Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Archaea

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 18 Jan 2020 at 01:30 Created: 

Archaea

In 1977, Carl Woese and George Fox applied molecular techniques to biodiversity and discovered that life on Earth consisted of three, not two (prokaryotes and eukaryotes), major lineages, tracing back nearly to the very origin of life on Earth. The third lineage has come to be known as the Archaea. Organisms now considered Archaea were originally thought to be a kind of prokaryote, but Woese and Fox showed that they were as different from prokaryotes as they were from eukaryotes. To understand life on Earth one must also understand the Archaea .

Created with PubMed® Query: archaea[TITLE] OR archaebacteria[TITLE] NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2020-01-17

Guo H, Ma L, Liang Y, et al (2020)

Response of ammonia-oxidizing Bacteria and Archaea to long-term saline water irrigation in alluvial grey desert soils.

Scientific reports, 10(1):489 pii:10.1038/s41598-019-57402-x.

Soil nitrification via ammonia oxidation is a key ecosystem process in terrestrial environments, but little is known of how increasing irrigation of farmland soils with saline waters effects these processes. We investigated the effects of long-term irrigation with saline water on the abundances and community structures of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Irrigation with brackish or saline water increased soil salinity (EC1:5) and NH4-N compared to irrigation with freshwater, while NO3-N, potential nitrification rates (PNR) and amoA gene copy numbers of AOA and AOB decreased markedly under irrigation regimes with saline waters. Moreover, irrigation with brackish water lowered AOA/AOB ratios. PNR was positively correlated with AOA and AOB amoA gene copy numbers across treatments. Saline and brackish water irrigation significantly increased the diversity of AOA, as noted by Shannon index values, while saline water irrigation markedly reduced AOB diversity. In addition, irrigation with brackish or fresh waters resulted in higher proportions of unclassified taxa in the AOB communities. However, irrigation with saline water led to higher proportions of unclassified taxa in the AOA communities along with the Candidatus Nitrosocaldus genus, as compared to soils irrigated with freshwater. AOA community structures were closely associated with soil salinity, NO3-N, and pH, while AOB communities were only significantly associated with NO3-N and pH. These results suggest that salinity was the dominant factor affecting the growth of ammonia-oxidizing microorganisms and community structure. These results can provide a scientific basis for further exploring the response mechanism of ammonia-oxidizing microorganisms and their roles in nitrogen transformation in alluvial grey desert soils of arid areas.

RevDate: 2020-01-16

Anonymous (2020)

The life of archaea.

Nature, 577(7790):294.

RevDate: 2020-01-16

Besseling MA, Hopmans EC, Bale NJ, et al (2020)

The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine Group II: Implications for lipid biosynthesis in Archaea.

Scientific reports, 10(1):294 pii:10.1038/s41598-019-57035-0.

The marine pelagic archaeal community is dominated by three major groups, the marine group I (MGI) Thaumarchaeota, and the marine groups II and III (MGII and MGIII) Euryarchaeota. Studies of both MGI cultures and the environment have shown that the MGI core membrane lipids are predominantly composed of glycerol dibiphytanyl glycerol tetraether (GDGT) lipids and the diether lipid archaeol. However, there are no cultured representatives of MGII and III archaea and, therefore, both their membrane lipid composition and potential contribution to the marine archaeal lipid pool remain unknown. Here, we show that GDGTs present in suspended particulate matter of the (sub)surface waters of the North Atlantic Ocean and the coastal North Sea are derived from MGI archaea, and that MGII archaea do not significantly contribute to the pool of GDGTs and archaeol. This implies, in contrast to previous suggestions, that their lipids do not affect the widely used sea surface temperature proxy TEX86. These findings also indicate that MGII archaea are not able to produce any known archaeal lipids, implying that our understanding of the evolution of membrane lipid biosynthesis in Archaea is far from complete.

RevDate: 2020-01-15

Barco RA, Garrity GM, Scott JJ, et al (2020)

A Genus Definition for Bacteria and Archaea Based on a Standard Genome Relatedness Index.

mBio, 11(1): pii:mBio.02475-19.

Genus assignment is fundamental in the characterization of microbes, yet there is currently no unambiguous way to demarcate genera solely using standard genomic relatedness indices. Here, we propose an approach to demarcate genera that relies on the combined use of the average nucleotide identity, genome alignment fraction, and the distinction between type- and non-type species. More than 3,500 genomes representing type strains of species from >850 genera of either bacterial or archaeal lineages were tested. Over 140 genera were analyzed in detail within the taxonomic context of order/family. Significant genomic differences between members of a genus and type species of other genera in the same order/family were conserved in 94% of the cases. Nearly 90% (92% if polyphyletic genera are excluded) of the type strains were classified in agreement with current taxonomy. The 448 type strains that need reclassification directly impact 33% of the genera analyzed in detail. The results provide a first line of evidence that the combination of genomic indices provides added resolution to effectively demarcate genera within the taxonomic framework that is currently based on the 16S rRNA gene. We also identify the emergence of natural breakpoints at the genome level that can further help in the circumscription of taxa, increasing the proportion of directly impacted genera to at least 43% and pointing at inaccuracies on the use of the 16S rRNA gene as a taxonomic marker, despite its precision. Altogether, these results suggest that genomic coherence is an emergent property of genera in Bacteria and ArchaeaIMPORTANCE In recent decades, the taxonomy of Bacteria and Archaea, and therefore genus designation, has been largely based on the use of a single ribosomal gene, the 16S rRNA gene, as a taxonomic marker. We propose an approach to delineate genera that excludes the direct use of the 16S rRNA gene and focuses on a standard genome relatedness index, the average nucleotide identity. Our findings are of importance to the microbiology community because the emergent properties of Bacteria and Archaea that are identified in this study will help assign genera with higher taxonomic resolution.

RevDate: 2020-01-11

Wang C, Tang S, He X, et al (2020)

The abundance and community structure of active ammonia-oxidizing archaea and ammonia-oxidizing bacteria shape their activities and contributions in coastal wetlands.

Water research, 171:115464 pii:S0043-1354(19)31241-2 [Epub ahead of print].

Aerobic ammonia oxidation, an important part of the global nitrogen cycle, is thought to be jointly driven by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in coastal wetlands. However, the activities and contributions of AOA and AOB in coastal wetlands have remained largely unknown. Here, we investigated the oxidation capability of AOA and AOB in four types of typical coastal wetlands (paddy, estuary, shallow and reed wetland) in the Bohai region in China using DNA-based stable-isotope probing (DNA-SIP), quantitative PCR and high-throughput sequencing techniques. We found that the community structure of AOB varied substantially, and the AOA structure was more stable across different coastal wetlands. The rate of AOA was 0.12, 0.84, 0.45 and 0.93 μg N g-1 soil d-1 in paddy, estuary, shallow and reed wetlands, and the rate of AOB was 5.61, 10.72, 0.74 and 1.16 μg N g-1 soil d-1, respectively. We found that the contribution of AOA gradually increased from paddy to estuary to shallow wetland and finally to reed wetland, with values of 2.03%, 7.25%, 37.53% and 44.51%, respectively. Our results provide new insight into the mechanisms of the differences in activities and the contributions of AOA and AOB in different coastal wetlands, and our findings may contribute to further understanding of the global nitrogen cycle.

RevDate: 2020-01-10

Dekas AE, Parada AE, Mayali X, et al (2019)

Characterizing Chemoautotrophy and Heterotrophy in Marine Archaea and Bacteria With Single-Cell Multi-isotope NanoSIP.

Frontiers in microbiology, 10:2682.

Characterizing and quantifying in situ metabolisms remains both a central goal and challenge for environmental microbiology. Here, we used a single-cell, multi-isotope approach to investigate the anabolic activity of marine microorganisms, with an emphasis on natural populations of Thaumarchaeota. After incubating coastal Pacific Ocean water with 13C-bicarbonate and 15N-amino acids, we used nanoscale secondary ion mass spectrometry (nanoSIMS) to isotopically screen 1,501 individual cells, and 16S rRNA amplicon sequencing to assess community composition. We established isotopic enrichment thresholds for activity and metabolic classification, and with these determined the percentage of anabolically active cells, the distribution of activity across the whole community, and the metabolic lifestyle-chemoautotrophic or heterotrophic-of each cell. Most cells (>90%) were anabolically active during the incubation, and 4-17% were chemoautotrophic. When we inhibited bacteria with antibiotics, the fraction of chemoautotrophic cells detected via nanoSIMS increased, suggesting archaea dominated chemoautotrophy. With fluorescence in situ hybridization coupled to nanoSIMS (FISH-nanoSIMS), we confirmed that most Thaumarchaeota were living chemoautotrophically, while bacteria were not. FISH-nanoSIMS analysis of cells incubated with dual-labeled (13C,15N-) amino acids revealed that most Thaumarchaeota cells assimilated amino-acid-derived nitrogen but not carbon, while bacteria assimilated both. This indicates that some Thaumarchaeota do not assimilate intact amino acids, suggesting intra-phylum heterogeneity in organic carbon utilization, and potentially their use of amino acids for nitrification. Together, our results demonstrate the utility of multi-isotope nanoSIMS analysis for high-throughput metabolic screening, and shed light on the activity and metabolism of uncultured marine archaea and bacteria.

RevDate: 2020-01-08

Maus D, Heinz J, Schirmack J, et al (2020)

Methanogenic Archaea Can Produce Methane in Deliquescence-Driven Mars Analog Environments.

Scientific reports, 10(1):6 pii:10.1038/s41598-019-56267-4.

The current understanding of the Martian surface indicates that briny environments at the near-surface are temporarily possible, e.g. in the case of the presumably deliquescence-driven Recurring Slope Lineae (RSL). However, whether such dynamic environments are habitable for terrestrial organisms remains poorly understood. This hypothesis was tested by developing a Closed Deliquescence System (CDS) consisting of a mixture of desiccated Martian Regolith Analog (MRA) substrate, salts, and microbial cells, which over the course of days became wetted through deliquescence. The methane produced via metabolic activity for three methanogenic archaea: Methanosarcina mazei, M. barkeri and M. soligelidi, was measured after exposing them to three different MRA substrates using either NaCl or NaClO4 as a hygroscopic salt. Our experiments showed that (1) M. soligelidi rapidly produced methane at 4 °C, (2) M. barkeri produced methane at 28 °C though not at 4 °C, (3) M. mazei was not metabolically reactivated through deliquescence, (4) none of the species produced methane in the presence of perchlorate, and (5) all species were metabolically most active in the phyllosilicate-containing MRA. These results emphasize the importance of the substrate, microbial species, salt, and temperature used in the experiments. Furthermore, we show here for the first time that water provided by deliquescence alone is sufficient to rehydrate methanogenic archaea and to reactivate their metabolism under conditions roughly analogous to the near-subsurface Martian environment.

RevDate: 2020-01-04

Cavalier-Smith T, EE Chao (2020)

Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria).

Protoplasma pii:10.1007/s00709-019-01442-7 [Epub ahead of print].

Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.

RevDate: 2019-12-31

Knüppel R, Fenk M, Jüttner M, et al (2020)

In Vivo RNA Chemical Footprinting Analysis in Archaea.

Methods in molecular biology (Clifton, N.J.), 2106:193-208.

RNA structural conformation and dynamics govern the functional properties of all RNA/RNP. Accordingly, defining changes of RNA structure and dynamics in various conditions may provide detailed insight into how RNA structural properties regulate the function of RNA/RNP. Traditional chemical footprinting analysis using chemical modifiers allows to sample the dynamics and conformation landscape of diverse RNA/RNP. However, many chemical modifiers are limited in their capacity to provide unbiased information reflecting the in vivo RNA/RNP structural landscape. In the recent years, the development of selective-2'-hydroxyl acylation analyzed by primer extension (SHAPE) methodology that uses powerful new chemical modifiers has significantly improved in vitro and in vivo structural probing of secondary and tertiary interactions of diverse RNA species at the single nucleotide level.Although the original discovery of Archaea as an independent domain of life is intimately linked to the technological development of RNA analysis, our understanding of in vivo RNA structural conformation and dynamics in this domain of life remains scarce.This protocol describes the in vivo use of SHAPE chemistry in two evolutionary divergent model Archaea, Sulfolobus acidocaldarius and Haloferax volcanii.

RevDate: 2019-12-30

Coutinho FH, Edwards RA, F Rodríguez-Valera (2019)

Charting the diversity of uncultured viruses of Archaea and Bacteria.

BMC biology, 17(1):109 pii:10.1186/s12915-019-0723-8.

BACKGROUND: Viruses of Archaea and Bacteria are among the most abundant and diverse biological entities on Earth. Unraveling their biodiversity has been challenging due to methodological limitations. Recent advances in culture-independent techniques, such as metagenomics, shed light on the unknown viral diversity, revealing thousands of new viral nucleotide sequences at an unprecedented scale. However, these novel sequences have not been properly classified and the evolutionary associations between them were not resolved.

RESULTS: Here, we performed phylogenomic analysis of nearly 200,000 viral nucleotide sequences to establish GL-UVAB: Genomic Lineages of Uncultured Viruses of Archaea and Bacteria. The pan-genome content of the identified lineages shed light on some of their infection strategies, potential to modulate host physiology, and mechanisms to escape host resistance systems. Furthermore, using GL-UVAB as a reference database for annotating metagenomes revealed elusive habitat distribution patterns of viral lineages and environmental drivers of community composition.

CONCLUSIONS: These findings provide insights about the genomic diversity and ecology of viruses of prokaryotes. The source code used in these analyses is freely available at https://sourceforge.net/projects/gluvab/.

RevDate: 2019-12-23

Li M, Huang Y, Yang Y, et al (2019)

Heavy metal ions removed from imitating acid mine drainages with a thermoacidophilic archaea: Acidianus manzaensis YN25.

Ecotoxicology and environmental safety, 190:110084 pii:S0147-6513(19)31415-0 [Epub ahead of print].

Metals in acid mine drainages (AMD) have posed a great threat to environment, and in situ economic environment-friendly remediation technologies need to be developed. Moreover, the effects of acidophiles on biosorption and migrating behaviors of metals in AMD have not been previously reported. In this study, the extremely thermoacidophilic Archaea, Acidianus manzaensis YN25 (A. manzaensis YN25) was used as a bio-adsorbent to adsorb metals (Cu2+, Ni2+, Cd2+ and Zn2+) from acidic solutions which were taken to imitate AMD. The values of their maximum biosorption capacities at both high (1 mM) and low (0.1 mM) metal concentrations followed the order: Cu2+ > Ni2+ > Cd2+ > Zn2+. With the elevations of temperature and pH value, the adsorption amounts of metals increased. The results also indicated that A. manzaensis YN25 had the highest adsorption affinity to Cu2+ in coexisting system of quaternary metals. Acid-base titration data revealed that carboxyl and phosphoryl groups provided adsorption sites for metals via deprotonation. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) further corroborated that amino played an important role in the biosorption process. The fitted Langmuir model illustrated monolayer adsorption occurring on cell surface. The possible adsorption mechanism of A. manzaensis YN25 mainly involved in electrostatic attraction and complexes formation. This study gives a profound insight into the biosorption behavior of heavy metals in acidic solution by thermoacidophilic Archaea and provides a probable novel strategy for in situ remediation of heavy metals pollution in AMD.

RevDate: 2019-12-19

Hernandez-Guerrero R, Galán-Vásquez E, E Pérez-Rueda (2019)

The protein architecture in Bacteria and Archaea identifies a set of promiscuous and ancient domains.

PloS one, 14(12):e0226604 pii:PONE-D-19-24704.

In this work, we describe a systematic comparative genomic analysis of promiscuous domains in genomes of Bacteria and Archaea. A quantitative measure of domain promiscuity, the weighted domain architecture score (WDAS), was used and applied to 1317 domains in 1320 genomes of Bacteria and Archaea. A functional analysis associated with the WDAS per genome showed that 18 of 50 functional categories were identified as significantly enriched in the promiscuous domains; in particular, small-molecule binding domains, transferases domains, DNA binding domains (transcription factors), and signal transduction domains were identified as promiscuous. In contrast, non-promiscuous domains were identified as associated with 6 of 50 functional categories, and the category Function unknown was enriched. In addition, the WDASs of 52 domains correlated with genome size, i.e., WDAS values decreased as the genome size increased, suggesting that the number of combinations at larger domains increases, including domains in the superfamilies Winged helix-turn-helix and P-loop-containing nucleoside triphosphate hydrolases. Finally, based on classification of the domains according to their ancestry, we determined that the set of 52 promiscuous domains are also ancient and abundant among all the genomes, in contrast to the non-promiscuous domains. In summary, we consider that the association between these two classes of protein domains (promiscuous and non-promiscuous) provides bacterial and archaeal cells with the ability to respond to diverse environmental challenges.

RevDate: 2019-12-19

Bao QL, Wang FH, Bao WK, et al (2019)

[Effects of Rice Straw Addition on Methanogenic Archaea and Bacteria in Two Paddy Soils].

Huan jing ke xue= Huanjing kexue, 40(9):4202-4212.

Rice straw (RS) returning has an important effect on CH4 emission in rice paddy soil. In the present study, two paddy soil types from Jiangxi (JX) and Guangdong (GD), respectively, with different amounts of added RS were incubated through microcosmic anaerobic incubation experiments to investigate the responses of methanogenic archaea and bacteria communities after relatively long-term incubation. The different amounts of added RS affected methanogenic archaea community structures in the JX soil to some extent but did not affect the GD soil. The mcrA gene copy number increased with an increase in RS amount in both soils. Under the same amount of RS, the copy number of this gene in the JX soil was greater than that in the GD soil. In addition, significant positive correlations were shown between the RS amount and the copy number of the mcrA gene, and the response of the copy number was more sensitive to the RS amount in the JX soil. Obvious differences in methanogenic archaea community structures were shown between two soils. Methanosarcinaceae, Methanocellaceae, Methanomicrobiaceae, Methanobacteriaceae, and unknown microorganism (494 bp) were detected in the JX soil, and Methanobacteriaceae, Methanosarcinaceae, and Methanocellaceae were observed in the GD soil. The bacterial communities exhibited obvious differences between the two soil types after 180 days of incubation. The bacterial diversity in the GD soil was higher than that in the JX soil, although the amounts of dominant bacteria in the JX soil, including Bacillus, Desulfovirgula, Thermosporothrix, Acidobacteria/Gp1, Acidobacteria/Gp3, and Ktedonobacter, were higher than those of the GD soil, including Longilinea, Acidobacteria/Gp6, Bellilinea, and Thermosporothrix. RS application promoted the growth of methanogenic archaea as important substrates. Moreover, different structures of methanogens and bacteria were shown between the two soil types after relatively long-term incubation.

RevDate: 2019-12-19

Guo JL, Liu Y, Wei WX, et al (2019)

[Impact of Dicyandiamide (DCD) and 3,4-Dimethylpyrazole Phosphate (DMPP) on Ammonia-oxidizing Bacteria and Archaea in a Vegetable Planting Soil].

Huan jing ke xue= Huanjing kexue, 40(11):5142-5150.

Nitrification inhibitors (NIs) dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) showed significant effects in the inhibition of nitrification and the improvement of the utilization efficiency of nitrogen fertilizer in agricultural soils. However, the effects of different NIs on ammonia-oxidizing bacteria (AOB) and archaea (AOA) is still unclear. To verify the inhibitory effect of DCD and DMPP on AOB and AOA, a pot experiment was performed, including Urea, Urea+DCD, and Urea+DMPP treatments. The dynamics of NH4+-N and NO3--N and nitrification potential among different treatments were measured. In addition, real-time PCR and high-throughput sequencing approaches were applied to investigate the changes in the AOB and AOA population abundance and composition. The results revealed that the concentrations of NH4+-N in Urea+DCD and Urea+DMPP treatments were 213% and 675% higher than that in the CK treatment, respectively. However, the concentrations of NO3--N and the nitrification potentials were 13.3% and 37.2%, and 20.4% and 82.4% lower than that in CK treatment, respectively; Furthermore, the copy numbers of the bacterial and archaeal amoA gene were 51.2% and 56.5%, and 6.0% and 27.0% lower than that in the CK treatment, respectively. However, the diversity indexes of AOB and AOA communities, including evenness and richness, exhibited no significant differences after addition of DCD and DMPP. The nork-environmental-samples, unclassified-Nitrosomonadaceae, unclassified-Bacteria, and Nitrosospira, were the predominant genera of the AOB community. The no rank-Crenarchaeota, no rank-environmental-samples and Nitrososphaera were the predominant groups in the AOA community. Summarily, application of DCD and DMPP significantly delayed the transformation of NH4+-N, decreased the formation of NO3--N, inhibited the abundance and changed the composition of AOB and AOA communities. DMPP had a stronger inhibitory effect on nitrification, and on AOB and AOA than DCD. Therefore, compared with DCD, DMPP had a better application prospect regarding the improvement of the nitrogen utilization efficiency in vegetable soil.

RevDate: 2019-12-14

Gribaldo S, C Brochier-Armanet (2019)

Evolutionary relationships between archaea and eukaryotes.

Nature ecology & evolution pii:10.1038/s41559-019-1073-1 [Epub ahead of print].

RevDate: 2019-12-12

Jüttner M, Weiß M, Ostheimer N, et al (2019)

A versatile cis-acting element reporter system to study the function, maturation and stability of ribosomal RNA mutants in archaea.

Nucleic acids research pii:5673628 [Epub ahead of print].

General molecular principles of ribosome biogenesis have been well explored in bacteria and eukaryotes. Collectively, these studies have revealed important functional differences and few similarities between these processes. Phylogenetic studies suggest that the information processing machineries from archaea and eukaryotes are evolutionary more closely related than their bacterial counterparts. These observations raise the question of how ribosome synthesis in archaea may proceed in vivo. In this study, we describe a versatile plasmid-based cis-acting reporter system allowing to analyze in vivo the consequences of ribosomal RNA mutations in the model archaeon Haloferax volcanii. Applying this system, we provide evidence that the bulge-helix-bulge motif enclosed within the ribosomal RNA processing stems is required for the formation of archaeal-specific circular-pre-rRNA intermediates and mature rRNAs. In addition, we have collected evidences suggesting functional coordination of the early steps of ribosome synthesis in H. volcanii. Together our investigation describes a versatile platform allowing to generate and functionally analyze the fate of diverse rRNA variants, thereby paving the way to better understand the cis-acting molecular determinants necessary for archaeal ribosome synthesis, maturation, stability and function.

RevDate: 2019-12-12

Zheng P, Wang C, Zhang X, et al (2019)

Community Structure and Abundance of Archaea in a Zostera marina Meadow: A Comparison between Seagrass-Colonized and Bare Sediment Sites.

Archaea (Vancouver, B.C.), 2019:5108012.

Seagrass colonization alters sediment physicochemical properties by depositing seagrass fibers and releasing organic carbon and oxygen from the roots. How this seagrass colonization-induced spatial heterogeneity affects archaeal community structure and abundance remains unclear. In this study, we investigated archaeal abundance, diversity, and composition in both vegetated and adjacent bare surface sediments of a Zostera marina meadow. High-throughput sequencing of 16S rDNA showed that Woesearchaeota, Bathyarchaeota, and Thaumarchaeota were the most abundant phyla across all samples, accounting for approximately 42%, 21%, and 17% of the total archaeal communities, respectively. In terms of relative abundance, Woesearchaeota and Bathyarchaeota were not significantly different between these two niches; however, specific subclades (Woese-3, Woese-21, Bathy-6, Bathy-18) were significantly enriched in vegetated sediments (P < 0.05), while Thaumarchaeota was favored in unvegetated sites (P = 0.02). The quantification of archaeal 16S rRNA genes showed that the absolute abundance of the whole archaeal community, Bathyarchaeota, and Woese-3, Woese-10, Woese-13, and Woese-21 was significantly more abundant in vegetated sediments than in bare sediments (P < 0.05). Our study expands the available knowledge of the distribution patterns and niche preferences of archaea in seagrass systems, especially for the different subclades of Woesearchaeota and Bathyarchaeota, in terms of both relative proportions and absolute quantities.

RevDate: 2019-12-10

Togo AH, Grine G, Khelaifia S, et al (2019)

Culture of Methanogenic Archaea from Human Colostrum and Milk.

Scientific reports, 9(1):18653 pii:10.1038/s41598-019-54759-x.

Archaeal sequences have been detected in human colostrum and milk, but no studies have determined whether living archaea are present in either of these fluids. Methanogenic archaea are neglected since they are not detected by usual molecular and culture methods. By using improved DNA detection protocols and microbial culture techniques associated with antioxidants previously developed in our center, we investigated the presence of methanogenic archaea using culture and specific Methanobrevibacter smithii and Methanobrevibacter oralis real-time PCR in human colostrum and milk. M. smithii was isolated from 3 colostrum and 5 milk (day 10) samples. M. oralis was isolated from 1 milk sample. For 2 strains, the genome was sequenced, and the rhizome was similar to that of strains previously isolated from the human mouth and gut. M. smithii was detected in the colostrum or milk of 5/13 (38%) and 37/127 (29%) mothers by culture and qPCR, respectively. The different distribution of maternal body mass index according to the detection of M. smithii suggested an association with maternal metabolic phenotype. M. oralis was not detected by molecular methods. Our results suggest that breastfeeding may contribute to the vertical transmission of these microorganisms and may be essential to seed the infant's microbiota with these neglected critical commensals from the first hour of life.

RevDate: 2019-12-05

Prakash D, Iyer PR, Suharti S, et al (2019)

Structure and function of an unusual flavodoxin from the domain Archaea.

Proceedings of the National Academy of Sciences of the United States of America pii:1908578116 [Epub ahead of print].

Flavodoxins, electron transfer proteins essential for diverse metabolisms in microbes from the domain Bacteria, are extensively characterized. Remarkably, although genomic annotations of flavodoxins are widespread in microbes from the domain Archaea, none have been isolated and characterized. Herein is described the structural, biochemical, and physiological characterization of an unusual flavodoxin (FldA) from Methanosarcina acetivorans, an acetate-utilizing methane-producing microbe of the domain Archaea In contrast to all flavodoxins, FldA is homodimeric, markedly less acidic, and stabilizes an anionic semiquinone. The crystal structure reveals an flavin mononucleotide (FMN) binding site unique from all other flavodoxins that provides a rationale for stabilization of the anionic semiquinone and a remarkably low reduction potentials for both the oxidized/semiquinone (-301 mV) and semiquinone/hydroquinone couples (-464 mV). FldA is up-regulated in acetate-grown versus methanol-grown cells and shown here to substitute for ferredoxin in mediating the transfer of low potential electrons from the carbonyl of acetate to the membrane-bound electron transport chain that generates ion gradients driving ATP synthesis. FldA offers potential advantages over ferredoxin by (i) sparing iron for abundant iron-sulfur proteins essential for acetotrophic growth and (ii) resilience to oxidative damage.

RevDate: 2019-12-03

Zhu Q, Mai U, Pfeiffer W, et al (2019)

Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea.

Nature communications, 10(1):5477 pii:10.1038/s41467-019-13443-4.

Rapid growth of genome data provides opportunities for updating microbial evolutionary relationships, but this is challenged by the discordant evolution of individual genes. Here we build a reference phylogeny of 10,575 evenly-sampled bacterial and archaeal genomes, based on a comprehensive set of 381 markers, using multiple strategies. Our trees indicate remarkably closer evolutionary proximity between Archaea and Bacteria than previous estimates that were limited to fewer "core" genes, such as the ribosomal proteins. The robustness of the results was tested with respect to several variables, including taxon and site sampling, amino acid substitution heterogeneity and saturation, non-vertical evolution, and the impact of exclusion of candidate phyla radiation (CPR) taxa. Our results provide an updated view of domain-level relationships.

RevDate: 2019-12-02

Islam GM, Vi P, KA Gilbride (2019)

Functional relationship between ammonia-oxidizing bacteria and ammonia-oxidizing archaea populations in the secondary treatment system of a full-scale municipal wastewater treatment plant.

Journal of environmental sciences (China), 86:120-130.

The abundance of ammonia-oxidizing bacteria and archaea and their amoA genes from the aerobic activated sludge tanks, recycled sludge and anaerobic digesters of a full-scale wastewater treatment plant (WWTP) was determined. Polymerase chain reaction and denaturing gradient gel electrophoresis were used to generate diversity profiles, which showed that each population had a consistent profile although the abundance of individual members varied. In the aerobic tanks, the ammonia-oxidizing bacterial (AOB) population was more than 350 times more abundant than the ammonia-oxidizing archaeal (AOA) population, however in the digesters, the AOA population was more than 10 times more abundant. Measuring the activity of the amoA gene expression of the two populations using RT-PCR also showed that the AOA amoA gene was more active in the digesters than in the activated sludge tanks. Using batch reactors and ddPCR, amoA activity could be measured and it was found that when the AOB amoA activity was inhibited in the anoxic reactors, the expression of the AOA amoA gene increased fourfold. This suggests that these two populations may have a cooperative relationship for the oxidation of ammonia.

RevDate: 2019-11-22

Rinke C, Rubino F, Messer LF, et al (2019)

Correction: A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.).

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

RevDate: 2019-11-20

Paula FS, Chin JP, Schnürer A, et al (2019)

The potential for polyphosphate metabolism in Archaea and anaerobic polyphosphate formation in Methanosarcina mazei.

Scientific reports, 9(1):17101 pii:10.1038/s41598-019-53168-4.

Inorganic polyphosphate (polyP) is ubiquitous across all forms of life, but the study of its metabolism has been mainly confined to bacteria and yeasts. Few reports detail the presence and accumulation of polyP in Archaea, and little information is available on its functions and regulation. Here, we report that homologs of bacterial polyP metabolism proteins are present across the major taxa in the Archaea, suggesting that archaeal populations may have a greater contribution to global phosphorus cycling than has previously been recognised. We also demonstrate that polyP accumulation can be induced under strictly anaerobic conditions, in response to changes in phosphate (Pi) availability, i.e. Pi starvation, followed by incubation in Pi replete media (overplus), in cells of the methanogenic archaeon Methanosarcina mazei. Pi-starved M. mazei cells increased transcript abundance of the alkaline phosphatase (phoA) gene and of the high-affinity phosphate transport (pstSCAB-phoU) operon: no increase in polyphosphate kinase 1 (ppk1) transcript abundance was observed. Subsequent incubation of Pi-starved M. mazei cells under Pi replete conditions, led to a 237% increase in intracellular polyphosphate content and a > 5.7-fold increase in ppk1 gene transcripts. Ppk1 expression in M. mazei thus appears not to be under classical phosphate starvation control.

RevDate: 2019-11-18

Dame-Teixeira N, de Cena JA, Côrtes DA, et al (2019)

Presence of Archaea in dental caries biofilms.

Archives of oral biology, 110:104606 pii:S0003-9969(19)30846-5 [Epub ahead of print].

OBJECTIVE: Although the prevalence and functions associated with members of Bacteria are well known in dental caries, the role of Archaea in cariogenic biofilms has not been studied yet.

DESIGN: To detect the presence of Archaea in dental caries, a triplicate of carious dentine samples and duplicate of supragingival biofilms were collected, total microbial DNA was extracted and the composition of the microbiota was investigated. Total DNA was submitted to 16S rRNA gene amplification using universal prokaryotic primers; amplicons were sequenced by high-throughput DNA sequencing. As a second strategy to detect Archaea, a representative sample of caries was chosen and other PCR reactions were performed using specific primers targeting the archaeal 16S rRNA gene; amplicons were cloned and sequenced. Annotation of sequences was performed using SILVA database and the relative abundance of genus level OTUs was calculated.

RESULTS: The high-throughput sequencing method detected archaeal sequences in all samples (identified as group I.1c of the phylum Thaumarchaeota), although in a very low abundance (≤0.03 % of the total sequences). For the second strategy, 14 archaeal clones were detected, with an OTU affiliated to Methanocella clade, and another one affiliated to group I.1b of the phylum Thaumarchaeota.

CONCLUSIONS: Archaeal sequences were detected in dental caries and biofilms from surfaces without caries lesions. DNA sequences of Thaumarchaeota were also identified, showing that overall archaeal diversity in the human oral cavity could be currently underestimated and not restricted to methanogens.

RevDate: 2019-11-12

Brewer TE, Albertsen M, Edwards A, et al (2019)

Unlinked rRNA genes are widespread among bacteria and archaea.

The ISME journal pii:10.1038/s41396-019-0552-3 [Epub ahead of print].

Ribosomes are essential to cellular life and the genes for their RNA components are the most conserved and transcribed genes in bacteria and archaea. Ribosomal RNA genes are typically organized into a single operon, an arrangement thought to facilitate gene regulation. In reality, some bacteria and archaea do not share this canonical rRNA arrangement-their 16S and 23S rRNA genes are separated across the genome and referred to as "unlinked". This rearrangement has previously been treated as an anomaly or a byproduct of genome degradation in intracellular bacteria. Here, we leverage complete genome and long-read metagenomic data to show that unlinked 16S and 23S rRNA genes are more common than previously thought. Unlinked rRNA genes occur in many phyla, most significantly within Deinococcus-Thermus, Chloroflexi, and Planctomycetes, and occur in differential frequencies across natural environments. We found that up to 41% of rRNA genes in soil were unlinked, in contrast to the human gut, where all sequenced rRNA genes were linked. The frequency of unlinked rRNA genes may reflect meaningful life history traits, as they tend to be associated with a mix of slow-growing free-living species and intracellular species. We speculate that unlinked rRNA genes may confer selective advantages in some environments, though the specific nature of these advantages remains undetermined and worthy of further investigation. More generally, the prevalence of unlinked rRNA genes in poorly-studied taxa serves as a reminder that paradigms derived from model organisms do not necessarily extend to the broader diversity of bacteria and archaea.

RevDate: 2019-11-12

Johnsen U, Sutter JM, Reinhardt A, et al (2019)

D-Ribose catabolism in archaea: Discovery of a novel oxidative pathway in Haloarcula species.

Journal of bacteriology pii:JB.00608-19 [Epub ahead of print].

The Haloarcula species H. marismortui and H. hispanica were found to grow on D-ribose, D-xylose and L-arabinose. Here we report the discovery of a novel promiscuous oxidative pathway of pentose degradation based on genome analyses, identification and characterization of enzymes, transcriptional analyses and growth experiments with knock out mutants. Together, the data indicate that in Haloarcula D-ribose, D-xylose and L-arabinose were degraded to α-ketoglutarate involving the following enzymes: (i) a promiscuous pentose dehydrogenase catalyzed the oxidation of D-ribose, D-xylose and L-arabinose. (ii) a promiscuous pentonolactonase is involved in the hydrolysis of ribonolactone, xylonolactone and arabinolactone. (iii) a highly specific dehydratase, ribonate dehydratase, catalyzed the dehydration of ribonate, and a second enzyme, a promiscuous xylonate/gluconate dehydratase, was involved in the conversion of xylonate, arabinonate and gluconate. Phylogenetic analyses indicated that the highly specific ribonate dehydratase constitutes a novel sugar acid dehydratase family within the enolase superfamily. (iv) Finally, 2-keto-3-deoxypentonate dehydratase and α-ketoglutarate semialdehyde dehydrogenase catalyzed the conversion of 2-keto-3-deoxypentanonate to α-ketoglutarate via α-ketoglutarate semialdehyde.We conclude that the expanded substrate specificity of the pentose dehydrogenase and pentonolactonase towards D-ribose and ribonolactone, respectively and the presence of a highly specific ribonate dehydratase are prerequisites of the oxidative degradation of D-ribose in Haloarcula This is the first characterization of an oxidative degradation pathway of D-ribose to α-ketoglutarate in archaea.Importance The utilization and degradation of D-ribose in archaea, the third domain of life, has not been analyzed so far. We show that Haloarcula species utilize D-ribose which is degraded to α-ketoglutarate via a novel oxidative pathway. Evidence is presented that the oxidative degradation of D-ribose involves novel promiscuous enzymes, pentose dehydrogenase and pentonolactonase, and a novel sugar acid dehydratase highly specific for ribonate. This is the first report of an oxidative degradation pathway of D-ribose in archaea, which differs from the canonical non-oxidative pathway of D-ribose degradation reported for most bacteria. The data contribute to our understanding of the unusual sugar degradation pathways and enzymes in archaea.

RevDate: 2019-11-11

Zhao C, Lyu Z, Long F, et al (2019)

The Nbp35/ApbC homolog acts as a nonessential [4Fe-4S] transfer protein in methanogenic archaea.

FEBS letters [Epub ahead of print].

The Nbp35/Cfd1/ApbC protein homologs have been identified in all three domains of life. In eukaryotes, the Nbp35/Cfd1 heterocomplex is an essential Fe-S cluster assembly scaffold required for the maturation of Fe-S proteins in the cytosol and nucleus, whereas the bacterial ApbC is an Fe-S cluster transfer protein only involved in the maturation of a specific target protein. Here, we show that the Nbp35/ApbC homolog MMP0704 purified from its native archaeal host Methanococcus maripaludis contains a [4Fe-4S] cluster that can be transferred to a [4Fe-4S] apo-protein. Deletion of mmp0704 from M. maripaludis does not cause growth deficiency under our tested conditions. Our data indicate that Nbp35/ApbC is a nonessential [4Fe-4S] cluster transfer protein in methanogenic archaea.

RevDate: 2019-11-09

Kubatova N, Pyper DJ, Jonker HRA, et al (2019)

Rapid biophysical characterization and NMR structural analysis of small proteins from bacteria and archaea.

Chembiochem : a European journal of chemical biology [Epub ahead of print].

Proteins encoded by small open reading frames (sORFs) have a widespread occurrence in diverse microorganisms and can be of high functional importance. However, due to annotation biases and their technically challenging direct detection, these small proteins were overlooked for a long time and are becoming discovered only recently. The currently rapidly growing number of such proteins requires efficient methods to investigate their structure-function-relation. Here, we present a method for fast determination of the conformational properties of small proteins. Their small size makes them perfectly amenable for solution-state NMR spectroscopy. NMR spectroscopy can provide detailed information about their conformational states (folded, partially folded and unstructured). In the context of the priority program on small proteins funded by the German research foundation (SPP2002), we have investigated 27 small proteins from nine different bacterial and archaeal organisms. We found that most of these small proteins are unstructured or partially folded. Bioinformatics tools predict that some of these unstructured proteins can potentially fold upon complex formation. We further describe a protocol for fast NMR structure elucidation for those small proteins that adopt a persistently folded structure by implementation of new NMR technologies including automated resonance assignment and non-uniform sampling in combination with targeted acquisition.

RevDate: 2019-11-15

Chénard C, Wijaya W, Vaulot D, et al (2019)

Temporal and spatial dynamics of Bacteria, Archaea and protists in equatorial coastal waters.

Scientific reports, 9(1):16390.

Singapore, an equatorial island in South East Asia, is influenced by a bi-annual reversal of wind directions which defines two monsoon seasons. We characterized the dynamics of the microbial communities of Singapore coastal waters by collecting monthly samples between February 2017 and July 2018 at four sites located across two straits with different trophic status, and sequencing the V6-V8 region of the small sub-unit ribosomal RNA gene (rRNA gene) of Bacteria, Archaea, and Eukaryota. Johor Strait, which is subjected to wider environmental fluctuations from anthropogenic activities, presented a higher abundance of copiotrophic microbes, including Cellvibrionales and Rhodobacterales. The mesotrophic Singapore Strait, where the seasonal variability is caused by changes in the oceanographic conditions, harboured a higher proportion of typically marine microbe groups such as Synechococcales, Nitrosupumilales, SAR11, SAR86, Marine Group II Archaea and Radiolaria. In addition, we observed seasonal variability of the microbial communities in the Singapore Strait, which was possibly influenced by the alternating monsoon regime, while no seasonal pattern was detected in the Johor Strait.

RevDate: 2019-11-06

Mukhtar H, Lin YP, Lin CM, et al (2019)

Relative Abundance of Ammonia Oxidizing Archaea and Bacteria Influences Soil Nitrification Responses to Temperature.

Microorganisms, 7(11): pii:microorganisms7110526.

Ammonia oxidizing archaea (AOA) and bacteria (AOB) are thought to contribute differently to soil nitrification, yet the extent to which their relative abundances influence the temperature response of nitrification is poorly understood. Here, we investigated the impact of different AOA to AOB ratios on soil nitrification potential (NP) across a temperature gradient from 4 °C to 40 °C in twenty different organic and inorganic fertilized soils. The temperature responses of different relative abundance of ammonia oxidizers for nitrification were modeled using square rate theory (SQRT) and macromolecular rate theory (MMRT) models. We found that the proportional nitrification rates at different temperatures varied among AOA to AOB ratios. Predicted by both models, an optimum temperature (Topt) for nitrification in AOA dominated soils was significantly higher than for soils where AOA and AOB abundances are within the same order of magnitude. Moreover, the change in heat capacity (Δ C P ‡) associated with the temperature dependence of nitrification was positively correlated with Topt and significantly varied among the AOA to AOB ratios. The temperature ranges for NP decreased with increasing AOA abundance for both organic and inorganic fertilized soils. These results challenge the widely accepted approach of comparing NP rates in different soils at a fixed temperature. We conclude that a shift in AOA to AOB ratio in soils exhibits distinguished temperature-dependent characteristics that have an important impact on nitrification responses across the temperature gradient. The proposed approach benefits the accurate discernment of the true contribution of fertilized soils to nitrification for improvement of nitrogen management.

RevDate: 2019-11-15

Magdalena JA, C González-Fernández (2019)

Archaea inhibition: Strategies for the enhancement of volatile fatty acids production from microalgae.

Waste management (New York, N.Y.), 102:222-230 pii:S0956-053X(19)30681-6 [Epub ahead of print].

In the present study, anaerobic sludge was subjected to thermal and chemical pretreatments to favour VFAs production from a protein-rich waste (i.e. microalgae biomass). Sludge pretreatments have been previously used in hydrogen production; however, information about how they can affect VFAs production from microalgae is still lacking. Thermal pretreatment was studied at: (i) 80 °C for 10 and 30 min; (ii) 120 °C for 10 and 30 min; and (iii) 100 °C for 20 min. 2-bromoethanesulfonate (BES) at 10 mM and 30 mM was used as chemical pretreatment. Besides, a combination of both pretreatment methods (80 °C and 120 °C at 10 mM and 30 mM BES) was also tested. Thermal pretreatment increased organic matter conversions into VFAs (up to 71% COD-VFAs/CODin) when compared to control values (40% in the untreated anaerobic sludge). Acetic acid was the most abundant VFAs at high temperatures (120 °C) and when BES was employed (up to 60% and 40%, respectively, in terms of COD). On the other hand, propionic acid was the most abundant product at low temperatures and in the untreated anaerobic sludge (up to 60% in terms of COD). This research work might set guidelines in order to choose a suitable sludge pretreatment for VFAs production from microalgae.

RevDate: 2019-11-08

He H, Fu L, Liu Q, et al (2019)

Community Structure, Abundance and Potential Functions of Bacteria and Archaea in the Sansha Yongle Blue Hole, Xisha, South China Sea.

Frontiers in microbiology, 10:2404.

The Sansha Yongle Blue Hole is the deepest blue hole in the world and exhibits unique environmental characteristics. In this paper, Illumina sequencing and qPCR analysis were conducted to obtain the microbial information in this special ecosystem. The results showed that the richness and diversity of bacterial communities in the hole was greater than those of archaeal communities, and bacterial and archaeal communities were dominated by Proteobacteria and Euryarchaeota, respectively. Temperature and nitrate concentration significantly contributed to the heterogeneous distribution of major bacterial clades; salinity explained most variations of the archaeal communities, but not significant. A sudden increase of bacterial 16S rRNA, archaeal 16S rRNA, ANAMMOX 16S rRNA, nirS and dsrB gene was noticed from 90 to 100 m in the hole probably due to more phytoplankton at this depth. Sulfur oxidation and nitrate reduction were the most abundant predicted ecological functions in the hole, while lots of archaea were predicted to be involved in aerobic ammonia oxidation and methanogenesis. The co-occurrence network analysis illustrated that a synergistic effect between sulfate reduction and sulfur oxidation, and between nitrogen fixation and denitrification, a certain degree of coupling between sulfur and nitrogen cycle was also observed in the hole. The comparisons of bacterial and archaeal communities between the hole and other caves in the world (or other areas of the South China Sea) suggest that similar conditions are hypothesized to give rise to similar microbial communities, and environmental conditions may contribute significantly to the bacterial and archaeal communities.

RevDate: 2019-11-13

Tu R, Jin W, Han SF, et al (2019)

Rapid enrichment and ammonia oxidation performance of ammonia-oxidizing archaea from an urban polluted river of China.

Environmental pollution (Barking, Essex : 1987), 255(Pt 2):113258.

Ammonia oxidation is the rate-limiting step in nitrification process and dominated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). In the present study, a highly enriched culture of AOA was obtained from urban polluted water in Shahe River, Shenzhen, China. The optimum growth conditions were identified by orthogonal analysis as 37 °C, with pH 7.0 and initial ammonia concentration of 1.0 mM. Under these conditions, the highest abundance of AOA was obtained as 4.6 × 107 copies/ng DNA. Growth of AOA in polluted river water showed significant reduction in ammonia concentration in AOA-enriched cultures without antibiotics after 10 days of incubation, while synchronous increase in nitrate concentration was up to 12.7 mg/L. However, AOA-enriched by antibiotic showed insignificant changes in ammonia or nitrite concentration. This study showed that AOB play an important role in ammonia oxidation of polluted river water, and AOA alone showed insignificant changes in ammonia or nitrite concentrations. Therefore, the ammonia oxidation performance of natural water could not be improved by adding high concentration AOA bacterial liquid.

RevDate: 2019-11-09

Belilla J, Moreira D, Jardillier L, et al (2019)

Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area.

Nature ecology & evolution, 3(11):1552-1561.

Microbial life has adapted to various individual extreme conditions; yet, organisms simultaneously adapted to very low pH, high salt and high temperature are unknown. We combined environmental 16S/18S ribosomal RNA gene metabarcoding, cultural approaches, fluorescence-activated cell sorting, scanning electron microscopy and chemical analyses to study samples along such unique polyextreme gradients in the Dallol-Danakil area in Ethiopia. We identified two physicochemical barriers to life in the presence of surface liquid water defined by (1) high chaotropicity-low water activity in Mg2+/Ca2+-dominated brines and (2) hyperacidity-salt combinations (pH ~0/NaCl-dominated salt saturation). When detected, life was dominated by highly diverse ultrasmall archaea that were widely distributed across phyla with and without previously known halophilic members. We hypothesize that a high cytoplasmic K+-level was an original archaeal adaptation to hyperthermophily, subsequently exapted during several transitions to extreme halophily. We detect active silica encrustment/fossilization of cells but also abiotic biomorphs of varied chemistry. Our work helps circumscribing habitability and calls for cautionary interpretations of morphological biosignatures on Earth and beyond.

RevDate: 2019-11-15

Xu S, Lu W, Mustafa MF, et al (2019)

Presence of diverse nitrate-dependent anaerobic methane oxidizing archaea in sewage sludge.

Journal of applied microbiology [Epub ahead of print].

AIM: The aim of this study was to explore the community diversity and abundance of nitrate-dependent anaerobic methane oxidizing archaea, Candidatus Methanoperedens nitroreducens, in sewage sludge from wastewater treatment plants.

METHODS AND RESULTS: Seasonal sampling of the sewage sludge was carried out from two wastewater treatment plants (WWTPs) located in the northern and southern parts of China. Through amplicon sequencing using our newly designed primers, a large number of Candidatus Methanoperedens nitroreducens-like (M. nitroreducens) archaeal sequences (638 743) were generated. These sequences were assigned into 742 operational protein units (OPUs) at 90% cut-off level and classified as Group B member of M. nitroreducens archaea in the phylogenetic tree. More than 80% of the OPUs were not shared between these two WWTPs, showing the M. nitroreducens-like archaeal community in each WWTP was unique. Quantitative PCR assays also confirmed the presence of M. nitroreducens-like archaea and revealed a higher abundance in autumn and winter than other seasons, indicating that the environmental attributes in these seasons might favour the growth of this archaea. Further redundancy analysis revealed that volatile solid and pH were the significant environmental attributes (P < 0·05) in shaping the M. nitroreducens-like archaeal community based on variance inflation factor selection and Monte Carlo permutation test.

CONCLUSIONS: The results confirmed the presence of diverse M. nitroreducens-like archaea in sewage sludge using Illumina-based mcrA gene sequencing and quantitative PCR assays.

The results of this study revealed the ecological characteristics of M. nitroreducens-like archaea in sewage sludge that improved our understanding of nitrate-dependent anaerobic methane oxidation process and may be the basis for future application of M. nitroreducens-like archaea for new nitrogen removal in WWTPs.

RevDate: 2019-10-24

Yuan M, Liu S, Wang Z, et al (2019)

Effects of particle size of ground alfalfa hay on caecal bacteria and archaea populations of rabbits.

PeerJ, 7:e7910.

This work was aimed to investigate the effects of the different particle size of ground alfalfa hay on caecal microbial and archeal communities of rabbits. One hundred-twenty New Zealand rabbits (950.3 ± 8.82 g) were allocated into four treatments, with five replicates in each treatment and six rabbits in each replicate. The particle sizes of the alfalfa meal in the four treatment diets were 2,500, 1,000, 100 and 10 µm respectively, while the other ingredients were ground through a 2.5 mm sieve. High-throughput sequencing technology was applied to examine the differences in bacteria and methanogenic archaea diversity in the caecum of the four treatment groups of rabbits. A total of 745,946 bacterial sequences (a mean of 31,081 ± 13,901 sequences per sample) and 539,227 archaeal sequences (a mean of 22,468 ± 2,443 sequences per sample) were recovered from twenty-four caecal samples, and were clustered into 9,953 and 2,246 OTUs respectively. A total of 26 bacterial phyla with 465 genera and three archaeal phyla with 10 genera were identified after taxonomic summarization. Bioinformatic analyses illustrated that Firmicutes (58.69% ∼ 68.50%) and Bacteroidetes (23.96% ∼ 36.05%) were the two most predominant bacterial phyla and Euryarchaeota (over 99.9%) was the most predominant archaeal phyla in the caecum of all rabbits. At genus level, as the particle size of alfalfa decreased from 2,500 to 10 µm, the relative abundances of Ruminococcaceae UCG-014 (P < 0.001) and Lactobacillus (P = 0.043) were increased and Ruminococcaceae UCG-005 (P = 0.012) was increased first and then decreased when the alfalfa particle size decreased, while Lachnospiraceae NK4A136 group (P = 0.016), Ruminococcaceae NK4A214 (P = 0.044), Christensenellaceae R-7 group (P = 0.019), Lachnospiraceae other (Family) (P = 0.011) and Ruminococcaceae UCG-013 (P = 0.021) were decreased. The relative abundance of Methanobrevibacter was increased from 62.48% to 90.40% (P < 0.001), whereas the relative abundance of Methanosphaera was reduced from 35.47% to 8.62% (P < 0.001). In conclusion, as the particle size of alfalfa meal decreased, both the bacterial and archaeal population in the caecum of rabbit experienced alterations, however archaea response earlier than bacteria to the decrease of alfalfa meal particle size.

RevDate: 2019-10-17

Lu Y, Xia X, Cheung S, et al (2019)

Differential Distribution and Determinants of Ammonia Oxidizing Archaea Sublineages in the Oxygen Minimum Zone off Costa Rica.

Microorganisms, 7(10): pii:microorganisms7100453.

Ammonia oxidizing archaea (AOA) are microbes that are widely distributed in the ocean that convert ammonia to nitrite for energy acquisition in the presence of oxygen. Recent study has unraveled highly diverse sublineages within the previously defined AOA ecotypes (i.e., water column A (WCA) and water column B (WCB)), although the eco-physiology and environmental determinants of WCB subclades remain largely unclear. In this study, we examined the AOA communities along the water columns (40-3000 m depth) in the Costa Rica Dome (CRD) upwelling region in the eastern tropical North Pacific Ocean. Highly diverse AOA communities that were significantly different from those in oxygenated water layers were observed in the core layer of the oxygen minimum zone (OMZ), where the dissolved oxygen (DO) concentration was < 2μM. Moreover, a number of AOA phylotypes were found to be enriched in the OMZ core. Most of them were negatively correlated with DO and were also detected in other OMZs in the Arabian Sea and Gulf of California, which suggests low oxygen adaptation. This study provided the first insight into the differential niche partitioning and environmental determinants of various subclades within the ecotype WCB. Our results indicated that the ecotype WCB did indeed consist of various sublineages with different eco-physiologies, which should be further explored.

RevDate: 2019-10-16

Odelade KA, OO Babalola (2019)

Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity.

International journal of environmental research and public health, 16(20): pii:ijerph16203873.

The persistent and undiscriminating application of chemicals as means to improve crop growth, development and yields for several years has become problematic to agricultural sustainability because of the adverse effects these chemicals have on the produce, consumers and beneficial microbes in the ecosystem. Therefore, for agricultural productivity to be sustained there are needs for better and suitable preferences which would be friendly to the ecosystem. The use of microbial metabolites has become an attractive and more feasible preference because they are versatile, degradable and ecofriendly, unlike chemicals. In order to achieve this aim, it is then imperative to explore microbes that are very close to the root of a plant, especially where they are more concentrated and have efficient activities called the rhizosphere. Extensive varieties of bacteria, archaea, fungi and other microbes are found inhabiting the rhizosphere with various interactions with the plant host. Therefore, this review explores various beneficial microbes such as bacteria, fungi and archaea and their roles in the environment in terms of acquisition of nutrients for plants for the purposes of plant growth and health. It also discusses the effect of root exudate on the rhizosphere microbiome and compares the three domains at molecular levels.

RevDate: 2019-11-14

Farley KR, WW Metcalf (2019)

The streptothricin acetyltransferase (sat) gene as a positive selectable marker for methanogenic archaea.

FEMS microbiology letters, 366(17):.

A repertoire of sophisticated genetic tools has significantly enhanced studies of Methanosarcina genera, yet the lack of multiple positive selectable markers has limited the types of genetic experiments that can be performed. In this study, we report the development of an additional positive selection system for Methanosarcina that utilizes the antibiotic nourseothricin and the Streptomyces rochei streptothricin acetyltransferase (sat) gene, which may be broadly applicable to other groups of methanogenic archaea. Nourseothricin was found to inhibit growth of four different methanogen species at concentrations ≤300 μg/ml in liquid or on solid media. Selection of nourseothricin resistant transformants was possible in two genetically tractable Methanosarcina species, M. acetivorans and M. barkeri, using the sat gene as a positive selectable marker. Additionally, the sat marker was useful for constructing a gene deletion mutant strain of M. acetivorans, emphasizing its utility as a second positive selectable marker for genetic analyses of Methanosarcina genera. Interestingly, two human gut-associated methanogens Methanobrevibacter smithii and Methanomassillicoccus luminyensis were more sensitive to nourseothricin than either Methanosarcina species, suggesting the nourseothricin-sat gene pair may provide a robust positive selection system for development of genetic tools in these and other methanogens.

RevDate: 2019-10-23

Hua ZS, Wang YL, Evans PN, et al (2019)

Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea.

Nature communications, 10(1):4574.

Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phylum Thaumarchaeota that contains mcr genes, but not those for ammonia oxidation or aerobic metabolism, is identified. Together, our phylogenetic analyses and ancestral state reconstructions suggest a mostly vertical evolution of mcrABG genes among methanogens and methanotrophs, along with frequent horizontal gene transfer of mcr genes between alkanotrophs. Analysis of all mcr-containing archaeal MAGs/genomes suggests a hydrothermal origin for these microorganisms based on optimal growth temperature predictions. These results also suggest methane/alkane oxidation or methanogenesis at high temperature likely existed in a common archaeal ancestor.

RevDate: 2019-10-23

Santoro AE, Kellom M, SM Laperriere (2019)

Contributions of single-cell genomics to our understanding of planktonic marine archaea.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 374(1786):20190096.

Single-cell genomics has transformed many fields of biology, marine microbiology included. Here, we consider the impact of single-cell genomics on a specific group of marine microbes-the planktonic marine archaea. Despite single-cell enabled discoveries of novel metabolic function in the marine thaumarchaea, population-level investigations are hindered by an overall lower than expected recovery of thaumarchaea in single-cell studies. Metagenome-assembled genomes have so far been a more useful method for accessing genome-resolved insights into the Marine Group II euryarchaea. Future progress in the application of single-cell genomics to archaeal biology in the ocean would benefit from more targeted sorting approaches, and a more systematic investigation of potential biases against archaea in single-cell workflows including cell lysis, genome amplification and genome screening. This article is part of a discussion meeting issue 'Single cell ecology'.

RevDate: 2019-10-23

Loth K, Largillière J, Coste F, et al (2019)

New protein-DNA complexes in archaea: a small monomeric protein induces a sharp V-turn DNA structure.

Scientific reports, 9(1):14253.

MC1, a monomeric nucleoid-associated protein (NAP), is structurally unrelated to other DNA-binding proteins. The protein participates in the genome organization of several Euryarchaea species through an atypical compaction mechanism. It is also involved in DNA transcription and cellular division through unknown mechanisms. We determined the 3D solution structure of a new DNA-protein complex formed by MC1 and a strongly distorted 15 base pairs DNA. While the protein just needs to adapt its conformation slightly, the DNA undergoes a dramatic curvature (the first two bend angles of 55° and 70°, respectively) and an impressive torsional stress (dihedral angle of 106°) due to several kinks upon binding of MC1 to its concave side. Thus, it adopts a V-turn structure. For longer DNAs, MC1 stabilizes multiple V-turn conformations in a flexible and dynamic manner. The existence of such V-turn conformations of the MC1-DNA complexes leads us to propose two binding modes of the protein, as a bender (primary binding mode) and as a wrapper (secondary binding mode). Moreover, it opens up new opportunities for studying and understanding the repair, replication and transcription molecular machineries of Archaea.

RevDate: 2019-10-23

Ding J, Ma M, Jiang X, et al (2019)

Effects of applying inorganic fertilizer and organic manure for 35 years on the structure and diversity of ammonia-oxidizing archaea communities in a Chinese Mollisols field.

MicrobiologyOpen [Epub ahead of print].

In this study, we investigated the physicochemical properties of soil, and the diversity and structure of the soil ammonia-oxidizing archaea (AOA) community, when subjected to fertilizer treatments for over 35 years. We collected soil samples from a black soil fertilization trial in northeast China. Four treatments were tested: no fertilization (CK); manure (M); nitrogen (N), phosphorus (P), and potassium (K) chemical fertilizer (NPK); and N, P, and K plus M (MNPK). We employed 454 high-throughput pyrosequencing to measure the response of the soil AOA community to the long-term fertilization. The fertilization treatments had different impacts on the shifts in the soil properties and AOA community. The utilization of manure alleviated soil acidification and enhanced the soybean yield. The soil AOA abundance was increased greatly by inorganic and organic fertilizers. In addition, the community Chao1 and ACE were highest in the MNPK treatment. In terms of the AOA community composition, Thaumarchaeota and Crenarchaeota were the main AOA phyla in all samples. Compared with CK and M, the abundances of Thaumarchaeota were remarkably lower in the MNPK and NPK treatments. There were distinct shifts in the compositions of the AOA operational taxonomic units (OTUs) under different fertilization management practices. OTU51 was the dominant OTU in all treatments, except for NPK. OTU79 and OTU11 were relatively abundant OTUs in NPK. Only Nitrososphaera AOA were tracked from the black soil. Redundancy analysis indicated that the soil pH and soil available P were the two main factors that affected the AOA community structure. The abundances of AOA were positively correlated with the total N and available P concentrations, and negatively correlated with the soil pH.

RevDate: 2019-11-15

He S, Tan J, Hu W, et al (2019)

Diversity of Archaea and Its Correlation with Environmental Factors in the Ebinur Lake Wetland.

Current microbiology, 76(12):1417-1424.

The diversity and community composition of archaea in soil samples from three wetlands (SP1, SP2, and SP3) of Ebinur Lake were studied by constructing 16S rDNA cloning library. The correlation between the diversity of archaea and soil environmental factors was analyzed by CANOCO software. The aim of this study was to reveal the differences of community structures of archaea in different sample sites, to provide a theoretical basis for further study on degradation and restoration of Ebinur Lake wetland. The results showed that Euryarchaeota accounted for 57.1% was the most dominant phylum observed, followed by Thaumarchaeota and Crenarchaeota for the three wetland soil analyzed. Compared with SP3 site, the proportions of Euryarchaeota were decreased by 16.70% and 31.78%, while Thaumarchaeota increased by 7.26% and 17.64% in the SP1 and SP2, respectively. Crenarchaeota was found only in SP3. Shannon-wiener diversity indices in SP1, SP2, and SP3 sites were 3.44, 3.87, and 3.94, respectively, indicating that the diversity of archaea in three plots was: SP3 > SP2 > SP1. Redundancy analysis (RDA) showed that electrical conductivity (EC), soil moisture (SM), hydrogen potential (pH), and soil organic matter content (SOM) may affect archaeal communities. Compared to EC and pH, SM and SOM may have a greater impact on the community composition of archaea.

RevDate: 2019-11-02

Mand TD, WW Metcalf (2019)

Energy Conservation and Hydrogenase Function in Methanogenic Archaea, in Particular the Genus Methanosarcina.

Microbiology and molecular biology reviews : MMBR, 83(4):.

SUMMARYThe biological production of methane is vital to the global carbon cycle and accounts for ca. 74% of total methane emissions. The organisms that facilitate this process, methanogenic archaea, belong to a large and phylogenetically diverse group that thrives in a wide range of anaerobic environments. Two main subgroups exist within methanogenic archaea: those with and those without cytochromes. Although a variety of metabolisms exist within this group, the reduction of growth substrates to methane using electrons from molecular hydrogen is, in a phylogenetic sense, the most widespread methanogenic pathway. Methanogens without cytochromes typically generate methane by the reduction of CO2 with electrons derived from H2, formate, or secondary alcohols, generating a transmembrane ion gradient for ATP production via an Na+-translocating methyltransferase (Mtr). These organisms also conserve energy with a novel flavin-based electron bifurcation mechanism, wherein the endergonic reduction of ferredoxin is facilitated by the exergonic reduction of a disulfide terminal electron acceptor coupled to either H2 or formate oxidation. Methanogens that utilize cytochromes have a broader substrate range, and can convert acetate and methylated compounds to methane, in addition to the ability to reduce CO2 Cytochrome-containing methanogens are able to supplement the ion motive force generated by Mtr with an H+-translocating electron transport system. In both groups, enzymes known as hydrogenases, which reversibly interconvert protons and electrons to molecular hydrogen, play a central role in the methanogenic process. This review discusses recent insight into methanogen metabolism and energy conservation mechanisms with a particular focus on the genus Methanosarcina.

RevDate: 2019-11-15

Sereme Y, Mezouar S, Grine G, et al (2019)

Methanogenic Archaea: Emerging Partners in the Field of Allergic Diseases.

Clinical reviews in allergy & immunology, 57(3):456-466.

Archaea, which form one of four domains of life alongside Eukarya, Bacteria, and giant viruses, have long been neglected as components of the human microbiota and potential opportunistic infectious pathogens. In this review, we focus on methanogenic Archaea, which rely on hydrogen for their metabolism and growth. On one hand, methanogenic Archaea in the gut are functional associates of the fermentative digestion of dietary fibers, favoring the production of beneficial short-chain fatty acids and likely contributing to the weaning reaction during the neonatal window of opportunity. On the other hand, methanogenic Archaea trigger the activation of innate and adaptive responses and the generation of specific T and B cells in animals and humans. In mouse models, lung hypersensitivity reactions can be induced by inhaled methanogenic Archaea mimicking human professional exposure to organic dust. Changes in methanogenic Archaea of the microbiota are detected in an array of dysimmune conditions comprising inflammatory bowel disease, obesity, malnutrition, anorexia, colorectal cancer, and diverticulosis. At the subcellular level, methanogenic Archaea are activators of the TLR8-dependent NLRP3 inflammasome, modulate the release of antimicrobial peptides and drive the production of proinflammatory, Th-1, Th-2, and Th-17 cytokines. Our objective was to introduce the most recent and major pieces of evidence supporting the involvement of Archaea in the balance between health and dysimmune diseases, with a particular focus on atopic and allergic conditions.

RevDate: 2019-09-29

Pal S, Sar A, B Dam (2019)

Moderate halophilic bacteria, but not extreme halophilic archaea can alleviate the toxicity of short-alkyl side chain imidazolium-based ionic liquids.

Ecotoxicology and environmental safety, 184:109634.

Imidazolium-based ionic liquids (IL) with short-alkyl side chain such as 1-ethyl-3-methyl-imidazolium chloride ([Emim]Cl) and 1-butyl-3-methyl-imidazolium chloride ([Bmim]Cl) has immense application potential including in lignocellulosic bioenergy production. But they are toxic to most microorganisms, and those isolated from different environments as IL-tolerant have salt tolerance capabilities. This study evaluates the relationship between salt and [Emim]Cl tolerance of microorganisms using different salinity sediments (2-19%) and brines (35%) of India's largest inland hypersaline lake, Sambhar in Rajasthan as the model system. While samples with 2% and 35% salinities do not yield any [Emim]Cl (100 mM) tolerant colonies, others have 6-50% colonies tolerant to the IL. Similar trend was observed with 50 mM [Bmim]Cl. Moderate halophilic isolates of genera Halomonas and Bacillus (growth in 0.7-3.0 M NaCl) isolated from the sediments could grow in as high as 375 mM [Emim]Cl, or 125 mM [Bmim]Cl facilitated by higher synthesis, and uptake of organic osmolytes; and up to 1.7-fold increased activity of active efflux pumps. [Bmim]Cl was more toxic than [Emim]Cl in all performed experiments. [Emim]Cl-adapted cells could trounce IL-induced stress. Interestingly, enrichment with 100 mM [Emim]Cl resulted in increase of IL-tolerant colonies in all sediments including the one with 2% salinity. However, the salt saturated brines (35%) do not yield any such colony even after repeated incubations. Extreme halophilic archaea, Natronomonas (growth in 3.0-4.0 M NaCl) isolated from such brines, were exceedingly sensitive to even 5 mM [Emim]Cl, or 1 mM [Bmim]Cl. Two additional extremophilic archaea, namely Haloferax and Haladaptatus were also sensitive to the tested ILs. Archaeal sensitivity is possibly due to the competitive interaction of [Emim]+ with their acidic proteome (15.4-17.5% aspartic and glutamic acids, against 10.7-12.9% in bacteria) that they maintain to stabilize the high amount of K+ ion accumulated by salt-in strategy. Thus, general salt adaptation strategies of moderate halophilic bacteria help them to restrain toxicity of these ILs, but extremophilic archaea are highly sensitive and demands meticulous use of these solvents to prevent environmental contamination.

RevDate: 2019-11-01

Salvador-Castell M, Tourte M, PM Oger (2019)

In Search for the Membrane Regulators of Archaea.

International journal of molecular sciences, 20(18):.

Membrane regulators such as sterols and hopanoids play a major role in the physiological and physicochemical adaptation of the different plasmic membranes in Eukarya and Bacteria. They are key to the functionalization and the spatialization of the membrane, and therefore indispensable for the cell cycle. No archaeon has been found to be able to synthesize sterols or hopanoids to date. They also lack homologs of the genes responsible for the synthesis of these membrane regulators. Due to their divergent membrane lipid composition, the question whether archaea require membrane regulators, and if so, what is their nature, remains open. In this review, we review evidence for the existence of membrane regulators in Archaea, and propose tentative location and biological functions. It is likely that no membrane regulator is shared by all archaea, but that they may use different polyterpenes, such as carotenoids, polyprenols, quinones and apolar polyisoprenoids, in response to specific stressors or physiological needs.

RevDate: 2019-11-14

Bønløkke JH, Duchaine C, Schlünssen V, et al (2019)

Archaea and Bacteria Exposure in Danish Livestock Farmers.

Annals of work exposures and health, 63(9):965-974.

OBJECTIVES: Methanogenic archaea have been found to make up part of the bioaerosols in pig, cattle, and poultry farms. So far no attempts have been made to determine how season, farm type, and farm characteristics may affect workers' exposure to archaea.

METHODS: Personal filter samples from 327 farmers working on 89 Danish farms were analysed for the number of 16S rRNA gene copies from archaea and bacteria and for their dust and endotoxin content. The farms were visited during summer and winter. Information on farm type and stable characteristics were collected using self-reported activity diaries and walk-through surveys. Differences in archaea and bacteria levels with farm type and stable characteristics and correlations with dust and endotoxin levels were examined.

RESULTS: Personal archaea exposure was documented in all farm types including, for the first time, during mink farming. At 7.3*104 gene copies m-3 the archaea levels were around two orders of magnitude lower than bacteria levels at 5.7*106 gene copies m-3. At 1.7*105 gene copies m-3 among pig farmers and 1.9*104 gene copies m-3 among cattle farmers the archaea levels differed with farm type (P < 0.0005). The archaea and bacteria levels correlated weakly with a Pearson correlation coefficient of 0.17. Neither archaea nor bacteria levels differed by season. In pig farms the archaea levels differed by type of ventilation and by wetness of the floor.

CONCLUSIONS: Archaea levels were not neglible and appeared to vary greatly between farm types. In pig farms they varied with some farm characteristics. Archaea levels appeared to depend on factors that differed from those of bacteria.

RevDate: 2019-09-10

Huber M, Faure G, Laass S, et al (2019)

Translational coupling via termination-reinitiation in archaea and bacteria.

Nature communications, 10(1):4006 pii:10.1038/s41467-019-11999-9.

The genomes of many prokaryotes contain substantial fractions of gene pairs with overlapping stop and start codons (ATGA or TGATG). A potential benefit of overlapping gene pairs is translational coupling. In 720 genomes of archaea and bacteria representing all major phyla, we identify substantial, albeit highly variable, fractions of co-directed overlapping gene pairs. Various patterns are observed for the utilization of the SD motif for de novo initiation at upstream genes versus reinitiation at overlapping gene pairs. We experimentally test the predicted coupling in 9 gene pairs from the archaeon Haloferax volcanii and 5 gene pairs from the bacterium Escherichia coli. In 13 of 14 cases, translation of both genes is strictly coupled. Mutational analysis of SD motifs located upstream of the downstream genes indicate that the contribution of the SD to translational coupling widely varies from gene to gene. The nearly universal, abundant occurrence of overlapping gene pairs suggests that tight translational coupling is widespread in archaea and bacteria.

RevDate: 2019-09-16

Hackley RK, AK Schmid (2019)

Global Transcriptional Programs in Archaea Share Features with the Eukaryotic Environmental Stress Response.

Journal of molecular biology pii:S0022-2836(19)30477-2 [Epub ahead of print].

The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.

RevDate: 2019-08-25

Bandyopadhyay AK, Islam RNU, Mitra D, et al (2019)

Structural insights from water-ferredoxin interaction in mesophilic algae and halophilic archaea.

Bioinformation, 15(2):79-89 pii:97320630015079.

We analyzed the water-ferredoxin interaction in mesophilic (moderate temperature) algae (PDB ID: 1AWD) and halophilic (salt-tolerant) archaea (PDB ID: 1DOI) using POWAIND version 2.0 (a protein-water interactions calculation program). It is found that the shell water (SW) is 2.5 fold greater in halophilic ferredoxin than mesophilic ferredoxin. Water-ferredoxin interactions in the core and cavity are the signature of stability. The normalized frequency of such interactions is less in halophilic relative to mesophilic ferredoxin and the halophilic signature for stability by such interactions is negligible. However, the surface dominated with such interactions seems to be important for ferredoxin and oxido-reductase recognition.

RevDate: 2019-08-23

Sun Y, Liu Y, Pan J, et al (2019)

Perspectives on Cultivation Strategies of Archaea.

Microbial ecology pii:10.1007/s00248-019-01422-7 [Epub ahead of print].

Archaea have been recognized as a major domain of life since the 1970s and occupy a key position in the tree of life. Recent advances in culture-independent approaches have greatly accelerated the research son Archaea. However, many hypotheses concerning the diversity, physiology, and evolution of archaea are waiting to be confirmed by culture-base experiments. Consequently, archaeal isolates are in great demand. On the other hand, traditional approaches of archaeal cultivation are rarely successful and require urgent improvement. Here, we review the current practices and applicable microbial cultivation techniques, to inform on potential strategies that could improve archaeal cultivation in the future. We first summarize the current knowledge on archaeal diversity, with an emphasis on cultivated and uncultivated lineages pertinent to future research. Possible causes for the low success rate of the current cultivation practices are then discussed to propose future improvements. Finally, innovative insights for archaeal cultivation are described, including (1) medium refinement for selective cultivation based on the genetic and transcriptional information; (2) consideration of the up-to-date archaeal culturing skills; and (3) application of multiple cultivation techniques, such as co-culture, direct interspecies electron transfer (DIET), single-cell isolation, high-throughput culturing (HTC), and simulation of the natural habitat. Improved cultivation efforts should allow successful isolation of as yet uncultured archaea, contributing to the much-needed physiological investigation of archaea.

RevDate: 2019-08-30

DasSarma P, Anton BP, DasSarma SL, et al (2019)

Genome Sequences and Methylation Patterns of Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, Two Extremely Halophilic Archaea from a Bolivian Salt Mine.

Microbiology resource announcements, 8(33): pii:8/33/e00810-19.

Two extremely halophilic archaea, namely, Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, were isolated from a Bolivian salt mine and their genomes sequenced using single-molecule real-time sequencing. The GC-rich genomes of BOL5-4 and BOL6-1 were 4.6 and 3.8 Mbp, respectively, with large chromosomes and multiple megaplasmids. Genome annotation was incorporated into HaloWeb and methylation patterns incorporated into REBASE.

RevDate: 2019-09-18

Tang Z, Chen S, Chen A, et al (2019)

CasPDB: an integrated and annotated database for Cas proteins from bacteria and archaea.

Database : the journal of biological databases and curation, 2019:.

Clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (Cas) constitute CRISPR-Cas systems, which are antiphage immune systems present in numerous bacterial and most archaeal species. In recent years, CRISPR-Cas systems have been developed into reliable and powerful genome editing tools. Nevertheless, finding similar or better tools from bacteria or archaea remains crucial. This requires the exploration of different CRISPR systems, identification and characterization new Cas proteins. Archives tailored for Cas proteins are urgently needed and necessitate the prediction and grouping of Cas proteins into an information center with all available experimental evidence. Here, we constructed Cas Protein Data Bank (CasPDB), an integrated and annotated online database for Cas proteins from bacteria and archaea. The CasPDB database contains 287 reviewed Cas proteins, 257 745 putative Cas proteins and 3593 Cas operons from 32 023 bacteria species and 1802 archaea species. The database can be freely browsed and searched. The CasPDB web interface also represents all the 3593 putative Cas operons and its components. Among these operons, 328 are members of the type II CRISPR-Cas system.

RevDate: 2019-08-13

Yin X, Kulkarni AC, MW Friedrich (2019)

DNA and RNA Stable Isotope Probing of Methylotrophic Methanogenic Archaea.

Methods in molecular biology (Clifton, N.J.), 2046:189-206.

Methylotrophic methanogenic archaea are an integral part of the carbon cycle in various anaerobic environments. Different from methylotrophic bacteria, methylotrophic methanogens assimilate both, the methyl compound and dissolved inorganic carbon. Here, we present DNA- and RNA-stable isotope probing (SIP) methods involving an effective labeling strategy using 13C-labeled dissolved inorganic carbon (DIC) as carbon source along with methanol as dissimilatory substrate.

RevDate: 2019-10-07
CmpDate: 2019-10-04

Khlebodarova TM, VA Likhoshvai (2019)

[Molecular Mechanisms of Non-Inherited Antibiotic Tolerance in Bacteria and Archaea].

Molekuliarnaia biologiia, 53(4):531-540.

The phenomenon of bacterial persistence, also known as non-inherited antibiotic tolerance in a part of bacterial populations, was described more than 70 years ago. This type of tolerance contributes to the chronization of infectious diseases, including tuberculosis. Currently, the emergence of persistent cells in bacterial populations is associated with the functioning of some stress-induced molecular triggers, including toxin-antitoxin systems. In the presented review, genetic and metabolic peculiarities of persistent cells are considered and the mechanisms of their occurrence are discussed. The hypothesis of the origin of persister cells based on bistability, arising due to the non-linear properties of a coupled transcription-translation system, was proposed. Within this hypothesis, the phenomenon of the bacterial persistence of modern cells is considered as a result of the genetic fixation of the phenotypic multiplicity that emerged in primitive cells in the process of neutrally coupled co-evolution (genetic drift of multiple neutrally coupled mutations). Our hypothesis explains the properties of persister cells, as well as their origin and "ineradicable" nature.

RevDate: 2019-08-07

Steen AD, Crits-Christoph A, Carini P, et al (2019)

High proportions of bacteria and archaea across most biomes remain uncultured.

The ISME journal pii:10.1038/s41396-019-0484-y [Epub ahead of print].

A recent paper by Martiny argues that "high proportions" of bacteria in diverse Earth environments have been cultured. Here we reanalyze a portion of the data in that paper, and argue that the conclusion is based on several technical errors, most notably a calculation of sequence similarity that does not account for sequence gaps, and the reliance on 16S rRNA gene amplicons that are known to be biased towards cultured organisms. We further argue that the paper is also based on a conceptual error: namely, that sequence similarity cannot be used to infer "culturability" because one cannot infer physiology from 16S rRNA gene sequences. Combined with other recent, more reliable studies, the evidence supports the conclusion that most bacterial and archaeal taxa remain uncultured.

RevDate: 2019-08-08

Blum P, S Payne (2019)

Evidence of an Epigenetics System in Archaea.

Epigenetics insights, 12:2516865719865280 pii:10.1177_2516865719865280.

Changes in the phenotype of a cell or organism that are heritable but do not involve changes in DNA sequence are referred to as epigenetic. They occur primarily through the gain or loss of chemical modification of chromatin protein or DNA. Epigenetics is therefore a non-Mendelian process. The study of epigenetics in eukaryotes is expanding with advances in knowledge about the relationship between mechanism and phenotype and as a requirement for multicellularity and cancer. However, life also includes other groups or domains, notably the bacteria and archaea. The occurrence of epigenetics in these deep lineages is an emerging topic accompanied by controversy. In these non-eukaryotic organisms, epigenetics is critically important because it stimulates new evolutionary theory and refines perspective about biological action.

RevDate: 2019-08-08

MacLeod F, Kindler GS, Wong HL, et al (2019)

Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes.

AIMS microbiology, 5(1):48-61 pii:microbiol-05-01-048.

Elucidating the diversity of the Archaea has many important ecological and evolutionary implications. The Asgard superphylum of the archaea, described recently from metagenomic data, has reignited the decades-old debate surrounding the topology of the tree of life. This review synthesizes recent findings through publicly available genomes and literature to describe the current ecological and evolutionary significance of the Asgard superphylum. Asgard archaea have been found in a diverse range of microbiomes across the globe, primarily from sedimentary environments. Within these environments, positive correlations between specific members of the Asgard archaea and Candidate Division TA06 bacteria have been observed, opening up the possibility of symbiotic interactions between the groupings. Asgard archaeal genomes encode functionally diverse metabolic pathways, including the Wood-Ljungdahl pathway as a carbon-fixation strategy, putative nucleotide salvaging pathways, and novel mechanisms of phototrophy including new rhodopsins. Asgard archaea also appear to be active in nitrogen cycling. Asgard archaea encode genes involved in both dissimilatory nitrate reduction and denitrification, and for the potential to use atmospheric nitrogen or nitrite as nitrogen sources. Asgard archaea also may be involved in the transformation of sulfur compounds, indicating a putative role in sulfur cycling. To date, all Asgard archaeal genomes identified were described as obligately anaerobic. The Asgard archaea also appear to have important evolutionary implications. The presence of eukaryotic signature proteins and the affiliation of Asgard archaea in phylogenetic analyses appears to support two-domain topologies of the tree of life with eukaryotes emerging from within the domain of archaea, as opposed to the eukaryotes being a separate domain of life. Thus far, Heimdallarchaeota appears as the closest archaeal relative of eukaryotes.

RevDate: 2019-09-17
CmpDate: 2019-09-17

Pan KL, Gao JF, Li DC, et al (2019)

The dominance of non-halophilic archaea in autotrophic ammonia oxidation of activated sludge under salt stress: A DNA-based stable isotope probing study.

Bioresource technology, 291:121914.

Dynamics of nitrification activity, ammonia-oxidizing archaea (AOA) and bacteria (AOB) abundance and active ammonia oxidizers of activated sludge were explored under different salinities. Results showed that specific ammonium oxidation rates were significantly negative with increasing salinity. The responses of AOA and AOB populations to salt stress were distinct. AOA abundance decreased at moderate salinities (2.5, 5 and 7 g L-1) and increased at high salinities (10, 15, 20 and 30 g L-1), while AOB abundance showed opposite tendency. DNA-based stable isotope probing assays indicated AOA exclusively dominated active ammonia oxidation of test samples under different salinities. The active AOA communities retrieved were all non-halophilic and regulated by salinities. Candidatus Nitrosocosmicus exaquare and Ca. Nitrosocosmicus franklandus were the predominantly active AOA in both salt-free and salt-containing microcosms, while 13C-labeled Nitrososphaera viennensis and Ca. Nitrososphaera gargensis were only retrieved from the microcosms amended with 0 and 30 g L-1 salinity, respectively.

RevDate: 2019-11-15

Bird LR, Dawson KS, Chadwick GL, et al (2019)

Carbon isotopic heterogeneity of coenzyme F430 and membrane lipids in methane-oxidizing archaea.

Geobiology, 17(6):611-627.

Archaeal ANaerobic MEthanotrophs (ANME) facilitate the anaerobic oxidation of methane (AOM), a process that is believed to proceed via the reversal of the methanogenesis pathway. Carbon isotopic composition studies indicate that ANME are metabolically diverse and able to assimilate metabolites including methane, methanol, acetate, and dissolved inorganic carbon (DIC). Our data support the interpretation that ANME in marine sediments at methane seeps assimilate both methane and DIC, and the carbon isotopic compositions of the tetrapyrrole coenzyme F430 and the membrane lipids archaeol and hydroxy-archaeol reflect their relative proportions of carbon from these substrates. Methane is assimilated via the methyl group of CH3 -tetrahydromethanopterin (H4 MPT) and DIC from carboxylation reactions that incorporate free intracellular DIC. F430 was enriched in 13 C (mean δ13 C = -27‰ for Hydrate Ridge and -80‰ for the Santa Monica Basin) compared to the archaeal lipids (mean δ13 C = -97‰ for Hydrate Ridge and -122‰ for the Santa Monica Basin). We propose that depending on the side of the tricarboxylic acid (TCA) cycle used to synthesize F430, its carbon was derived from 76% DIC and 24% methane via the reductive side or 57% DIC and 43% methane via the oxidative side. ANME lipids are predicted to contain 42% DIC and 58% methane, reflecting the amount of each assimilated into acetyl-CoA. With isotope models that include variable fractionation during biosynthesis for different carbon substrates, we show the estimated amounts of DIC and methane can result in carbon isotopic compositions of - 73‰ to - 77‰ for F430 and - 105‰ for archaeal lipids, values close to those for Santa Monica Basin. The F430 δ13 C value for Hydrate Ridge was 13 C-enriched compared with the modeled value, suggesting there is divergence from the predicted two carbon source models.

RevDate: 2019-11-03

Beyer HM, Mikula KM, Kudling TV, et al (2019)

Crystal structures of CDC21-1 inteins from hyperthermophilic archaea reveal the selection mechanism for the highly conserved homing endonuclease insertion site.

Extremophiles : life under extreme conditions, 23(6):669-679.

Self-splicing inteins are mobile genetic elements invading host genes via nested homing endonuclease (HEN) domains. All HEN domains residing within inteins are inserted at a highly conserved insertion site. A purifying selection mechanism directing the location of the HEN insertion site has not yet been identified. In this work, we solved the three-dimensional crystal structures of two inteins inserted in the cell division control protein 21 of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii. A comparison between the structures provides the structural basis for the thermo-stabilization mechanism of inteins that have lost the HEN domain during evolution. The presence of an entire extein domain in the intein structure from Pyrococcus horikoshii suggests the selection mechanism for the highly conserved HEN insertion point.

RevDate: 2019-07-28

Taffner J, Cernava T, Erlacher A, et al (2019)

Novel insights into plant-associated archaea and their functioning in arugula (Eruca sativa Mill.).

Journal of advanced research, 19:39-48 pii:S2090-1232(19)30086-4.

A plant's microbiota has various implications for the plant's health and performance; however, the roles of many microbial lineages, particularly Archaea, have not been explored in detail. In the present study, analysis of archaea-specific 16S rRNA gene fragments and shotgun-sequenced metagenomes was combined with visualization techniques to obtain the first insights into the archaeome of a common salad plant, arugula (Eruca sativa Mill.). The archaeal communities associated with the soil, rhizosphere and phyllosphere were distinct, but a high proportion of community members were shared among all analysed habitats. Soil habitats exhibited the highest diversity of Archaea, followed by the rhizosphere and the phyllosphere. The archaeal community was dominated by Thaumarchaeota and Euryarchaeota, with the most abundant taxa assigned to Candidatus Nitrosocosmicus, species of the 'Soil Crenarchaeotic Group' and, interestingly, Methanosarcina. Moreover, a large number of archaea-assigned sequences remained unassigned at lower taxonomic levels. Overall, analysis of shotgun-sequenced total-community DNA revealed a more diverse archaeome. Differences were evident at the class level and at higher taxonomic resolutions when compared to results from the 16S rRNA gene fragment amplicon library. Functional assessments primarily revealed archaeal genes related to response to stress (especially oxidative stress), CO2 fixation, and glycogen degradation. Microscopic visualizations of fluorescently labelled archaea in the phyllosphere revealed small scattered colonies, while archaea in the rhizosphere were found to be embedded within large bacterial biofilms. Altogether, Archaea were identified as a rather small but niche-specific component of the microbiomes of the widespread leafy green plant arugula.

RevDate: 2019-08-07

Shimosaka T, Makarova KS, Koonin EV, et al (2019)

Identification of Dephospho-Coenzyme A (Dephospho-CoA) Kinase in Thermococcus kodakarensis and Elucidation of the Entire CoA Biosynthesis Pathway in Archaea.

mBio, 10(4): pii:mBio.01146-19.

Dephospho-coenzyme A (dephospho-CoA) kinase (DPCK) catalyzes the ATP-dependent phosphorylation of dephospho-CoA, the final step in coenzyme A (CoA) biosynthesis. DPCK has been identified and characterized in bacteria and eukaryotes but not in archaea. The hyperthermophilic archaeon Thermococcus kodakarensis encodes two homologs of bacterial DPCK and the DPCK domain of eukaryotic CoA synthase, TK1334 and TK2192. We purified the recombinant TK1334 and TK2192 proteins and found that they lacked DPCK activity. Bioinformatic analyses showed that, in several archaea, the uncharacterized gene from arCOG04076 protein is fused with the gene for phosphopantetheine adenylyltransferase (PPAT), which catalyzes the reaction upstream of the DPCK reaction in CoA biosynthesis. This observation suggested that members of arCOG04076, both fused to PPAT and standalone, could be the missing archaeal DPCKs. We purified the recombinant TK1697 protein, a standalone member of arCOG04076 from T. kodakarensis, and demonstrated its GTP-dependent DPCK activity. Disruption of the TK1697 resulted in CoA auxotrophy, indicating that TK1697 encodes a DPCK that contributes to CoA biosynthesis in T. kodakarensis TK1697 homologs are widely distributed in archaea, suggesting that the arCOG04076 protein represents a novel family of DPCK that is not homologous to bacterial and eukaryotic DPCKs but is distantly related to bacterial and eukaryotic thiamine pyrophosphokinases. We also constructed and characterized gene disruption strains of TK0517 and TK2128, homologs of bifunctional phosphopantothenoylcysteine synthetase-phosphopantothenoylcysteine decarboxylase and PPAT, respectively. Both strains displayed CoA auxotrophy, indicating their contribution to CoA biosynthesis. Taken together with previous studies, the results experimentally validate the entire CoA biosynthesis pathway in T. kodakarensisIMPORTANCE CoA is utilized in a wide range of metabolic pathways, and its biosynthesis is essential for all life. Pathways for CoA biosynthesis in bacteria and eukaryotes have been established. In archaea, however, the enzyme that catalyzes the final step in CoA biosynthesis, dephospho-CoA kinase (DPCK), had not been identified. In the present study, bioinformatic analyses identified a candidate for the DPCK in archaea, which was biochemically and genetically confirmed in the hyperthermophilic archaeon Thermococcus kodakarensis Genetic analyses on genes presumed to encode bifunctional phosphopantothenoylcysteine synthetase-phosphopantothenoylcysteine decarboxylase and phosphopantetheine adenylyltransferase confirmed their involvement in CoA biosynthesis. Taken together with previous studies, the results reveal the entire pathway for CoA biosynthesis in a single archaeon and provide insight into the different mechanisms of CoA biosynthesis and their distribution in nature.

RevDate: 2019-11-04

Bayer B, Hansman RL, Bittner MJ, et al (2019)

Ammonia-oxidizing archaea release a suite of organic compounds potentially fueling prokaryotic heterotrophy in the ocean.

Environmental microbiology, 21(11):4062-4075.

Ammonia-oxidizing archaea (AOA) constitute a considerable fraction of microbial biomass in the global ocean, comprising 20%-40% of the ocean's prokaryotic plankton. However, it remains enigmatic to what extent these chemolithoautotrophic archaea release dissolved organic carbon (DOC). A combination of targeted and untargeted metabolomics was used to characterize the exometabolomes of three model AOA strains of the Nitrosopumilus genus. Our results indicate that marine AOA exude a suite of organic compounds with potentially varying reactivities, dominated by nitrogen-containing compounds. A significant fraction of the released dissolved organic matter (DOM) consists of labile compounds, which typically limit prokaryotic heterotrophic activity in open ocean waters, including amino acids, thymidine and B vitamins. Amino acid release rates corresponded with ammonia oxidation activity and the three Nitrosopumilus strains predominantly released hydrophobic amino acids, potentially as a result of passive diffusion. Despite the low contribution of DOC released by AOA (~0.08%-1.05%) to the heterotrophic prokaryotic carbon demand, the release of physiologically relevant metabolites could be crucial for microbes that are auxotrophic for some of these compounds, including members of the globally abundant and ubiquitous SAR11 clade.

RevDate: 2019-11-01

Roux S, Krupovic M, Daly RA, et al (2019)

Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth's biomes.

Nature microbiology, 4(11):1895-1906.

Bacteriophages from the Inoviridae family (inoviruses) are characterized by their unique morphology, genome content and infection cycle. One of the most striking features of inoviruses is their ability to establish a chronic infection whereby the viral genome resides within the cell in either an exclusively episomal state or integrated into the host chromosome and virions are continuously released without killing the host. To date, a relatively small number of inovirus isolates have been extensively studied, either for biotechnological applications, such as phage display, or because of their effect on the toxicity of known bacterial pathogens including Vibrio cholerae and Neisseria meningitidis. Here, we show that the current 56 members of the Inoviridae family represent a minute fraction of a highly diverse group of inoviruses. Using a machine learning approach leveraging a combination of marker gene and genome features, we identified 10,295 inovirus-like sequences from microbial genomes and metagenomes. Collectively, our results call for reclassification of the current Inoviridae family into a viral order including six distinct proposed families associated with nearly all bacterial phyla across virtually every ecosystem. Putative inoviruses were also detected in several archaeal genomes, suggesting that, collectively, members of this supergroup infect hosts across the domains Bacteria and Archaea. Finally, we identified an expansive diversity of inovirus-encoded toxin-antitoxin and gene expression modulation systems, alongside evidence of both synergistic (CRISPR evasion) and antagonistic (superinfection exclusion) interactions with co-infecting viruses, which we experimentally validated in a Pseudomonas model. Capturing this previously obscured component of the global virosphere may spark new avenues for microbial manipulation approaches and innovative biotechnological applications.

RevDate: 2019-08-13

Eloe-Fadrosh EA (2019)

Genome gazing in ammonia-oxidizing archaea.

Nature reviews. Microbiology, 17(9):531.

RevDate: 2019-08-09

Liu TT, H Yang (2019)

An RNA-based quantitative and compositional study of ammonium-oxidizing bacteria and archaea in Lake Taihu, a eutrophic freshwater lake.

FEMS microbiology ecology, 95(9):.

Ammonium-oxidizing archaea (AOA) and bacteria (AOB) play crucial roles in ammonium oxidation in freshwater lake sediment. However, previous reports on the predominance of AOA and AOB in the surface sediment of Lake Taihu have been based on DNA levels, detecting the total abundance of microbiota (including inactive cells), and have resulted in numerous contradictory conclusions. Existing RNA-level studies detecting active transcription are very limited. The current study, using RNA-based real-time quantification and clone library analysis, demonstrated that the amoA gene abundance of active AOB was higher than that of active AOA, despite conflicting results at the DNA level. Further exploration revealed a significant positive correlation between the potential nitrification rate (PNR) and the abundance of AOA and AOB at the RNA level, with irregular or contradictory correlation found at the DNA level. Ultimately, using quantitative analysis of RNA levels, we show AOB to be the active dominant contributor to ammonium oxidation. Our investigations also indicated that AOB were more diverse in high-ammonium lake regions, with Nitrosomonas being the active and dominating cluster, but that AOA had an advantage in the low-ammonium lake regions.

RevDate: 2019-10-23

DeMott MS, PC Dedon (2019)

The road less traveled: A new phosphorothioate antiviral defense mechanism discovered in Archaea.

Synthetic and systems biotechnology, 4(3):132-133.

RevDate: 2019-07-19

Schwarz TS, Wäber NB, Feyh R, et al (2019)

Homologs of aquifex aeolicus protein-only RNase P are not the major RNase P activities in the archaea haloferax volcanii and methanosarcina mazei.

IUBMB life, 71(8):1109-1116.

The mature 5'-ends of tRNAs are generated by RNase P in all domains of life. The ancient form of the enzyme is a ribonucleoprotein consisting of a catalytic RNA and one or more protein subunits. However, in the hyperthermophilic bacterium Aquifex aeolicus and close relatives, RNase P is a protein-only enzyme consisting of a single type of polypeptide (Aq_880, ~23 kDa). In many archaea, homologs of Aq_880 were identified (termed HARPs for Homologs of Aquifex RNase P) in addition to the RNA-based RNase P, raising the question about the functions of HARP and the classical RNase P in these archaea. Here we investigated HARPs from two euryarchaeotes, Haloferax volcanii and Methanosarcina mazei. Archaeal strains with HARP gene knockouts showed no growth phenotypes under standard conditions, temperature and salt stress (H. volcanii) or nitrogen deficiency (M. mazei). Recombinant H. volcanii and M. mazei HARPs were basically able to catalyse specific tRNA 5'-end maturation in vitro. Furthermore, M. mazei HARP was able to rescue growth of an Escherichia coli RNase P depletion strain with comparable efficiency as Aq_880, while H. volcanii HARP was unable to do so. In conclusion, both archaeal HARPs showed the capacity (in at least one functional assay) to act as RNases P. However, the ease to obtain knockouts of the singular HARP genes and the lack of growth phenotypes upon HARP gene deletion contrasts with the findings that the canonical RNase P RNA gene cannot be deleted in H. volcanii, and a knockdown of RNase P RNA in H. volcanii results in severe tRNA processing defects. We conclude that archaeal HARPs do not make a major contribution to global tRNA 5'-end maturation in archaea, but may well exert a specialised, yet unknown function in (t)RNA metabolism. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1109-1116, 2019.

RevDate: 2019-07-18

DasSarma S, Fomenkov A, DasSarma SL, et al (2019)

Methylomes of Two Extremely Halophilic Archaea Species, Haloarcula marismortui and Haloferax mediterranei.

Microbiology resource announcements, 8(27): pii:8/27/e00577-19.

The genomes of two extremely halophilic Archaea species, Haloarcula marismortui and Haloferax mediterranei, were sequenced using single-molecule real-time sequencing. The ∼4-Mbp genomes are GC rich with multiple large plasmids and two 4-methyl-cytosine patterns. Methyl transferases were incorporated into the Restriction Enzymes Database (REBASE), and gene annotation was incorporated into the Haloarchaeal Genomes Database (HaloWeb).

RevDate: 2019-09-15

Pereira O, Hochart C, Auguet JC, et al (2019)

Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean.

MicrobiologyOpen, 8(9):e00852.

Planktonic Archaea have been detected in all the world's oceans and are found from surface waters to the deep sea. The two most common Archaea phyla are Thaumarchaeota and Euryarchaeota. Euryarchaeota are generally more common in surface waters, but very little is known about their ecology and their potential metabolisms. In this study, we explore the genomic ecology of the Marine Group II (MGII), the main marine planktonic Euryarchaeota, and test if it is composed of different ecologically relevant units. We re-analyzed Tara Oceans metagenomes from the photic layer and the deep ocean by annotating sequences against a custom MGII database and by mapping gene co-occurrences. Our data provide a global view of the distribution of Euryarchaeota, and more specifically of MGII subgroups, and reveal their association to a number of gene-coding sequences. In particular, we show that MGII proteorhodopsins were detected in both the surface and the deep chlorophyll maximum layer and that different clusters of these light harvesting proteins were present. Our approach helped describing the set of genes found together with specific MGII subgroups. We could thus define genomic environments that could theoretically describe ecologically meaningful units and the ecological niche that they occupy.

RevDate: 2019-07-02

Zhao X, Li X, Li Y, et al (2019)

Shifting interactions among bacteria, fungi and archaea enhance removal of antibiotics and antibiotic resistance genes in the soil bioelectrochemical remediation.

Biotechnology for biofuels, 12:160 pii:1500.

Background: Antibiotics and antibiotic resistance genes (ARGs) are two pollutants in soil, especially ARGs as one of the top three threats to human health. The performance of soil microbial fuel cells (MFCs) fuelled with antibiotics was investigated.

Results: In this study, soil MFCs spiked with tetracycline exhibited optimal bioelectricity generation, which was 25% and 733% higher than those of MFCs spiked with sulfadiazine and control, respectively. Compared with the non-electrode treatment, not only did functional micro-organisms change in open- and closed-circuit treatments, but also the microbial affinities, respectively, increased by 50% and 340% to adapt to higher removal of antibiotics. For the open-circuit treatment, the ineffective interspecific relation of micro-organisms was reduced to assist the removal efficiency of antibiotics by 7-27%. For the closed-circuit treatment, an intensive metabolic network capable of bioelectricity generation, degradation and nitrogen transformation was established, which led to 10-35% higher removal of antibiotics. Importantly, the abundances of ARGs and mobile genetic element (MGE) genes decreased after the introduction of electrodes; especially in the closed-circuit treatment, the highest reduction of 47% and 53% was observed, respectively.

Conclusions: Soil MFCs possess advantages for the elimination of antibiotics and ARGs with sevenfold to eightfold higher electricity generation than that of the control treatment. Compared with sulphonamides, the enhancement removal of tetracycline is higher, while both potential ARG propagation risk is reduced in soil MFCs. This study firstly synchronously reveals the relationships among bacteria, fungi and archaea and with ARGs and MGE genes in soil bioelectrochemical systems.

RevDate: 2019-10-23

Trivedi C, Reich PB, Maestre FT, et al (2019)

Plant-driven niche differentiation of ammonia-oxidizing bacteria and archaea in global drylands.

The ISME journal, 13(11):2727-2736.

Under controlled laboratory conditions, high and low ammonium availability are known to favor soil ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities, respectively. However, whether this niche segregation is maintained under field conditions in terrestrial ecosystems remains unresolved, particularly at the global scale. We hypothesized that perennial vegetation might favor AOB vs. AOA communities compared with adjacent open areas devoid of perennial vegetation (i.e., bare soil) via several mechanisms, including increasing the amount of ammonium in soil. To test this niche-differentiation hypothesis, we conducted a global field survey including 80 drylands from 6 continents. Data supported our hypothesis, as soils collected under plant canopies had higher levels of ammonium, as well as higher richness (number of terminal restriction fragments; T-RFs) and abundance (qPCR amoA genes) of AOB, and lower richness and abundance of AOA, than those collected in open areas located between plant canopies. Some of the reported associations between plant canopies and AOA and AOB communities can be a consequence of the higher organic matter and available N contents found under plant canopies. Other aspects of soils associated with vegetation including shading and microclimatic conditions might also help explain our results. Our findings provide strong evidence for niche differentiation between AOA and AOB communities in drylands worldwide, advancing our understanding of their ecology and biogeography at the global scale.

RevDate: 2019-07-11

Zhang H, Sun H, Zhou S, et al (2019)

Effect of Straw and Straw Biochar on the Community Structure and Diversity of Ammonia-oxidizing Bacteria and Archaea in Rice-wheat Rotation Ecosystems.

Scientific reports, 9(1):9367 pii:10.1038/s41598-019-45877-7.

Ammonia oxidation is the first and rate-limiting step of nitrification, driven by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Straw and straw biochar retention are the popular ways to utilize the agricultural by-products in China, but their long-term effects on AOB and AOA still remain poorly understood. Based on a 7-year plot experiment, which had 4 fertilization regimes: no fertilizer (CK), regular fertilization (RT), straw retention (SR) and straw biochar retention (SB), the abundance and the composition of AOB and AOA was investigated before both the harvest of rice and wheat season by quantitative PCR and 454 high-throughput pyrosequencing, respectively. (1) Compared to RT, straw and straw biochar increased AOB abundance and diversity significantly only in wheat season (P < 0.05), and they both ranked as SB > SR > RT. Among fertilized treatments, a significant difference between SR and RT was found in AOB community composition of the winter season (R value = 0.58, P value = 0.02); (2) In contrast, AOA was almost not responsive to organic addition, except the significant enhancement of abundance by biochar in wheat season; (3) After straw and straw biochar addition, soil potential nitrification rates (PNR) was positive correlated to AOB abundance in both rice and wheat season (P < 0.01), not to AOA abundance (P = 0.211 and 0.068, respectively). This study provides scientific support for the potential of straw utilization to improve nitrification in rice-wheat rotation system with respect to soil ammonia oxidation microorganism.

RevDate: 2019-07-04

Bayer B, Pelikan C, Bittner MJ, et al (2019)

Proteomic Response of Three Marine Ammonia-Oxidizing Archaea to Hydrogen Peroxide and Their Metabolic Interactions with a Heterotrophic Alphaproteobacterium.

mSystems, 4(4): pii:4/4/e00181-19.

Ammonia-oxidizing archaea (AOA) play an important role in the nitrogen cycle and account for a considerable fraction of the prokaryotic plankton in the ocean. Most AOA lack the hydrogen peroxide (H2O2)-detoxifying enzyme catalase, and some AOA have been shown to grow poorly under conditions of exposure to H2O2 However, differences in the degrees of H2O2 sensitivity of different AOA strains, the physiological status of AOA cells exposed to H2O2, and their molecular response to H2O2 remain poorly characterized. Further, AOA might rely on heterotrophic bacteria to detoxify H2O2, and yet the extent and variety of costs and benefits involved in these interactions remain unclear. Here, we used a proteomics approach to compare the protein profiles of three Nitrosopumilus strains grown in the presence and absence of catalase and in coculture with the heterotrophic alphaproteobacterium Oceanicaulis alexandrii We observed that most proteins detected at a higher relative abundance in H2O2-exposed Nitrosopumilus cells had no known function in oxidative stress defense. Instead, these proteins were putatively involved in the remodeling of the extracellular matrix, which we hypothesize to be a strategy limiting the influx of H2O2 into the cells. Using RNA-stable isotope probing, we confirmed that O. alexandrii cells growing in coculture with the Nitrosopumilus strains assimilated Nitrosopumilus-derived organic carbon, suggesting that AOA could recruit H2O2-detoxifying bacteria through the release of labile organic matter. Our results contribute new insights into the response of AOA to H2O2 and highlight the potential ecological importance of their interactions with heterotrophic free-living bacteria in marine environments.IMPORTANCE Ammonia-oxidizing archaea (AOA) are the most abundant chemolithoautotrophic microorganisms in the oxygenated water column of the global ocean. Although H2O2 appears to be a universal by-product of aerobic metabolism, genes encoding the hydrogen peroxide (H2O2)-detoxifying enzyme catalase are largely absent in genomes of marine AOA. Here, we provide evidence that closely related marine AOA have different degrees of sensitivity to H2O2, which may contribute to niche differentiation between these organisms. Furthermore, our results suggest that marine AOA rely on H2O2 detoxification during periods of high metabolic activity and release organic compounds, thereby potentially attracting heterotrophic prokaryotes that provide this missing function. In summary, this report provides insights into the metabolic interactions between AOA and heterotrophic bacteria in marine environments and suggests that AOA play an important role in the biogeochemical carbon cycle by making organic carbon available for heterotrophic microorganisms.

RevDate: 2019-09-06

Horai S, Yamauchi N, H Naraoka (2019)

Simultaneous total analysis of core and polar membrane lipids in archaea by high-performance liquid chromatography/high-resolution mass spectrometry coupled with heated electrospray ionization.

Rapid communications in mass spectrometry : RCM, 33(20):1571-1577.

RATIONALE: Archaea have characteristic membrane lipids including diether and/or tetraether isoprenoidal core lipids with various polar head groups. Since the polar group is removed soon after the end of archaeal activity, the occurrences of core and polar lipids are regarded as dead and active signals, respectively. The core and polar lipids have generally been analyzed separately using atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), respectively, coupled with mass spectrometry.

METHODS: In this study, simultaneous analyses of core and polar archaeal lipids have been examined using heated electrospray ionization (HESI) by high-performance liquid chromatography/high-resolution mass spectrometry (HPLC/HRMS).

RESULTS: Both core and intact polar lipids can be analyzed simultaneously by HESI with good sensitivity (sub ng to 100 ng) and separation using a semi-bore diol column by normal-phase chromatography. The core lipids eluted firstly to separate archeaol, then glycerol dibiphytanyl glycerol tetraethers (GDGTs), followed by the polar lipids with glycosides and glycophosphates. The relative GDGT composition is identical between HESI and APCI methods.

CONCLUSIONS: The simultaneous analysis has the benefit of minimizing sample amount and elution solvent as well as preparation work. The method can also be applied to a compound class fractionation for compound-specific carbon and hydrogen isotope analysis.

RevDate: 2019-06-23

Vuillemin A, Wankel SD, Coskun ÖK, et al (2019)

Archaea dominate oxic subseafloor communities over multimillion-year time scales.

Science advances, 5(6):eaaw4108 pii:aaw4108.

Ammonia-oxidizing archaea (AOA) dominate microbial communities throughout oxic subseafloor sediment deposited over millions of years in the North Atlantic Ocean. Rates of nitrification correlated with the abundance of these dominant AOA populations, whose metabolism is characterized by ammonia oxidation, mixotrophic utilization of organic nitrogen, deamination, and the energetically efficient chemolithoautotrophic hydroxypropionate/hydroxybutyrate carbon fixation cycle. These AOA thus have the potential to couple mixotrophic and chemolithoautotrophic metabolism via mixotrophic deamination of organic nitrogen, followed by oxidation of the regenerated ammonia for additional energy to fuel carbon fixation. This metabolic feature likely reduces energy loss and improves AOA fitness under energy-starved, oxic conditions, thereby allowing them to outcompete other taxa for millions of years.

RevDate: 2019-10-29
CmpDate: 2019-10-29

Zhang X, Duan P, Wu Z, et al (2019)

Aged biochar stimulated ammonia-oxidizing archaea and bacteria-derived N2O and NO production in an acidic vegetable soil.

The Science of the total environment, 687:433-440.

Both nitrous oxide (N2O) and nitric oxide (NO) emissions are typically high in greenhouse-based high N input vegetable soils. Biochar amendment has been widely recommended for mitigating soil N2O emissions in agriculture. However, knowledge of the regulatory mechanisms of fresh and aged biochar for both N2O and NO production during ammonia oxidation is lacking. Two vegetable soils with different pH values were used in aerobic incubation experiments with 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), 1-octyne and acetylene. The relative importance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) to N2O and NO production was investigated as influenced by fresh and aged biochar amendments. The results showed that AOA dominated N2O production in acidic soil, while AOB dominated N2O production in alkaline soil. Aged biochar stimulated both AOA- and AOB-derived N2O and NO production by 84.8 and 340%, respectively, in acidic soil but only increased AOA-derived N2O and NO production in alkaline soil. Fresh biochar amendment increased AOA- and AOB-derived NO in acidic soil and AOA-derived NO in alkaline soil but had negligible effects on AOA- and AOB-derived N2O in both soils. Fresh biochar decreased AOA-amoA but increased AOB-amoA gene abundances in acidic soil, whereas aged biochar increased AOA- and AOB-amoA gene abundances in both soils. These findings improved our understanding of N2O and NO production mechanisms under different biochar amendments in alkaline and acidic vegetable soils.

RevDate: 2019-10-25
CmpDate: 2019-10-25

Kırtel O, Lescrinier E, Van den Ende W, et al (2019)

Discovery of fructans in Archaea.

Carbohydrate polymers, 220:149-156.

Fructans are fructose-based oligo- and polysaccharides derived from sucrose that occur in a plethora of Eubacteria and plants. While fructan-producing (fructanogenic) Eubacteria are abundant in hypersaline environments, fructan production by Archaea has never been reported before. Exopolysaccharides accumulated by various Archaea from the Halobacteria class (belonging to the genera of Halomicrobium, Haloferax and Natronococcus) originating from different locations on Earth were structurally characterized as either levans or inulins with varying branching degrees (10%-16%). Thus, we show for the first time in the literature that fructans are produced in all three domains of life, including Archaea. This proof of concept will not only provide insight into Archaeal glycans and evolution but it may also open new frontiers for innovative strategies to overcome the ever-increasing threat of excessive salinization.

RevDate: 2019-06-26

Lemmens L, Maklad HR, Bervoets I, et al (2019)

Transcription Regulators in Archaea: Homologies and Differences with Bacterial Regulators.

Journal of molecular biology pii:S0022-2836(19)30335-3 [Epub ahead of print].

The fitness and survival of prokaryotic microorganisms depends on their ability to adequately respond to environmental changes, sudden stress conditions and metabolic shifts. An important mechanism underlying this response is the regulation of gene expression mediated by transcription factors that are responsive to small-molecule ligands or other intracellular signals. Despite constituting a distinct domain of life from bacteria and harboring a eukaryotic-like basal transcription apparatus, it is well established that archaea have similar transcription factors pointing to the existence of shared ancestral proteins and to the occurrence of inter-domain horizontal gene transfer events. However, while global structural features of bacterial and archaeal transcription factors are indeed similar, other characteristics imply that archaeal regulators have undergone independent evolution. Here, we discuss the characteristics of Lrp/AsnC, MarR, ArsR/SmtB and TrmB families of transcription factors, which are the dominant families that constitute the transcription factor repertoire in archaea. We exemplify the evolutionary expansion of these families in archaeal lineages by emphasizing homologies and differences with bacterial counterparts in terms of ligand or signal response, physiological functions and mechanistic principles of regulation. As such, we aim to define future research approaches that enable further characterization of the functions and mechanisms of archaeal transcription factors.

RevDate: 2019-10-10

Ludt K, J Soppa (2019)

Polyploidy in halophilic archaea: regulation, evolutionary advantages, and gene conversion.

Biochemical Society transactions, 47(3):933-944.

All analyzed haloarachea are polyploid. In addition, haloarchaea contain more than one type of chromosome, and thus the gene dosage can be regulated independently on different replicons. Haloarchaea and several additional archaea have more than one replication origin on their major chromosome, in stark contrast with bacteria, which have a single replication origin. Two of these replication origins of Haloferax volcanii have been studied in detail and turned out to have very different properties. The chromosome copy number appears to be regulated in response to growth phases and environmental factors. Archaea typically contain about two Origin Recognition Complex (ORC) proteins, which are homologous to eukaryotic ORC proteins. However, haloarchaea are the only archaeal group that contains a multitude of ORC proteins. All 16 ORC protein paralogs from H. volcanii are involved in chromosome copy number regulation. Polyploidy has many evolutionary advantages for haloarchaea, e.g. a high resistance to desiccation, survival over geological times, and the relaxation of cell cycle-specific replication control. A further advantage is the ability to grow in the absence of external phosphate while using the many genome copies as internal phosphate storage polymers. Very efficient gene conversion operates in haloarchaea and results in the unification of genome copies. Taken together, haloarchaea are excellent models to study many aspects of genome biology in prokaryotes, exhibiting properties that have not been found in bacteria.

RevDate: 2019-10-16

Killelea T, Palud A, Akcha F, et al (2019)

The interplay at the replisome mitigates the impact of oxidative damage on the genetic integrity of hyperthermophilic Archaea.

eLife, 8: pii:45320.

8-oxodeoxyguanosine (8-oxodG), a major oxidised base modification, has been investigated to study its impact on DNA replication in hyperthermophilic Archaea. Here we show that 8-oxodG is formed in the genome of growing cells, with elevated levels following exposure to oxidative stress. Functional characterisation of cell-free extracts and the DNA polymerisation enzymes, PolB, PolD, and the p41/p46 complex, alone or in the presence of accessory factors (PCNA and RPA) indicates that translesion synthesis occurs under replicative conditions. One of the major polymerisation effects was stalling, but each of the individual proteins could insert and extend past 8-oxodG with differing efficiencies. The introduction of RPA and PCNA influenced PolB and PolD in similar ways, yet provided a cumulative enhancement to the polymerisation performance of p41/p46. Overall, 8-oxodG translesion synthesis was seen to be potentially mutagenic leading to errors that are reminiscent of dA:8-oxodG base pairing.

RevDate: 2019-09-04
CmpDate: 2019-09-04

Wang W, Su Y, Wang B, et al (2019)

Spatiotemporal shifts of ammonia-oxidizing archaea abundance and structure during the restoration of a multiple pond and plant-bed/ditch wetland.

The Science of the total environment, 684:629-640.

Ammonia-oxidizing archaea (AOA) microorganisms have been increasingly found in aquatic and terrestrial environments. These microorganisms make vital contributions to ammonia oxidation in such systems. However, their community succession characteristics in man-made wetland ecosystems have scarcely been reported. We assessed the AOA's spatiotemporal shifts in the sediments of a constructed wetland (CW) - the Shijiuyang constructed wetland (SJY-CW) - in China from the third year (2011) to the fifth year (2013) of the CW operation. The SJY-CW is composed of a pretreatment pond, a multiple plant-bed/ditch system, and a post-treatment pond. Results showed that AOA abundance in the pre- and post-treatment ponds remained invariant through 2011-2012 and decreased in 2013, while the abundance in the plant-bed/ditch system decreased gradually with wetland operation. The AOA abundance in 2013 was one order of magnitude lower than that through 2011-2012, and the AOA abundance in the plant-bed/ditch system was generally higher than that in the pre- and post-treatment ponds from 2011 to 2013. AOA diversity showed little temporal differentiation with a slightly decreasing trend for community richness index Chao1 and diversity index Shannon H' from 2011 to 2013. The AOA community was dominated by the Nitrososphaera cluster accompanied by an increasing Nitrosopumilus cluster and Nitrososphaera sister cluster within the wetland operation. Hierarchical clustering and redundancy analysis verified the horizontal shifts of AOA communities. The shifts occurred preferentially in the central plant-bed/ditch system. The operational duration of the wetland became a key factor influencing AOA abundance and community shift in SJY-CW sediments.

RevDate: 2019-06-10

Stachler AE, Schwarz TS, Schreiber S, et al (2019)

CRISPRi as an efficient tool for gene repression in archaea.

Methods (San Diego, Calif.) pii:S1046-2023(18)30472-9 [Epub ahead of print].

In the years following its discovery and characterization, the CRISPR-Cas system has been modified and converted into a multitude of applications for eukaryotes and bacteria, such as genome editing and gene regulation. Since no such method has been available for archaea, we developed a tool for gene repression in the haloarchaeon Haloferax volcanii by repurposing its endogenous type I-B CRISPR-Cas system. Here, we present the two possible approaches for gene repression as well as our workflow to achieve and assess gene knockdown, offer recommendations on protospacer selection and give some examples of genes we have successfully silenced.

RevDate: 2019-07-23

Kurth JM, Smit NT, Berger S, et al (2019)

Anaerobic methanotrophic archaea of the ANME-2d clade feature lipid composition that differs from other ANME archaea.

FEMS microbiology ecology, 95(7):.

The anaerobic oxidation of methane (AOM) is a microbial process present in marine and freshwater environments. AOM is important for reducing the emission of the second most important greenhouse gas methane. In marine environments anaerobic methanotrophic archaea (ANME) are involved in sulfate-reducing AOM. In contrast, Ca. Methanoperedens of the ANME-2d cluster carries out nitrate AOM in freshwater ecosystems. Despite the importance of those organisms for AOM in non-marine environments little is known about their lipid composition or carbon sources. To close this gap, we analysed the lipid composition of ANME-2d archaea and found that they mainly synthesise archaeol and hydroxyarchaeol as well as different (hydroxy-) glycerol dialkyl glycerol tetraethers, albeit in much lower amounts. Abundant lipid headgroups were dihexose, monomethyl-phosphatidyl ethanolamine and phosphatidyl hexose. Moreover, a monopentose was detected as a lipid headgroup that is rare among microorganisms. Batch incubations with 13C labelled bicarbonate and methane showed that methane is the main carbon source of ANME-2d archaea varying from ANME-1 archaea that primarily assimilate dissolved inorganic carbon (DIC). ANME-2d archaea also assimilate DIC, but to a lower extent than methane. The lipid characterisation and analysis of the carbon source of Ca. Methanoperedens facilitates distinction between ANME-2d and other ANMEs.

RevDate: 2019-09-18

Ijichi M, Itoh H, K Hamasaki (2019)

Vertical distribution of particle-associated and free-living ammonia-oxidizing archaea in Suruga Bay, a deep coastal embayment of Japan.

Archives of microbiology, 201(8):1141-1146.

We analyzed the vertical distributions of ammonia-oxidizing archaea (AOA) in terms of abundance in Suruga Bay, Japan. We distinguished particle-associated (PA) from free-living (FL) assemblages. According to quantitative PCR measurements of the ammonia monooxygenase subunit A gene (amoA), most marine AOA were in an FL state. The vertical distributions of PA AOA ecotypes differed from the general trend; the Shallow Marine clade was dominant in both the surface and deep layers. Thus, although PA AOA account for a small percentage of AOA abundance, they have a community structure distinct from that of FL AOA in planktonic environments. Marine particles should be investigated further as an unexplored niche of AOA in the ocean.

RevDate: 2019-09-12

Walsh JC, Angstmann CN, Bisson-Filho AW, et al (2019)

Division plane placement in pleomorphic archaea is dynamically coupled to cell shape.

Molecular microbiology, 112(3):785-799.

One mechanism for achieving accurate placement of the cell division machinery is via Turing patterns, where nonlinear molecular interactions spontaneously produce spatiotemporal concentration gradients. The resulting patterns are dictated by cell shape. For example, the Min system of Escherichia coli shows spatiotemporal oscillation between cell poles, leaving a mid-cell zone for division. The universality of pattern-forming mechanisms in divisome placement is currently unclear. We examined the location of the division plane in two pleomorphic archaea, Haloferax volcanii and Haloarcula japonica, and showed that it correlates with the predictions of Turing patterning. Time-lapse analysis of H. volcanii shows that divisome locations after successive rounds of division are dynamically determined by daughter cell shape. For H. volcanii, we show that the location of DNA does not influence division plane location, ruling out nucleoid occlusion. Triangular cells provide a stringent test for Turing patterning, where there is a bifurcation in division plane orientation. For the two archaea examined, most triangular cells divide as predicted by a Turing mechanism; however, in some cases multiple division planes are observed resulting in cells dividing into three viable progeny. Our results suggest that the division site placement is consistent with a Turing patterning system in these archaea.

RevDate: 2019-06-10

Zhang R, Neu TR, Li Q, et al (2019)

Insight Into Interactions of Thermoacidophilic Archaea With Elemental Sulfur: Biofilm Dynamics and EPS Analysis.

Frontiers in microbiology, 10:896.

Biooxidation of reduced inorganic sulfur compounds (RISCs) by thermoacidophiles is of particular interest for the biomining industry and for environmental issues, e.g., formation of acid mine drainage (AMD). Up to now, interfacial interactions of acidophiles with elemental sulfur as well as the mechanisms of sulfur oxidation by acidophiles, especially thermoacidophiles, are not yet fully clear. This work focused on how a crenarchaeal isolate Acidianus sp. DSM 29099 interacts with elemental sulfur. Analysis by Confocal laser scanning microscopy (CLSM) and Atomic force microscopy (AFM) in combination with Epifluorescence microscopy (EFM) shows that biofilms on elemental sulfur are characterized by single colonies and a monolayer in first stage and later on 3-D structures with a diameter of up to 100 μm. The analysis of extracellular polymeric substances (EPS) by a non-destructive lectin approach (fluorescence lectin-barcoding analysis) using several fluorochromes shows that intial attachment was featured by footprints rich in biofilm cells that were embedded in an EPS matrix consisting of various glycoconjugates. Wet chemistry data indicate that carbohydrates, proteins, lipids and uronic acids are the main components. Attenuated reflectance (ATR)-Fourier transformation infrared spectroscopy (FTIR) and high-performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD) indicate glucose and mannose as the main monosaccharides in EPS polysaccharides. EPS composition as well as sugar types in EPS vary according to substrate (sulfur or tetrathionate) and lifestyle (biofilms and planktonic cells). This study provides information on the building blocks/make up as well as dynamics of biofilms of thermoacidophilic archaea in extremely acidic environments.

RevDate: 2019-09-17
CmpDate: 2019-09-17

Zhang L, Dong H, Zhang J, et al (2019)

Influence of FeONPs amendment on nitrogen conservation and microbial community succession during composting of agricultural waste: Relative contributions of ammonia-oxidizing bacteria and archaea to nitrogen conservation.

Bioresource technology, 287:121463.

Composting amended with iron oxide nanoparticles (FeONPs, α-Fe2O3 and Fe3O4 NPs) were conducted to study the impacts of FeONPs on nitrogen conservation and microbial community. It was found that amendment of FeONPs, especially α-Fe2O3 NPs, reduced total nitrogen (TN) loss, and reserved more NH4+-N and mineral N. Pearson correlation analysis revealed that decrease of ammonia-oxidizing bacteria (AOB) in FeONPs treatments played more important role than ammonia-oxidizing archaea (AOA) in reserving more NH4+-N and mineral N, and reducing TN loss. Bacterial community composition at phylum level did not shift with addition of FeONPs. Firmicutes, Actinobacteria, and Proteobacteria were the three most dominant phyla in all treatments. Overall, this study provides a method to reduce TN loss and improve mineral N reservation during composting, and gives a deep insight into the role of AOB and AOA in nitrogen transformation.

RevDate: 2019-05-17

Safarpour A, Ebrahimi M, Shahzadeh Fazeli SA, et al (2019)

Supernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo.

Iranian journal of pharmaceutical research : IJPR, 18(1):241-253.

Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human fibroblast cells as the normal control were used in the present study. Moreover, to evaluate the anti-tumor effect of the selected supernatant, inhibition of sphere formation and tumor development was assessed in-vitro and in-vivo, respectively. Among all strains, supernatant metabolites from Halobacterium salinarum IBRC M10715 had the most potent cytotoxic effect on prostate cancer cell lines (IC50 = 0.5 mg/mL) without any effects on normal cells. It significantly increased both early and late apoptosis (about 11% and 9%, respectively) in the androgen-dependent PC3 cell line, reduced sphere formation ability of DU145 and PC3 cells with down-regulation of SOX2 gene expression. Furthermore, our results revealed that tumors developed in nude mice significantly shrank post intratumor injection of metabolites of the haloarchaeal strain. In conclusion, we suggested here for the first time that supernatant metabolites from Halobacterium salinarum IBRC M10715 could be a novel component against prostate cancer in-vitro and in-vivo with remarkable reduction in stem-like properties of tumor.

RevDate: 2019-07-19

Hepowit NL, JA Maupin-Furlow (2019)

Rhodanese-Like Domain Protein UbaC and Its Role in Ubiquitin-Like Protein Modification and Sulfur Mobilization in Archaea.

Journal of bacteriology, 201(15): pii:JB.00254-19.

Ubiquitin-like protein (Ubl) modification targets proteins for transient inactivation and/or proteasome-mediated degradation in archaea. Here the rhodanese-like domain (RHD) protein UbaC (HVO_1947) was found to copurify with the E1-like enzyme (UbaA) of the Ubl modification machinery in the archaeon Haloferax volcanii UbaC was shown to be important for Ubl ligation, particularly for the attachment of the Ubl SAMP2/3s to protein targets after exposure to oxidants (NaOCl, dimethyl sulfoxide [DMSO], and methionine sulfoxide [MetO]) and the proteasome inhibitor bortezomib. While UbaC was needed for ligation of the Ubl SAMP1 to MoaE (the large subunit of molybdopterin synthase), it was not important in the formation of oxidant-induced SAMP1 protein conjugates. Indicative of defects in sulfur relay, mutation of ubaC impaired molybdenum cofactor (Moco)-dependent DMSO reductase activity and cell survival at elevated temperature, suggesting a correlation with defects in the 2-thiolated state of wobble uridine tRNA. Overall, the archaeal stand-alone RHD UbaC has an important function in Ubl ligation and is associated with sulfur relay processes.IMPORTANCE Canonical E2 Ub/Ubl-conjugating enzymes are not conserved in the dual-function Ubl systems associated with protein modification and sulfur relay. Instead, the C-terminal RHDs of E1-RHD fusion proteins are the apparent E2 modules of these systems in eukaryotes. E1s that lack an RHD are common in archaea. Here we identified an RHD (UbaC) that serves as an apparent E2 analog with the E1-like UbaA in the dual-function Ubl sampylation system of archaea. Unlike the eukaryotic E1-RHD fusion, the archaeal RHD is a stand-alone protein. This new insight suggests that E1 function in Ubl pathways could be influenced by shifts in RHD abundance and/or competition with other protein partners in the cell.

RevDate: 2019-09-15

Lu S, Zhang X, Chen K, et al (2019)

The small subunit of DNA polymerase D (DP1) associates with GINS-GAN complex of the thermophilic archaea in Thermococcus sp. 4557.

MicrobiologyOpen, 8(9):e00848.

The eukaryotic GINS, Cdc45, and minichromosome maintenance proteins form an essential complex that moves with the DNA replication fork. The GINS protein complex has also been reported to associate with DNA polymerase. In archaea, the third domain of life, DNA polymerase D (PolD) is essential for DNA replication, and the genes encoding PolDs exist only in the genomes of archaea. The archaeal GAN (GINS-associated nuclease) is believed to be a homolog of the eukaryotic Cdc45. In this study, we found that the Thermococcus sp. 4557 DP1 (small subunit of PolD) interacted with GINS15 in vitro, and the 3'-5' exonuclease activity of DP1 was inhibited by GINS15. We also demonstrated that the GAN, GINS15, and DP1 proteins interact to form a complex adapting a GAN-GINS15-DP1 order. The results of this study imply that the complex constitutes a core of the DNA replisome in archaea.

RevDate: 2019-08-08
CmpDate: 2019-08-08

Makarova KS, Wolf YI, Karamycheva S, et al (2019)

Antimicrobial Peptides, Polymorphic Toxins, and Self-Nonself Recognition Systems in Archaea: an Untapped Armory for Intermicrobial Conflicts.

mBio, 10(3): pii:mBio.00715-19.

Numerous, diverse, highly variable defense and offense genetic systems are encoded in most bacterial genomes and are involved in various forms of conflict among competing microbes or their eukaryotic hosts. Here we focus on the offense and self-versus-nonself discrimination systems encoded by archaeal genomes that so far have remained largely uncharacterized and unannotated. Specifically, we analyze archaeal genomic loci encoding polymorphic and related toxin systems and ribosomally synthesized antimicrobial peptides. Using sensitive methods for sequence comparison and the "guilt by association" approach, we identified such systems in 141 archaeal genomes. These toxins can be classified into four major groups based on the structure of the components involved in the toxin delivery. The toxin domains are often shared between and within each system. We revisit halocin families and substantially expand the halocin C8 family, which was identified in diverse archaeal genomes and also certain bacteria. Finally, we employ features of protein sequences and genomic locus organization characteristic of archaeocins and polymorphic toxins to identify candidates for analogous but not necessarily homologous systems among uncharacterized protein families. This work confidently predicts that more than 1,600 archaeal proteins, currently annotated as "hypothetical" in public databases, are components of conflict and self-versus-nonself discrimination systems.IMPORTANCE Diverse and highly variable systems involved in biological conflicts and self-versus-nonself discrimination are ubiquitous in bacteria but much less studied in archaea. We performed comprehensive comparative genomic analyses of the archaeal systems that share components with analogous bacterial systems and propose an approach to identify new systems that could be involved in these functions. We predict polymorphic toxin systems in 141 archaeal genomes and identify new, archaea-specific toxin and immunity protein families. These systems are widely represented in archaea and are predicted to play major roles in interactions between species and in intermicrobial conflicts. This work is expected to stimulate experimental research to advance the understanding of poorly characterized major aspects of archaeal biology.

RevDate: 2019-08-08
CmpDate: 2019-08-08

Li Z, Kinosita Y, Rodriguez-Franco M, et al (2019)

Positioning of the Motility Machinery in Halophilic Archaea.

mBio, 10(3): pii:mBio.00377-19.

Bacteria and archaea exhibit tactical behavior and can move up and down chemical gradients. This tactical behavior relies on a motility structure, which is guided by a chemosensory system. Environmental signals are sensed by membrane-inserted chemosensory receptors that are organized in large ordered arrays. While the cellular positioning of the chemotaxis machinery and that of the flagellum have been studied in detail in bacteria, we have little knowledge about the localization of such macromolecular assemblies in archaea. Although the archaeal motility structure, the archaellum, is fundamentally different from the flagellum, archaea have received the chemosensory machinery from bacteria and have connected this system with the archaellum. Here, we applied a combination of time-lapse imaging and fluorescence and electron microscopy using the model euryarchaeon Haloferax volcanii and found that archaella were specifically present at the cell poles of actively dividing rod-shaped cells. The chemosensory arrays also had a polar preference, but in addition, several smaller arrays moved freely in the lateral membranes. In the stationary phase, rod-shaped cells became round and chemosensory arrays were disassembled. The positioning of archaella and that of chemosensory arrays are not interdependent and likely require an independent form of positioning machinery. This work showed that, in the rod-shaped haloarchaeal cells, the positioning of the archaellum and of the chemosensory arrays is regulated in time and in space. These insights into the cellular organization of H. volcanii suggest the presence of an active mechanism responsible for the positioning of macromolecular protein complexes in archaea.IMPORTANCE Archaea are ubiquitous single cellular microorganisms that play important ecological roles in nature. The intracellular organization of archaeal cells is among the unresolved mysteries of archaeal biology. With this work, we show that cells of haloarchaea are polarized. The cellular positioning of proteins involved in chemotaxis and motility is spatially and temporally organized in these cells. This suggests the presence of a specific mechanism responsible for the positioning of macromolecular protein complexes in archaea.

RevDate: 2019-07-08

Isupov MN, Boyko KM, Sutter JM, et al (2019)

Corrigendum: Thermostable Branched-Chain Amino Acid Transaminases From the Archaea Geoglobus acetivorans and Archaeoglobus fulgidus: Biochemical and Structural Characterization.

Frontiers in bioengineering and biotechnology, 7:79.

[This corrects the article DOI: 10.3389/fbioe.2019.00007.].

RevDate: 2019-05-15

Webster G, Mullins AJ, Watkins AJ, et al (2019)

Genome Sequences of Two Choline-Utilizing Methanogenic Archaea, Methanococcoides spp., Isolated from Marine Sediments.

Microbiology resource announcements, 8(18): pii:8/18/e00342-19.

The genomes of two Methanococcoides spp. that were isolated from marine sediments and are capable of carrying out methanogenesis from choline and other methylotrophic substrates were sequenced. The average nucleotide identity and in silico DNA-DNA hybridization analyses demonstrate that they represent species different from those previously described.

RevDate: 2019-07-10

Gupta A, D Swati (2019)

Riboswitches in Archaea.

Combinatorial chemistry & high throughput screening, 22(2):135-149.

BACKGROUND: Riboswitches are cis-acting, non-coding RNA elements found in the 5'UTR of bacterial mRNA and 3' UTR of eukaryotic mRNA, that fold in a complex manner to act as receptors for specific metabolites hence altering their conformation in response to the change in concentrations of a ligand or metabolite. Riboswitches function as gene regulators in numerous bacteria, archaea, fungi, algae and plants.

AIM AND OBJECTIVE: This study identifies different classes of riboswitches in the Archaeal domain of life. Previous studies have suggested that riboswitches carry a conserved aptameric domain in different domains of life. Since Archaea are considered to be the most idiosyncratic organisms it was interesting to look for the conservation pattern of riboswitches in these obviously strange microorganisms.

MATERIALS AND METHODS: Completely sequenced Archaeal Genomes present in the NCBI repository were used for studying riboswitches and other ncRNAs. The sequence files in FASTA format were downloaded from NCBI Genome database and information related to these genomes was retrieved from GenBank. Three bioinformatics approaches were used namely, ab initio, consensus structure prediction and statistical model-based prediction for identifying riboswitches.

RESULTS: Archaeal genomes have a sporadic distribution of putative riboswitches like the TPP, FMN, Guanidine, Lysine and c-di-AMP riboswitches, which are known to occur in bacteria. Also, a class of riboswitch sensing c-di-GMP, a second messenger, has been identified in a few Archaeal organisms.

CONCLUSION: This study clearly reveals that bioinformatics methods are likely to play a major role in identifying conserved riboswitches and in establishing how widespread these classes are in all domains of life, even though the final confirmation may come from wet lab methods.

RevDate: 2019-07-12

Cândido ES, Cardoso MH, Chan LY, et al (2019)

Short Cationic Peptide Derived from Archaea with Dual Antibacterial Properties and Anti-Infective Potential.

ACS infectious diseases, 5(7):1081-1086.

Bacterial biofilms and associated infections represent one of the biggest challenges in the clinic, and as an alternative to counter bacterial infections, antimicrobial peptides have attracted great attention in the past decade. Here, ten short cationic antimicrobial peptides were generated through a sliding-window strategy on the basis of the 19-amino acid residue peptide, derived from a Pyrobaculum aerophilum ribosomal protein. PaDBS1R6F10 exhibited anti-infective potential as it decreased the bacterial burden in murine Pseudomonas aeruginosa cutaneous infections by more than 1000-fold. Adverse cytotoxic and hemolytic effects were not detected against mammalian cells. The peptide demonstrated structural plasticity in terms of its secondary structure in the different environments tested. PaDBS1R6F10 represents a promising antimicrobial agent against bacteria infections, without harming human cells.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )