Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

The Electronic Scholarly Publishing Project: Providing access to classic scientific papers and other scholarly materials, since 1993. More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP Timelines

Comparative Timelines

The ESP Timeline (one of the site's most popular features) has been completely updated to allow the user to select (using the timeline controls above each column) different topics for the left and right sides of the display.

Select:

New Left Column

New Left Column

Dates

Decade

New Right Column

New Right Column

(no entry for this year)

1880

image image image Throughout the decade of 1880-1890, Walther Flemming, Eduard Strasburger, Edouard van Beneden, and others elucidate the essential facts of cell division and stressed the importance of the qualitative and quantitative equality of chromosome distribution to daughter cells.

(no entry for this year)

1881

(no entry for this year)

(no entry for this year)

1882

Walther Flemming publishes accurate depictions of cell division (mitosis) in Zellsubstanz, Kern und Zelltheilung.

image Eduard Strasburger coins the terms CYTOPLASM and NUCLEOPLASM.

image W. Flemming discovers lampbrush chromosomes and coins the term MITOSIS.

(no entry for this year)

1883

image August Weismann points out the distinction in animals between the somatic cell line and the germ cells, stressing that only changes in germ cells are transmitted to further generations.

image Edouard van Beneden announced the principles of genetic continuity of chromosomes and reported the occurrence of chromosome reduction at germ cell formation. The sperm and egg are haploid and fertilization restores the diploid chromosome number.

image Wilhelm Roux offers a possible explanation for the function of mitosis.

image William Keith Brooks, a professor at The Johns Hopkins University, publishes The Law of Heredity: A Study of the Cause of Variation and the Origin of Living Organisms. Although this speculative work did not significantly advance the understanding of heredity, brooks' thinking is important because during his career he provided instruction to and supervised the early research of Thomas H. Morgan, Edmund Beecher Wilson, and William Bateson — ultimately some of the most important contributors to the new science of genetics.

(no entry for this year)

1884

image image image image During 1884-88, identification of the cell nucleus as the basis for inheritance was independently reported by Oscar Hertwig, Eduard Strasburger, Albrecht von Kölliker, and August Weismann.

image Gregor Mendel dies on January 6th, without ever knowing that his work on peas would lead to the transformation of biological research.

image image image Walther Flemming, Eduard Strasburger and Edouard van Beneden demonstrate that chromosome doubling occurs by a process of longitudinal splitting. Strasburger describes and names the PROPHASE, METAPHASE, and ANAPHASEstages of chromosomal division.

(no entry for this year)

1885

image August Weismann formulates the germ-plasm theory which held that the germ plasm was separate from the somatoplasm and was continuous from generation to generation.

image Carl Rabl theorized the individuality of chromosomes in all stages of the cell cycle.

image Walther Flemming observed sister chromatids passing to opposite poles of the cell during mitosis.

(no entry for this year)

1886

image Francis Galton devised a new useful statistical tool, the correlation table.

image Hugo de Vries (Holland) discovers aberrant evening primrose plants at Hilversum, Holland. Experiments with these extending over 15 years formed the basis for his mutation theory of evolution.

(no entry for this year)

1887

image August Weismann elaborated an all-encompassing theory of chromosome behavior during cell division and fertilization and predicted the occurrence of a reduction division (meiosis) in all sexual organisms.

image Edouard van Beneden demonstrated chromosome reduction in gamete maturation, thereby confirming August Weismann's predictions.

image Wilhelm Roux put forth the suggestion that the linearly arranged qualities of the chromosomes were equally transmitted to both daughter cells at meiosis.

(no entry for this year)

1888

German anatomist W. von Waldeyer names chromosomes.

image Heinrich Wilhelm Gottfried von Waldeyer names the CHROMOSOME.

image Theodor Boveri verifies August Weismann's predictions of chromosome reduction by direct observation in Ascaris.

(no entry for this year)

1889

image Francis Galton publishes Natural Inheritance. In it he describes the quantitative measurement of metric traits in populations. He thus founds biometry and the statistical study of variation. Ultimately, he formulates the Law of Ancestral Inheritance, a statistical description of the relative contributions to heredity made by one's ancestors.

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

foobar

Timeline

The new, dynamic Timeline from the Electronic Scholarly Publishing Project gives users more control over the timeline display.

We seek your suggestions for timeline content, both for individual events and for entire subjects.

To submit a correction or a recommendation or to propose new Timeline content (or to volunteer as a Timeline Editor), click HERE.

The Electronic Scholarly Publishing Project needs help: with acquiring content, with writing, with editing, with graphic production, and with financial support.

CLICK HERE to see what ESP needs most.

ESP Picks from Around the Web (updated 06 MAR 2017 )