaviours enhance heat transfer on both the endwalls and the trusses while causing a pressure drop that is almost two times higher than that of the tetrahedral lattice in the flow direction OB.

RevDate: 2019-03-14

Khair AS, B Balu (2019)

The lift force on a charged sphere that translates and rotates in an electrolyte.

Electrophoresis [Epub ahead of print].

The distortion of the charge cloud around a uniformly charged, dielectric, rigid sphere that translates and rotates in an unbounded binary, symmetric electrolyte at zero Reynolds number is examined. The zeta potential of the particle ζ is assumed small relative to the thermal voltage scale. It is assumed that the equilibrium structure of the cloud is slightly distorted, which requires that the Péclet numbers characterizing distortion due to particle translation, Pe t = U a / D , and rotation, Pe r = Ω a 2 / D , are small compared to unity. Here, a is radius of the particle; D is the ionic diffusion coefficient; U = | U | and Ω = | Ω | , where U and Ω are the rectilinear and angular velocities of the particle, respectively. Perturbation expansions for small Pe t and Pe r are employed to calculate the nonequilibrium structure of the cloud, whence the force and torque on the particle are determined. In particular, we predict that the sphere experiences a force orthogonal to its directions of translation and rotation. This "lift" force arises from the nonlinear distortion of the cloud under the combined actions of particle translation and rotation. The lift force is given by F lift = L (κ a) (ε a 3 ζ 2 / D 2) U × Ω [ 1 + O (Pe t , Pe r) ] . Here, ε is the permittivity of the electrolyte; κ - 1 is the Debye length; and L (κ a) is a negative function that decreases in magnitude with increasing κ a . The lift force implies that an unconstrained particle would follow a curved path; an electrokinetic analog of the inertial Magnus effect. Finally, the implication of the lift force on cross-streamline migration of an electrophoretic particle in shear flow is discussed.

RevDate: 2019-04-28

Rehman D, Morini GL, C Hong (2019)

A Comparison of Data Reduction Methods for Average Friction Factor Calculation of Adiabatic Gas Flows in Microchannels.

Micromachines, 10(2): pii:mi10030171.

In this paper, a combined numerical and experimental approach for the estimation of the average friction factor along adiabatic microchannels with compressible gas flows is presented. Pressure-drop experiments are performed for a rectangular microchannel with a hydraulic diameter of 295 μ m by varying Reynolds number up to 17,000. In parallel, the calculation of friction factor has been repeated numerically and results are compared with the experimental work. The validated numerical model was also used to gain an insight of flow physics by varying the aspect ratio and hydraulic diameter of rectangular microchannels with respect to the channel tested experimentally. This was done with an aim of verifying the role of minor loss coefficients for the estimation of the average friction factor. To have laminar, transitional, and turbulent regimes captured, numerical analysis has been performed by varying Reynolds number from 200 to 20,000. Comparison of numerically and experimentally calculated gas flow characteristics has shown that adiabatic wall treatment (Fanno flow) results in better agreement of average friction factor values with conventional theory than the isothermal treatment of gas along the microchannel. The use of a constant value for minor loss coefficients available in the literature is not recommended for microflows as they change from one assembly to the other and their accurate estimation for compressible flows requires a coupling of numerical analysis with experimental data reduction. Results presented in this work demonstrate how an adiabatic wall treatment along the length of the channel coupled with the assumption of an isentropic flow from manifold to microchannel inlet results in a self-sustained experimental data reduction method for the accurate estimation of friction factor values even in presence of significant compressibility effects. Results also demonstrate that both the assumption of perfect expansion and consequently wrong estimation of average temperature between inlet and outlet of a microchannel can be responsible for an apparent increase in experimental average friction factor in choked flow regime.

RevDate: 2019-06-13
CmpDate: 2019-06-13

Xia Y, Yuan M, Chen M, et al (2019)

Liquid jet breakup: A new method for the preparation of poly lactic-co-glycolic acid microspheres.

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 137:140-147.

The purpose of this study was to apply the phenomenon of liquid jet breakup to the preparation of sustained-release microspheres. The mechanisms of liquid jet breakup in different jet states were investigated and the single factor method was used to study the effect of each process parameter on the particle size and size distribution of microspheres. Meantime, the prepared microspheres were characterized by morphology, drug loading, encapsulation efficiency and in vitro release. The results indicated that the process of liquid jet breakup could have 5 different states. The laminar flow state dominated when the Reynolds number (Re) was low, and the prepared microspheres had larger particle sizes. When the Re was high, the turbulent state was dominant and the microspheres had smaller particle sizes. And during the transition state from the laminar flow to the turbulence, the microspheres had a wide particle size distribution. Different process parameters could affect the particle size and distribution of microspheres by changing the Re, surface tension coefficient and viscosity. The microspheres prepared by liquid jet breakup were smooth and round with the drug loading of 35% and the encapsulation efficiency of 88%. In addition, when the polymeric carrier materials were different, the microspheres could have various drug release models such as sustained release with a lag phase, sustained release with no lag phase, pulsed release and so on, which could be applied widespread in the future.

RevDate: 2019-04-28

Kim J, Davidson S, A Mani (2019)

Characterization of Chaotic Electroconvection near Flat Inert Electrodes under Oscillatory Voltages.

Micromachines, 10(3): pii:mi10030161.

The onset of electroconvective instability in an aqueous binary electrolyte under external oscillatory electric fields at a single constant frequency is investigated in a 2D parallel flat electrode setup. Direct numerical simulations (DNS) of the Poisson⁻Nernst⁻Planck equations coupled with the Navier⁻Stokes equations at a low Reynolds number are carried out. Previous studies show that direct current (DC) electric field can create electroconvection near ion-selecting membranes in microfluidic devices. In this study, we show that electroconvection can be generated near flat inert electrodes when the applied electric field is oscillatory in time. A range of applied voltage, the oscillation frequency and the ratio of ionic diffusivities is examined to characterize the regime in which electroconvection takes place. Similar to electroconvection under DC voltages, AC electroconvection occurs at sufficiently high applied voltages in units of thermal volts and is characterized by transverse instabilities, physically manifested by an array of counter-rotating vortices near the electrode surfaces. The oscillating external electric field periodically generate and destroy such unsteady vortical structures. As the oscillation frequency is reduced to O (10 - 1) of the intrinsic resistor⁻capacitor (RC) frequency of electrolyte, electroconvective instability is considerably amplified. This is accompanied by severe depletion of ionic species outside the thin electric double layer and by vigorous convective transport involving a wide range of scales including those comparable to the distance L between the parallel electrodes. The underlying mechanisms are distinctly nonlinear and multi-dimensional. However, at higher frequencies of order of the RC frequency, the electrolyte response becomes linear, and the present DNS prediction closely resembles those explained by 1D asymptotic studies. Electroconvective instability supports increased electric current across the system. Increasing anion diffusivity results in stronger amplification of electroconvection over all oscillation frequencies examined in this study. Such asymmetry in ionic diffusivity, however, does not yield consistent changes in statistics and energy spectrum at all wall-normal locations and frequencies, implying more complex dynamics and different scaling for electrolytes with unequal diffusivities. Electric current is substantially amplified beyond the ohmic current at high oscillation frequencies. Also, it is found that anion diffusivity higher than cation has stronger impact on smaller-scale motions (≲ 0.1 L).

RevDate: 2019-03-10

Khani M, Lawrence BJ, Sass LR, et al (2019)

Characterization of intrathecal cerebrospinal fluid geometry and dynamics in cynomolgus monkeys (macaca fascicularis) by magnetic resonance imaging.

PloS one, 14(2):e0212239 pii:PONE-D-18-36037.

Recent advancements have been made toward understanding the diagnostic and therapeutic potential of cerebrospinal fluid (CSF) and related hydrodynamics. Increased understanding of CSF dynamics may lead to improved detection of central nervous system (CNS) diseases and optimized delivery of CSF based CNS therapeutics, with many proposed therapeutics hoping to successfully treat or cure debilitating neurological conditions. Before significant strides can be made toward the research and development of interventions designed for human use, additional research must be carried out with representative subjects such as non-human primates (NHP). This study presents a geometric and hydrodynamic characterization of CSF in eight cynomolgus monkeys (Macaca fascicularis) at baseline and two-week follow-up. Results showed that CSF flow along the entire spine was laminar with a Reynolds number ranging up to 80 and average Womersley number ranging from 4.1-7.7. Maximum CSF flow rate occurred ~25 mm caudal to the foramen magnum. Peak CSF flow rate ranged from 0.3-0.6 ml/s at the C3-C4 level. Geometric analysis indicated that average intrathecal CSF volume below the foramen magnum was 7.4 ml. The average surface area of the spinal cord and dura was 44.7 and 66.7 cm2 respectively. Subarachnoid space cross-sectional area and hydraulic diameter ranged from 7-75 mm2 and 2-3.7 mm, respectively. Stroke volume had the greatest value of 0.14 ml at an axial location corresponding to C3-C4.

RevDate: 2019-03-25
CmpDate: 2019-03-25

Mayzel J, Steinberg V, A Varshney (2019)

Stokes flow analogous to viscous electron current in graphene.

Nature communications, 10(1):937 pii:10.1038/s41467-019-08916-5.

Electron transport in two-dimensional conducting materials such as graphene, with dominant electron-electron interaction, exhibits unusual vortex flow that leads to a nonlocal current-field relation (negative resistance), distinct from the classical Ohm's law. The transport behavior of these materials is best described by low Reynolds number hydrodynamics, where the constitutive pressure-speed relation is Stoke's law. Here we report evidence of such vortices observed in a viscous flow of Newtonian fluid in a microfluidic device consisting of a rectangular cavity-analogous to the electronic system. We extend our experimental observations to elliptic cavities of different eccentricities, and validate them by numerically solving bi-harmonic equation obtained for the viscous flow with no-slip boundary conditions. We verify the existence of a predicted threshold at which vortices appear. Strikingly, we find that a two-dimensional theoretical model captures the essential features of three-dimensional Stokes flow in experiments.

RevDate: 2019-04-06

Tassew FA, Bergland WH, Dinamarca C, et al (2019)

Settling velocity and size distribution measurement of anaerobic granular sludge using microscopic image analysis.

Journal of microbiological methods, 159:81-90.

Settling velocity and size distribution of anaerobic granular sludge samples were studied using microscopic image analysis and settling column experiments. Five granule samples were considered in this study. Three samples were collected at the Top, Middle and Bottom sections of a lab scale upflow anaerobic sludge bed reactor (UASB). Two other granule samples were obtained from industries. This paper aims to establish a method that uses microscopic image analysis and shape factor as a tool to determine the size distribution and settling velocity of anaerobic granules. Image analysis technique was used to calculate the shape factor and equivalent diameter of granules. The equivalent diameter was then used to calculate the theoretical settling velocities based on Allen's formula and estimate size distributions. The results showed that there was a good agreement between the theoretical and experimental mean settling velocity values. Both measured and calculated settling velocities increased with increasing Reynolds number (Re). However, the agreement between measured and calculated values was found to be weaker at higher Re values. Size distribution analyses of the granules have revealed that there was significant difference in the size distribution of granule samples collected at different heights of the lab scale reactor. Overall, granules from the bottom section of the reactor had larger diameter, settling velocity and shape factor than those at the middle and top section granules. Whereas granules collected from the top section exhibited the smallest granular diameter, settling velocity and shape factor.

RevDate: 2019-02-27

Marner F, Scholle M, Herrmann D, et al (2019)

Competing Lagrangians for incompressible and compressible viscous flow.

Royal Society open science, 6(1):181595 pii:rsos181595.

A recently proposed variational principle with a discontinuous Lagrangian for viscous flow is reinterpreted against the background of stochastic variational descriptions of dissipative systems, underpinning its physical basis from a different viewpoint. It is shown that additional non-classical contributions to the friction force occurring in the momentum balance vanish by time averaging. Accordingly, the discontinuous Lagrangian can alternatively be understood from the standpoint of an analogous deterministic model for irreversible processes of stochastic character. A comparison is made with established stochastic variational descriptions and an alternative deterministic approach based on a first integral of Navier-Stokes equations is undertaken. The applicability of the discontinuous Lagrangian approach for different Reynolds number regimes is discussed considering the Kolmogorov time scale. A generalization for compressible flow is elaborated and its use demonstrated for damped sound waves.

RevDate: 2019-03-29

Medici G, West LJ, SA Banwart (2019)

Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport.

Journal of contaminant hydrology, 222:1-16.

Contaminants that are highly soluble in groundwater are rapidly transported via fractures in mechanically resistant sedimentary rock aquifers. Hence, a rigorous methodology is needed to estimate groundwater flow velocities in such fractured aquifers. Here, we propose an approach using borehole hydraulic testing to compute flow velocities in an un-faulted area of a fractured carbonate aquifer by applying the cubic law to a parallel plate model. The Cadeby Formation (Yorkshire, NE England) - a Permian dolostone aquifer present beneath the University of Leeds Farm - is the fractured aquifer selected for this hydraulic experiment. The bedding plane fractures of this dolostone aquifer, which are sub-horizontal, sub-parallel and laterally persistent, largely dominate the flow at shallow (<~40 mBGL) depths. These flowing bedding plane discontinuities are separated by a rock matrix which is relatively impermeable (Kwell-test/Kcore-plug~104) as is common in fractured carbonate aquifers. In the workflow reported here, the number of flowing fractures - mainly bedding plane fractures - intersecting three open monitoring wells are found from temperature/fluid conductivity and acoustic/optical televiewer logging. Following well installation, average fracture hydraulic apertures for screened intervals are found from analysis of slug tests. For the case study aquifer, this workflow predicts hydraulic apertures ranging from 0.10 up to 0.54 mm. However, groundwater flow velocities range within two order of magnitude from 13 up to 242 m/day. Notably, fracture apertures and flow velocities rapidly reduce with increasing depth below the water table; the upper ~10 m shows relatively high values of hydraulic conductivity (0.30-2.85 m/day) and corresponding flow velocity (33-242 m/day). Permeability development around the water table in carbonate aquifer-types is common, and arises where high pCO2 recharge water from the soil zone causes calcite/dolomite dissolution. Hence, agricultural contaminants entering the aquifer with recharge water are laterally transported rapidly within this upper part. Computation of groundwater flow velocities allows determination of the Reynolds number. Values of up ~1, indicating the lower limit of the transition from laminar to turbulent flow, are found at the studied site, which is situated away from major fault traces. Hence, turbulent flow is likely to arise in proximity to tectonic structures, such as normal faults, which localize flow and enhance karstification. The occurrence of turbulent flow in correspondence of such tectonic structures should be represented in regional groundwater flow simulations.

RevDate: 2019-07-22
CmpDate: 2019-07-22

Hyeon J, H So (2019)

Microfabricaton of microfluidic check valves using comb-shaped moving plug for suppression of backflow in microchannel.

Biomedical microdevices, 21(1):19 pii:10.1007/s10544-019-0365-1.

This study reports on an efficient microscale one-way valve system that combines the physical properties of photopolymerized microstructures and viscoelastic microchannels to rectify flows with low Reynolds numbers. The comb-shaped moving plug in the microchannel prevented backflow in the closed state to ensure that the microchannel remained completely blocked in the closed state, but allowed forward flow in the open state. This microfluidic check valve was microfabricated using the combination of the soft lithography and the releasing methods with the use of a double photoresist layer to create microchannels and free-moving comb-shaped microstructures, respectively. As a result, the microfluidic check valves elicited average high-pressure differences as much as 10.75 kPa between the backward and forward flows at low Reynolds numbers of the order of 0.253, thus demonstrating efficient rectification of microfluids. This study supports the use of rectification systems for the development of biomedical devices, such as drug delivery, micropumps, and lab-on-a-chip, by allowing unidirectional flow.

RevDate: 2019-07-23

Wang P, Cilliers JJ, Neethling SJ, et al (2019)

Effect of Particle Size on the Rising Behavior of Particle-Laden Bubbles.

Langmuir : the ACS journal of surfaces and colloids, 35(10):3680-3687.

The rising behavior of bubbles, initially half and fully coated with glass beads of various sizes, was investigated. The bubble velocity, aspect ratio, and oscillation periods were determined using high-speed photography and image analysis. In addition, the acting forces, drag modification factor, and modified drag coefficient were calculated and interpreted. Results show that the aspect ratio oscillation of the rising bubbles is similar, irrespective of the attached particle size. As the particle size is increased, the rising bubbles have a lower velocity and aspect ratio amplitude, with the time from release to each aspect ratio peak increasing. Higher particle coverage is shown to decrease the bubble velocity and dampen the oscillations, reducing the number of aspect ratio peaks observed. The highest rise velocities correspond to the lowest aspect ratios and vice versa, whereas a constant aspect ratio yields a constant rise velocity, independent of the particle size. Force analysis shows that the particle drag modification factor increases with the increased particle size and is greatest for fully laden bubbles. The modified drag coefficient of particle-laden bubbles increases with the increased particle size, although it decreases with the increased Reynolds number independent of the particle size. The drag force exerted by the particles plays a more dominant role in decreasing bubble velocities as the particle size increases. The results and interpretation produced a quantitative description of the behavior of rising particle-laden bubbles and the development of correlations will enhance the modeling of industrial applications.

RevDate: 2019-03-12

Álvarez-Regueiro E, Vallejo JP, Fernández-Seara J, et al (2019)

Experimental Convection Heat Transfer Analysis of a Nano-Enhanced Industrial Coolant.

Nanomaterials (Basel, Switzerland), 9(2): pii:nano9020267.

Convection heat transfer coefficients and pressure drops of four functionalized graphene nanoplatelet nanofluids based on the commercial coolant Havoline® XLC Pre-mixed 50/50 were experimentally determined to assess its thermal performance. The potential heat transfer enhancement produced by nanofluids could play an important role in increasing the efficiency of cooling systems. Particularly in wind power, the increasing size of the wind turbines, up to 10 MW nowadays, requires sophisticated liquid cooling systems to keep the nominal temperature conditions and protect the components from temperature degradation and hazardous environment in off-shore wind parks. The effect of nanoadditive loading, temperature and Reynolds number in convection heat transfer coefficients and pressure drops is discussed. A dimensionless analysis of the results is carried out and empirical correlations for the Nusselt number and Darcy friction factor are proposed. A maximum enhancement in the convection heat transfer coefficient of 7% was found for the nanofluid with nanoadditive loading of 0.25 wt %. Contrarily, no enhancement was found for the nanofluids of higher functionalized graphene nanoplatelet mass fraction.

RevDate: 2019-03-04
CmpDate: 2019-03-04

Lyu YZ, Zhu HJ, M Sun (2019)

Flapping-mode changes and aerodynamic mechanisms in miniature insects.

Physical review. E, 99(1-1):012419.

Miniature insects fly at very low Reynolds number (Re); low Re means large viscous effect. If flapping as larger insects, sufficient vertical force cannot be produced. We measure the wing kinematics for miniature-insect species of different sizes and compute the aerodynamic forces. The planar upstroke commonly used by larger insects changes to a U-shaped upstroke, which becomes deeper as size or Re decreases. For relatively large miniature insects, the U-shaped upstroke produces a larger vertical force than a planar upstroke by having a larger wing velocity and, for very small ones, the deep U-shaped upstroke produces a large transient drag directed upwards, providing the required vertical force.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
21454 NE 143rd Street
Woodinville, WA 98077

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )