MENU
The Electronic Scholarly Publishing Project: Providing access to classic scientific papers and other scholarly materials, since 1993. More About: ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT
Comparative Timelines
The ESP Timeline (one of the site's most popular features) has been completely updated to allow the user to select (using the timeline controls above each column) different topics for the left and right sides of the display.
Select:
New Left Column
New Left Column
Dates
Decade
New Right Column
New Right Column
(no entry for this year)
1630
(no entry for this year)
(no entry for this year)
1631
(no entry for this year)
Galileo Galilei first describes the Principle of Relativity, the idea that the fundamental laws of physics are the same in all inertial frames and that, purely by observing the outcome of mechanical experiments, one cannot distinguish a state of rest from a state of constant velocity.
1632
(no entry for this year)
Under compulsion, Galileo rejects the Copernican system.
The French philosopher René Descartes outlines a model of a static, infinite universe made up of tiny corpuscles of matter, a viewpoint not dissimilar to ancient Greek atomism. Descartes universe shares many elements of Sir Isaac Newtons later model, although Descartes vacuum of space is not empty but composed of huge swirling whirlpools of ethereal or fine matter, producing what would later be called gravitational effects.
1633
(no entry for this year)
(no entry for this year)
1634
(no entry for this year)
(no entry for this year)
1635
(no entry for this year)
(no entry for this year)
1636
(no entry for this year)
Francesco Stelluti publishes a summary of research on fossil wood conducted by himself and fellow Lincean Academy member Federico Cesi. Though resulting from meticulous research, the work reaches the wrong conclusion, describing the origin of fossil wood as inorganic.
Pierre de Fermat formulates his so-called Last Theorem, unsolved until 1995. In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation an + bn = cn for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known to have infinitely many solutions since antiquity. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of Arithmetica where he claimed he had a proof that was too large to fit in the margin.
1637
Francesco Stelluti publishes a summary of research on fossil wood conducted by himself and fellow Lincean Academy member Federico Cesi. Though resulting from meticulous research, the work reaches the wrong conclusion, describing the origin of fossil wood as inorganic.
Galileo Galilei demonstrates that unequal weights would fall with the same finite speed in a vacuum, and that their time of descent is independent of their mass. Thus, freely falling bodies, heavy or light, have the same constant acceleration, due to the force of gravity.
1638
(no entry for this year)
Jeremiah Horrox observes the first transit of Venus. Horrox (or Horrocks) was an English astronomer. He was the first person to demonstrate that the Moon moved around the Earth in an elliptical orbit; and he was the only person to predict the transit of Venus of 1639, an event which he and his friend William Crabtree were the only two people to observe and record.
1639
(no entry for this year)
ESP Quick Facts
ESP Origins
In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.
ESP Support
In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.
ESP Rationale
Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.
ESP Goal
In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.
ESP Usage
Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.
ESP Content
When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.
ESP Help
Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.
ESP Plans
With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.
ESP Picks from Around the Web (updated 06 MAR 2017 )
Old Science
Weird Science
Treating Disease with Fecal Transplantation
Fossils of miniature humans (hobbits) discovered in Indonesia
Dinosaur tail, complete with feathers, found preserved in amber.
Astronomy
Mysterious fast radio burst (FRB) detected in the distant universe.