Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Wolbachia

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 05 Jun 2020 at 01:52 Created: 


WIKIPEDIA: Wolbachia is a genus of bacteria which "infects" (usually as intracellular symbionts) arthropod species, including a high proportion of insects, as well as some nematodes. It is one of the world's most common parasitic microbes and is possibly the most common reproductive parasite in the biosphere. Its interactions with its hosts are often complex, and in some cases have evolved to be mutualistic rather than parasitic. Some host species cannot reproduce, or even survive, without Wolbachia infection. One study concluded that more than 16% of neotropical insect species carry bacteria of this genus, and as many as 25 to 70 percent of all insect species are estimated to be potential hosts. Wolbachia also harbor a temperate bacteriophage called WO. Comparative sequence analyses of bacteriophage WO offer some of the most compelling examples of large-scale horizontal gene transfer between Wolbachia coinfections in the same host. It is the first bacteriophage implicated in frequent lateral transfer between the genomes of bacterial endosymbionts. Gene transfer by bacteriophages could drive significant evolutionary change in the genomes of intracellular bacteria that were previously considered highly stable or prone to loss of genes overtime. Outside of insects, Wolbachia infects a variety of isopod species, spiders, mites, and many species of filarial nematodes (a type of parasitic worm), including those causing onchocerciasis ("River Blindness") and elephantiasis in humans as well as heartworms in dogs. Not only are these disease-causing filarial worms infected with Wolbachia, but Wolbachia seem to play an inordinate role in these diseases. A large part of the pathogenicity of filarial nematodes is due to host immune response toward their Wolbachia. Elimination of Wolbachia from filarial nematodes generally results in either death or sterility of the nematode.

Created with PubMed® Query: wolbachia NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

RevDate: 2020-06-03

Adams M, McBroome J, Maurer N, et al (2020)

One fly-one genome: chromosome-scale genome assembly of a single outbred Drosophila melanogaster.

Nucleic acids research pii:5850803 [Epub ahead of print].

A high quality genome assembly is a vital first step for the study of an organism. Recent advances in technology have made the creation of high quality chromosome scale assemblies feasible and low cost. However, the amount of input DNA needed for an assembly project can be a limiting factor for small organisms or precious samples. Here we demonstrate the feasibility of creating a chromosome scale assembly using a hybrid method for a low input sample, a single outbred Drosophila melanogaster. Our approach combines an Illumina shotgun library, Oxford nanopore long reads, and chromosome conformation capture for long range scaffolding. This single fly genome assembly has a N50 of 26 Mb, a length that encompasses entire chromosome arms, contains 95% of expected single copy orthologs, and a nearly complete assembly of this individual's Wolbachia endosymbiont. The methods described here enable the accurate and complete assembly of genomes from small, field collected organisms as well as precious clinical samples.

RevDate: 2020-06-03

Zélé F, Altıntaş M, Santos I, et al (2020)

Population-specific effect of Wolbachia on the cost of fungal infection in spider mites.

Ecology and evolution, 10(9):3868-3880 pii:ECE36015.

Many studies have revealed the ability of the endosymbiotic bacterium Wolbachia to protect its arthropod hosts against diverse pathogens. However, as Wolbachia may also increase the susceptibility of its host to infection, predicting the outcome of a particular Wolbachia-host-pathogen interaction remains elusive. Yet, understanding such interactions and their eco-evolutionary consequences is crucial for disease and pest control strategies. Moreover, how natural Wolbachia infections affect artificially introduced pathogens for biocontrol has never been studied. Tetranychus urticae spider mites are herbivorous crop pests, causing severe damage on numerous economically important crops. Due to the rapid evolution of pesticide resistance, biological control strategies using entomopathogenic fungi are being developed. However, although spider mites are infected with various Wolbachia strains worldwide, whether this endosymbiont protects them from fungi is as yet unknown. Here, we compared the survival of two populations, treated with antibiotics or naturally harboring different Wolbachia strains, after exposure to the fungal biocontrol agents Metarhizium brunneum and Beauveria bassiana. To control for potential effects of the bacterial community of spider mites, we also compared the susceptibility of two populations naturally uninfected by Wolbachia, treated with antibiotics or not. In one population, Wolbachia-infected mites had a better survival than uninfected ones in absence of fungi but not in their presence, whereas in the other population Wolbachia increased the mortality induced by B. bassiana. In one naturally Wolbachia-uninfected population, the antibiotic treatment increased the susceptibility of spider mites to M. brunneum, but it had no effect in the other treatments. These results suggest that natural Wolbachia infections may not hamper and may even improve the success of biological control using entomopathogenic fungi. However, they also draw caution on the generalization of such effects, given the complexity of within-host-pathogens interaction and the potential eco-evolutionary consequences of the use of biocontrol agents for Wolbachia-host associations.

RevDate: 2020-06-03

Detcharoen M, Arthofer W, Jiggins FM, et al (2020)

Wolbachia affect behavior and possibly reproductive compatibility but not thermoresistance, fecundity, and morphology in a novel transinfected host, Drosophila nigrosparsa.

Ecology and evolution, 10(10):4457-4470 pii:ECE36212.

Wolbachia, intracellular endosymbionts, are estimated to infect about half of all arthropod species. These bacteria manipulate their hosts in various ways for their maximum benefits. The rising global temperature may accelerate species migration, and thus, horizontal transfer of Wolbachia may occur across species previously not in contact. We transinfected and then cured the alpine fly Drosophila nigrosparsa with Wolbachia strain wMel to study its effects on this species. We found low Wolbachia titer, possibly cytoplasmic incompatibility, and an increase in locomotion of both infected larvae and adults compared with cured ones. However, no change in fecundity, no impact on heat and cold tolerance, and no change in wing morphology were observed. Although Wolbachia increased locomotor activities in this species, we conclude that D. nigrosparsa may not benefit from the infection. Still, D. nigrosparsa can serve as a host for Wolbachia because vertical transmission is possible but may not be as high as in the native host of wMel, Drosophila melanogaster.

RevDate: 2020-06-03

Khanmohammadi M, Akhlaghi L, Razmjou E, et al (2020)

Morphological Description, Phylogenetic and Molecular Analysis of Dirofilaria immitis Isolated from Dogs in the Northwest of Iran.

Iranian journal of parasitology, 15(1):57-66.

Background: Dirofilariasis is a globally distributed arthropod-borne parasitic disease of mainly canids and felids. We evaluated to extend the knowledge of morpho-molecular characteristics and outer ultrastructure of Dirofilaria immitis isolated from Northwest of Iran.

Methods: Overall, 67 filarial worms including 41 females and 26 males parasites were collected from the cardiovascular system of the 43 stray dogs in Meshkinshar, Ardebil Province, Northwest of Iran in 2017, and subjected to light and scanning electron microscopy (SEM) as well as carmine alum staining for morpho-molecular and identification. Molecular methods were used for confirmation of morphological findings by sequencing of Cyto-chrome c oxidase subunit I (cox1) gene.

Results: The partial DNA sequencing of cox1 gene of adult parasites showed considerable homology and close proximity to the previously isolated from Kerman and Meshkinshahr, Iran. The lowest genetic variation and the highest intra-species variability was found in D. immitis and Dirofilaria repens, respectively. No similarity was identified between D. immitis nucleotide sequence and Wolbachia species as its endosymbiont bacteria.

Conclusion: The SEM technique is an excellent tool for differential recognition of the parasite surface morphology and molecular techniques could differentiate and identify Dirofilaria spp.

RevDate: 2020-06-03

Semiatizki A, Weiss B, Bagim S, et al (2020)

Effects, interactions, and localization of Rickettsia and Wolbachia in the house fly parasitoid, Spalangia endius.

Microbial ecology pii:10.1007/s00248-020-01520-x [Epub ahead of print].

Many insect species harbor facultative microbial symbionts that affect their biology in diverse ways. Here, we studied the effects, interactions, and localization of two bacterial symbionts-Wolbachia and Rickettsia-in the parasitoid Spalangia endius. We crossed between four S. endius colonies-Wolbachia only (W), Rickettsia only (R), both (WR), and none (aposymbiotic, APS) (16 possible crosses) and found that Wolbachia induces incomplete cytoplasmic incompatibility (CI), both when the males are W or WR. Rickettsia did not cause reproductive manipulations and did not rescue the Wolbachia-induced CI. However, when R females were crossed with W or WR males, significantly less offspring were produced compared with that of control crosses. In non-CI crosses, the presence of Wolbachia in males caused a significant reduction in offspring numbers. Females' developmental time was significantly prolonged in the R colony, with adults starting to emerge one day later than the other colonies. Other fitness parameters did not differ significantly between the colonies. Using fluorescence in situ hybridization microscopy in females, we found that Wolbachia is localized alongside Rickettsia inside oocytes, follicle cells, and nurse cells in the ovaries. However, Rickettsia is distributed also in muscle cells all over the body, in ganglia, and even in the brain.

RevDate: 2020-06-03

Papadopoulos C, Karas PA, Vasileiadis S, et al (2020)

Host Species Determines the Composition of the Prokaryotic Microbiota in Phlebotomus Sandflies.

Pathogens (Basel, Switzerland), 9(6): pii:pathogens9060428.

Phlebotomine sandflies are vectors of the humans' and mammals' parasite Leishmania spp. Although the role of gut microbiome in the biological cycle of insects is acknowledged, we still know little about the factors modulating the composition of the gut microbiota of sandflies. We tested whether host species impose a strong structural effect on the gut microbiota of Phlebotomus spp. Sandflies were collected from the island of Leros, Greece, and classified to P.papatasi, P. neglectus, P.tobbi, and P.similis, all being negative to Leishmania spp. The prokaryotic gut microbiota was determined via 16S rRNA gene amplicon sequencing. Phlebotomus species supported distinct microbial communities (p < 0.001). P.papatasi microbiota was the most distinct over-dominated by three Spiroplasma, Wolbachia and Paenibacillus operational taxonomic units (OTUs), while another Wolbachia OTU prevailed in P. neglectus. Conversely, the microbiota of P.tobbi and P.similis was composed of several less dominant OTUs. Archaea showed low presence with the dominant OTUs belonging to methanogenic Euryarcheota, ammonia-oxidizing Thaumarcheota, and Nanoarchaeota. We provide first insights into the composition of the bacterial and archaeal community of Phlebotomus sandflies and showed that, in the absence of Leishmania, host genotype is the major modulator of Phlebotomus sandfly gut microbiota.

RevDate: 2020-06-01

Mazzucco R, Nolte V, Vijayan T, et al (2020)

Long-Term Dynamics Among Wolbachia Strains During Thermal Adaptation of Their Drosophila melanogaster Hosts.

Frontiers in genetics, 11:482.

Climate change is a major evolutionary force triggering thermal adaptation in a broad range of species. While the consequences of global warming are being studied for an increasing number of species, limited attention has been given to the evolutionary dynamics of endosymbionts in response to climate change. Here, we address this question by studying the dynamics of Wolbachia, a well-studied endosymbiont of Drosophila melanogaster. D. melanogaster populations infected with 13 different Wolbachia strains were exposed to novel hot and cold laboratory environments for up to 180 generations. The short-term dynamics suggested a temperature-related fitness difference resulting in the increase of clade V strains in the cold environment only. Our long-term analysis now uncovers that clade V dominates in all replicates after generation 60 irrespective of temperature treatment. We propose that adaptation of the Drosophila host to either temperature or Drosophila C virus (DCV) infection are the cause of the replicated, temporally non-concordant Wolbachia dynamics. Our study provides an interesting case demonstrating that even simple, well-controlled experiments can result in complex, but repeatable evolutionary dynamics, thus providing a cautionary note on too simple interpretations on the impact of climate change.

RevDate: 2020-06-01

Sharma P, Rani J, Chauhan C, et al (2020)

Altered Gut Microbiota and Immunity Defines Plasmodium vivax Survival in Anopheles stephensi.

Frontiers in immunology, 11:609.

Blood-feeding enriched gut-microbiota boosts mosquitoes' anti-Plasmodium immunity. Here, we ask how Plasmodium vivax alters gut-microbiota, anti-Plasmodial immunity, and impacts tripartite Plasmodium-mosquito-microbiota interactions in the gut lumen. We used a metagenomics and RNAseq strategy to address these questions. In naïve mosquitoes, Elizabethkingia meningitis and Pseudomonas spp. are the dominant bacteria and blood-feeding leads to a heightened detection of Elizabethkingia, Pseudomonas and Serratia 16S rRNA. A parallel RNAseq analysis of blood-fed midguts also shows the presence of Elizabethkingia-related transcripts. After, P. vivax infected blood-meal, however, we do not detect bacterial 16S rRNA until circa 36 h. Intriguingly, the transcriptional expression of a selected array of antimicrobial arsenal cecropins 1-2, defensin-1, and gambicin remained low during the first 36 h-a time frame when ookinetes/early oocysts invaded the gut. We conclude during the preinvasive phase, P. vivax outcompetes midgut-microbiota. This microbial suppression likely negates the impact of mosquito immunity which in turn may enhance the survival of P. vivax. Detection of sequences matching to mosquito-associated Wolbachia opens a new inquiry for its exploration as an agent for "paratransgenesis-based" mosquito control.

RevDate: 2020-05-30

Burki T (2020)

Wolbachia, a bacterium fighting on our side.

The Lancet. Infectious diseases, 20(6):662-663.

RevDate: 2020-05-30

Tseng SP, Hsu PW, Lee CC, et al (2020)

Evidence for Common Horizontal Transmission of Wolbachia among Ants and Ant Crickets: Kleptoparasitism Added to the List.

Microorganisms, 8(6): pii:microorganisms8060805.

While Wolbachia, an intracellular bacterial symbiont, is primarily transmitted maternally in arthropods, horizontal transmission between species has been commonly documented. We examined kleptoparasitism as a potential mechanism for Wolbachia horizontal transmission, using ant crickets and their host ants as the model system. We compared prevalence and diversity of Wolbachia across multiple ant cricket species with different degrees of host specificity/integration level. Our analyses revealed at least three cases of inter-ordinal Wolbachia transfer among ant and ant crickets, and also showed that ant cricket species with high host-integration and host-specificity tend to harbor a higher Wolbachia prevalence and diversity than other types of ant crickets. This study provides empirical evidence that distribution of Wolbachia across ant crickets is largely attributable to horizontal transmission, but also elucidates the role of intimate ecological association in successful Wolbachia horizontal transmission.

RevDate: 2020-05-27

Zhang X, Liu Q, H Zhu (2020)

Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control.

Journal of mathematical biology pii:10.1007/s00285-020-01509-7 [Epub ahead of print].

Despite centuries of continuous efforts, mosquito-borne diseases (MBDs) remain enormous health threat of human life worldwide. Lately, the USA government has approved an innovative technology of releasing Wolbachia-infected male mosquitoes to suppress the wild mosquito population. In this paper we first introduce a stage-structured model for natural mosquitos, then we establish a new model considering the releasing of Wolbachia-infected male mosquitoes and the mating competition between the natural male mosquitoes and infected males on the suppression of natural mosquitoes. Dynamical analysis of the two models, including the existence and local stability of the equilibria and bifurcation analysis, reveals the existence of a forward bifurcation or a backward bifurcation with multiple attractors. Moreover, globally dynamical properties are further explored by using Lyapunov function and theory of monotone operators, respectively. Our findings suggest that infected male augmentation itself cannot always guarantee the success of population eradication, but leads to three possible levels of population suppression, so we define the corresponding suppression rate and estimate the minimum release ratio for population eradication. Furthermore, we study how the release ratio of infected males and natural ones, mating competition, the rate of cytoplasmic incompatibility and the basic offspring number affect the suppression rate of natural mosquitoes. Our results show that the successful eradication relies on assessing the reproductive capacity of natural mosquitoes, a selection of suitable Wolbachia strains and an appropriate release amount of infected males. This study will be helpful for public health authorities in designing proper strategies to control vector mosquitoes and prevent the epidemics of MBDs.

RevDate: 2020-05-27

Yen PS, AB Failloux (2020)

A Review: Wolbachia-Based Population Replacement for Mosquito Control Shares Common Points with Genetically Modified Control Approaches.

Pathogens (Basel, Switzerland), 9(5): pii:pathogens9050404.

The growing expansion of mosquito vectors has made mosquito-borne arboviral diseases a global threat to public health, and the lack of licensed vaccines and treatments highlight the urgent need for efficient mosquito vector control. Compared to genetically modified control strategies, the intracellular bacterium Wolbachia, endowing a pathogen-blocking phenotype, is considered an environmentally friendly strategy to replace the target population for controlling arboviral diseases. However, the incomplete knowledge regarding the pathogen-blocking mechanism weakens the reliability of a Wolbachia-based population replacement strategy. Wolbachia infections are also vulnerable to environmental factors, temperature, and host diet, affecting their densities in mosquitoes and thus the virus-blocking phenotype. Here, we review the properties of the Wolbachia strategy as an approach to control mosquito populations in comparison with genetically modified control methods. Both strategies tend to limit arbovirus infections but increase the risk of selecting arbovirus escape mutants, rendering these strategies less reliable.

RevDate: 2020-05-27

Laidoudi Y, Marie JL, Tahir D, et al (2020)

Detection of Canine Vector-Borne Filariasis and Their Wolbachia Endosymbionts in French Guiana.

Microorganisms, 8(5): pii:microorganisms8050770.

In French Guiana, canine heartworm disease is well known, but the diversity of filarial parasites of dogs remains largely unknown. A total of 98 canine blood samples from Cayenne and Kourou were assessed by a blood wet mount preparation, heartworm antigen test and molecular exploration of filarioid and Wolbachia DNAs, followed by a multiplex species-specific qPCR's identification and a subsequent sequencing analysis. Thereafter, a phylogeny based on maximum likelihood was carried out to facilitate specific identification. Five dogs were microfilaremic. Heartworm antigens were detected in 15 (15.3%) dogs. Of these, six (6.1%) were considered as occult infections as neither microfilariae nor Dirofilaria immitis DNA were detected. The 11 (11.2%) D. immitis isolates corresponded to a low virulent strain. Six of the D. immitis isolates were positive for Wolbachia endosymbionts of D. immitis belonging to the clade C DNA. Acanthocheilonema reconditum DNA was detected in 3 (3.1%) samples. Of these latter, one was found co-infected with the Brugia sp. genotype and the DNA of the clade D of the Wolbachia endosymbiont of Brugia species. This latter was also detected in two filarioid DNA-free samples. Finally, two samples were positive for Cercopithifilaria bainae genotype, which is distinct from those identified in Europe. The present study highlights the urgent need to implement chemoprophylaxis associated with anti-Wolbachia drugs to control these potential zoonoses.

RevDate: 2020-05-26

Anders KL, Indriani C, Ahmad RA, et al (2020)

Update to the AWED (Applying Wolbachia to Eliminate Dengue) trial study protocol: a cluster randomised controlled trial in Yogyakarta, Indonesia.

Trials, 21(1):429 pii:10.1186/s13063-020-04367-2.

BACKGROUND: The AWED (Applying Wolbachia to Eliminate Dengue) trial is a parallel, two-arm, non-blinded cluster randomised controlled trial that is under way in Yogyakarta, Indonesia, with the aim of measuring the efficacy of Wolbachia-infected Aedes aegypti deployments in reducing dengue incidence in an endemic setting. Enrolment began in January 2018 and is ongoing. The original study protocol was published in April 2018. Here, we describe amendments that have been made to the study protocol since commencement of the trial.

METHODS: The key protocol amendments are (1) a revised study duration with planned end of participant enrolment in August 2020, (2) the addition of new secondary objectives (i) to estimate serotype-specific efficacy of the Wolbachia intervention and (ii) to compare Ae. aegypti abundance in intervention versus untreated clusters, (3) an additional exposure classification for the per-protocol analysis where the Wolbachia exposure index is calculated using only the cluster-level Wolbachia prevalence in the participant's cluster of residence, (4) power re-estimation using a multinomial sampling method that better accounts for randomness in sampling, and (5) the addition of two trial stopping rules to address the potential for persistently low rates of virologically confirmed dengue case enrolment and Wolbachia contamination into untreated clusters. Additional minor changes to the protocol are also described.

DISCUSSION: The findings from this study will provide the first experimental evidence for the efficacy of Wolbachia in reducing dengue incidence. Enrolment in the trial will conclude this year (2020) and results will be reported shortly thereafter.

TRIAL REGISTRATION:, identifier: NCT03055585. Registered on 14 February 2017. Last updated 22 March 2020.

RevDate: 2020-05-23

Manzano-Marín A (2020)

No evidence for Wolbachia as a nutritional co-obligate endosymbiont in the aphid Pentalonia nigronervosa.

Microbiome, 8(1):72 pii:10.1186/s40168-020-00865-2.

Obligate symbiotic associations are present in a wide variety of animals with a nutrient-restricted diet. Aphids (hemiptera: Aphididae) almost-universally host Buchnera aphidicola bacteria in specialised organs (called bacteriomes). These bacteria supply the aphid with essential nutrients lacking from their diet (i.e. essential amino acids and some B vitamins). Some aphid lineages, such as species from the Lacninae subfamily, have evolved co-obligate associations with secondary endosymbionts, deriving from a loss of biotin- and riboflavin-biosynthetic genes. In this study, I re-analyse previously published sequencing data from the banana aphid Pentalonia nigronervosa. I show that the metabolic inference results from De Clerck et al. (Microbiome 3:63, 2015) are incorrect and possibly arise from the use of inadequate methods. Additionally, I discuss how the seemingly biased interpretation of their antibiotic treatment analyses together with an incorrect genome-based metabolic inference resulted in the erroneous suggestion "that a co-obligatory symbiosis between B. aphidicola and Wolbachia occurs in the banana aphid".

RevDate: 2020-05-22

Górzyńska K (2020)

Effects of the Clonostachys epichloë fungal hyperparasite on the symbiotic -interaction between Botanophila spp. flies and Epichloë sp. fungus.

Journal of invertebrate pathology pii:S0022-2011(20)30102-6 [Epub ahead of print].

Botanophila spp. flies are associated with Epichloë spp. fungi in a symbiotic relationship in which the flies benefit from stromata as a food source for both adults and larvae, and the fungus benefits from the transfer of conidia by the flies, resulting in fertilization. Derogations from this pattern indicate that the Epichloë-Botanophila interaction cannot be clearly defined. The situation may be complicated by reports of new elements of the interaction, e.g., Wolbachia bacteria present in Botanophila larvae. The present study investigates the impact of Clonostachys epichloë (Speg.) Schroers, the fungal hyperparasite of Epichloë stromata, on the Botanophila-Epichloë interaction. The interaction between C. epichloë and Botanophila spp. flies associated with Epichloë typhina subsp. clarkii (J.F. White) Leuchtm. & Schardl stromata was studied in the Holcus lanatus L. grass population. C. epichloë was present on 76.5% of stromata, covering on average 44.8 ± 32.1% of its surface and influencing the final perithecial coverage to the same extent as larval feeding. C. epichloë began to appear on stromata much later than the fly eggs and did not affect the preference for Botanophila egg laying. On the other hand, C. epichloë reduced larval hatching success and increased the mortality of the larvae. Clonostachys was responsible for 76.0% of all deaths, overgrowing brood chambers, and its mycelium was present both on and within larvae in all cases. Overall, as a result of the presence of C. epichloë, the number of Botanophila fly offspring decreased by 52.7%. Of the 26 surviving larvae, 10 (38.5%) were affected by C. epichloë, and their weight was significantly lower than that of unaffected larvae. Results show that C. epichloë, a new element of the interaction between E. typhina fungus and Botanophila flies, negatively affects both fungal reproduction and the offspring success of flies. This is the first report on the entomopathogenic activity of C. epichloë against Epichloë-associated Botanophila flies.

RevDate: 2020-05-16

Ndii MZ (2020)

Modelling the Use of Vaccine and Wolbachia on Dengue Transmission Dynamics.

Tropical medicine and infectious disease, 5(2): pii:tropicalmed5020078.

The use of vaccine and Wolbachia has been proposed as strategies against dengue. Research showed that the Wolbachia intervention is highly effective in areas with low to moderate transmission levels. On the other hand, the use of vaccine is strongly effective when it is implemented on seropositive individuals and areas with high transmission levels. The question that arises is could the combination of both strategies result in higher reduction in the number of dengue cases? This paper seeks to answer the aforementioned question by the use of a mathematical model. A deterministic model in the presence of vaccine and Wolbachia has been developed and analysed. Numerical simulations were presented and public health implications were discussed. The results showed that the performance of Wolbachia in reducing the number of dengue cases is better than that of vaccination if the vaccine efficacy is low, otherwise, the use of vaccine is sufficient to reduce dengue incidence and hence the combination of Wolbachia and vaccine is not necessary.

RevDate: 2020-05-14

Nugent CM, Elliott TA, Ratnasingham S, et al (2020)

coil: an R package for cytochrome c oxidase I (COI) DNA barcode data cleaning, translation, and error evaluation.

Genome [Epub ahead of print].

Biological conclusions based on DNA barcoding and metabarcoding analyses can be strongly influenced by the methods utilized for data generation and curation, leading to varying levels of success in the separation of biological variation from experimental error. The 5' region of cytochrome c oxidase subunit I (COI-5P) is the most common barcode gene for animals, with conserved structure and function that allows for biologically informed error identification. Here, we present coil (, an R package for the pre-processing and frameshift error assessment of COI-5P animal barcode and metabarcode sequence data. The package contains functions for placement of barcodes into a common reading frame, accurate translation of sequences to amino acids, and highlighting insertion and deletion errors. The analysis of 10 000 barcode sequences of varying quality demonstrated how coil can place barcode sequences in reading frame and distinguish sequences containing indel errors from error-free sequences with greater than 97.5% accuracy. Package limitations were tested through the analysis of COI-5P sequences from the plant and fungal kingdoms as well as the analysis of potential contaminants: nuclear mitochondrial pseudogenes and Wolbachia COI-5P sequences. Results demonstrated that coil is a strong technical error identification method but is not reliable for detecting all biological contaminants.

RevDate: 2020-05-13

Zumaquero L, Simón F, Carretón E, et al (2020)

Prevalence of canine and human dirofilariosis in Puebla, Mexico.

Veterinary parasitology, 282:109098 pii:S0304-4017(20)30078-9 [Epub ahead of print].

The objective of this work was to determine the risk of exposure to Dirofilaria immitis in the stray dog population and people living in the metropolitan area of Puebla City, Mexico, using serologic methods. A total of 283 blood salmples were collected from dogs and 254 salmples from people. The canine samples were analyzed using a commercial kit to detect D. immitis antigens and the Knott test to detect microfilariae. Human samples were analyzed by ELISAs to detect antibodies against D. immitis and Wolbachia anti-WSP, as well as Western blot to identify specific bands of the parasite in the adult antigenic extract of D. immitis. Positive results were represented on a GIS map that included layers with geoenvironmental information relevant to parasite transmission in the study area. The prevalence of D. immitis in the canine stray population was 2.12 %, with positive cases found in individuals aged 1-10 years. Human seroprevalence was established at 5.11 %, with women and men similarly affected. By age, a significantly higher seroprevalence was observed in younger individuals (<18 years) than in the rest of the population. The geolocation of the results showed that positive cases were found in the environment (within 2 km) of potentially favorable areas for mosquito breeding. The importance of human influence in the creation and maintenance of favorable conditions for the transmission of canine and human dirofilariosis within an urban area is highlighted, both by the lack of environmental sanitation and by the absence of measures to limit or eliminate the canine reservoir population.

RevDate: 2020-05-11

Kaur R, Martinez J, Rota-Stabelli O, et al (2020)

Age, tissue, genotype and virus infection regulate Wolbachia levels in Drosophila.

Molecular ecology [Epub ahead of print].

The bacterial symbiont Wolbachia can protect insects against viral pathogens, and the varying levels of antiviral protection are correlated with the endosymbiont load within the insects. To understand why Wolbachia strains differ in their antiviral effects, we investigated the factors controlling Wolbachia density in five closely related strains in their natural Drosophila hosts. We found that Wolbachia density varied greatly across different tissues and between flies of different ages, and these effects depended on the host-symbiont association. Some endosymbionts maintained largely stable densities as flies aged while others increased, and these effects in turn depended on the tissue being examined. Measuring Wolbachia rRNA levels in response to viral infection, we found that viral infection itself also altered Wolbachia levels, with FHV causing substantial reductions in symbiont loads late in the infection. This effect, however, was virus-specific as DCV had little impact on Wolbachia in all of the five host systems. Since viruses have strong tissue tropisms and antiviral protection is thought to be cell-autonomous, these effects are likely to affect the virus-blocking phenomenon. However, we were unable to find any evidence of a correlation between Wolbachia and viral titers within the same tissues. We conclude that Wolbachia levels within flies are regulated in a complex host-symbiont-virus dependent manner and this trinity is likely to influence the antiviral effects of Wolbachia.

RevDate: 2020-05-10

Zhu YX, Song ZR, Song YL, et al (2020)

Double infection of Wolbachia and Spiroplasma alters induced plant defense and spider mite fecundity.

Pest management science [Epub ahead of print].

BACKGROUND: Herbivore-associated bacterial symbionts can change plant physiology and influence the herbivore's fitness. The spider mite Tetranychus truncatus is a notorious pest harboring various bacterial symbionts, however, the effect of bacterial symbionts on host plant physiology remains unclear. Here, we investigated whether infection with the endosymbionts Wolbachia and Spiroplasma altered spider mite performance on particular tomato plants and affected the plant induced defenses.

RESULTS: Wolbachia and Spiroplasma were mainly located at the gnathosoma and ovaries of spider mite hosts. Wolbachia and Spiroplasma significantly improved spider mite reproductive performance in cultivated and wild-type tomato. However, in jasmonic acid (JA) and salicylic acid (SA)-deficient plants, there were no significant differences in the reproduction between Wolbachia and Spiroplasma-infected and uninfected spider mites. The results indicated that the reproduction benefits conferred by endosymbionts may relate to plant defenses. Both Wolbachia and Spiroplasma-infected and uninfected spider mites induced similar levels of JA and SA accumulation in tomato, whereas tomato plants damaged by Wolbachia and Spiroplasma-infected spider mites showed lower the expression levels of the JA and SA-responsive genes than those damaged by uninfected spider mites. Additionally, Wolbachia and Spiroplasma-infected mites consumed much tomato amino acid compared to uninfected spider mites, which may have contributed to host fecundity.

CONCLUSIONS: Our results suggest that the reproduction benefits conferred by endosymbionts may be associated with changes in plant defense parameters and the concentrations of plant amino acids. The results highlight the importance of endosymbionts in the interactions between spider mites and their host plants. This article is protected by copyright. All rights reserved.

RevDate: 2020-05-09

Bryant KN, ILG Newton (2020)

The Intracellular Symbiont Wolbachia pipientis Enhances Recombination in a Dose-Dependent Manner.

Insects, 11(5): pii:insects11050284.

Wolbachia pipientis is an intracellular alphaproteobacterium that infects 40%-60% of insect species and is well known for host reproductive manipulations. Although Wolbachia are primarily maternally transmitted, evidence of horizontal transmission can be found in incongruent host-symbiont phylogenies and recent acquisitions of the same Wolbachia strain by distantly related species. Parasitoids and predator-prey interactions may indeed facilitate the transfer of Wolbachia between insect lineages, but it is likely that Wolbachia are acquired via introgression in many cases. Many hypotheses exist to explain Wolbachia prevalence and penetrance, such as nutritional supplementation, protection from parasites, protection from viruses, or direct reproductive parasitism. Using classical genetics, we show that Wolbachia increase recombination in infected lineages across two genomic intervals. This increase in recombination is titer-dependent as the wMelPop variant, which infects at higher load in Drosophila melanogaster, increases recombination 5% more than the wMel variant. In addition, we also show that Spiroplasma poulsonii, another bacterial intracellular symbiont of D. melanogaster, does not induce an increase in recombination. Our results suggest that Wolbachia infection specifically alters its host's recombination landscape in a dose-dependent manner.

RevDate: 2020-05-02

Sandoval-Mojica AF, Altman S, Hunter WB, et al (2020)

Peptide Conjugated Morpholinos for Management of The Huanglongbing Pathosystem.

Pest management science [Epub ahead of print].

BACKGROUND: 'Candidatus Liberibacter asiaticus' (CLas) is the causal agent of the devastating citrus disease Huanglongbing (HLB) and is transmitted by the insect vector Diaphorina citri (Hemiptera: Liviidae). A potential approach for treating CLas infection is the use of synthetic nucleic acid-like oligomers to silence bacterial gene expression. Peptide conjugated morpholinos (PPMOs) targeting essential genes in CLas and the psyllid vector's endosymbiotic bacteria, Wolbachia (wDi), were evaluated using in vitro and in vivo assays.

RESULTS: Expression of the wDi gyrA gene was significantly reduced following incubation of Wolbachia cells with PPMOs. In addition, the viability of isolated wDi cells was greatly reduced when treated with PPMOs as compared to untreated cells. Feeding D. citri adults with a complementary PPMO (CLgyrA-14) significantly reduced the expression of CLas gyrA gene by 70%. CLas relative density was significantly lower in the psyllids fed with CLgyrA-14, when compared to untreated insects. Psyllids that were treated with CLgyrA-14 were less successful in transmitting the pathogen into uninfected plants, compared to untreated insects.

CONCLUSION: The expression of essential genes in the D. citri symbiont, Wolbachia, and the HLB pathogen were suppressed in response to PPMO treatments. This study demonstrates the potential of PPMOs as a novel strategy for management of bacterial pathogens of fruit trees, such as HLB. This article is protected by copyright. All rights reserved.

RevDate: 2020-04-28

Dahmana H, O Mediannikov (2020)

Mosquito-Borne Diseases Emergence/Resurgence and How to Effectively Control It Biologically.

Pathogens (Basel, Switzerland), 9(4): pii:pathogens9040310.

Deadly pathogens and parasites are transmitted by vectors and the mosquito is considered the most threatening vector in public health, transmitting these pathogens to humans and animals. We are currently witnessing the emergence/resurgence in new regions/populations of the most important mosquito-borne diseases, such as arboviruses and malaria. This resurgence may be the consequence of numerous complex parameters, but the major cause remains the mismanagement of insecticide use and the emergence of resistance. Biological control programmes have rendered promising results but several highly effective techniques, such as genetic manipulation, remain insufficiently considered as a control mechanism. Currently, new strategies based on attractive toxic sugar baits and new agents, such as Wolbachia and Asaia, are being intensively studied for potential use as alternatives to chemicals. Research into new insecticides, Insect Growth Regulators, and repellent compounds is pressing, and the improvement of biological strategies may provide key solutions to prevent outbreaks, decrease the danger to at-risk populations, and mitigate resistance.

RevDate: 2020-04-27

Lv N, Peng J, Chen XY, et al (2020)

Antagonistic interaction between male-killing and cytoplasmic incompatibility induced by Cardinium and Wolbachia in the whitefly, Bemisia tabaci.

Insect science [Epub ahead of print].

Cardinium and Wolbachia are maternally inherited bacterial symbionts of arthropods that can manipulate host reproduction by increasing the fitness of infected females. Here, we report that Cardinium and Wolbachia coinfection induced male-killing and cytoplasmic incompatibility (CI) when they coexisted in a cryptic species of whitefly, Bemisia tabaci Asia II7. Cardinium and Wolbachia symbionts were either singly or simultaneously localized in the bacteriocytes placed in the abdomen of B. tabaci nymphs and adults. Cardinium-Wolbachia coinfection induced male-killing and resulted in a higher female sex ratio in the intraspecific amphigenetic progeny of Asia II7 ICWH and ICWL lines; interestingly, male-killing induction was enhanced with increased Cardinium titer. Moreover, single infection of Wolbachia induced partial CI in the Asia II7 IW line and resulted in reduced fecundity, higher embryonic mortality, and lower female sex ratio. The uninfected Asia II7 IU line had significantly higher fecundity, lower embryonic and nymphal mortalities, and a lower level of CI than both the Wolbachia-infected Asia II7 IW line and the Cardinium-Wolbachia-coinfected Asia II7 ICWH line. Our findings indicate that Cardinium-Wolbachia coinfection induced male-killing, which may have had antagonistic effects on Wolbachia-induced CI in the Asia II7 whiteflies. For the first time, our study revealed that B. tabaci Asia II7 reproduction is co-manipulated by Cardinium and Wolbachia endosymbionts. This article is protected by copyright. All rights reserved.

RevDate: 2020-04-24
CmpDate: 2020-04-24

Servick K (2019)

Bacteria-armed mosquitoes make dent in dengue.

Science (New York, N.Y.), 366(6469):1056.

RevDate: 2020-04-21

Yang J, Wei S, Su D, et al (2020)

Comparison of the Rhizosphere Soil Microbial Community Structure and Diversity Between Powdery Mildew-Infected and Noninfected Strawberry Plants in a Greenhouse by High-Throughput Sequencing Technology.

Current microbiology pii:10.1007/s00284-020-01948-x [Epub ahead of print].

The aim of this study was to compare the microbial community structure and diversity in powdery mildew-infected and noninfected strawberry plant rhizosphere soils in the greenhouse based on variations in the 16S rRNA gene V3-V4 and fungal ITS2 regions by Illumina amplicon sequencing. Powdery mildew infection reduced the number of operational taxonomic units (OTUs) and prokaryotic and fungal community richness/diversity indexes in the rhizosphere soils compared with those in healthy plant soils. Furthermore, 3543 prokaryotic and 581 fungal OTUs were obtained at the 97% similarity level. Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria, and Chloroflexi were the dominant bacterial phyla; Woesearchaeota_DHVEG-6, Bathyarchaeota, and Thaumarchaeota were the dominant archaea; and Ascomycota, Basidiomycota, unclassified_fungi, and Zygomycota were the dominant fungal phyla. Their proportions differed significantly among samples. Wolbachia, Devosia, Pseudolabrys, Streptomyces, and Rhizomicrobium were the most abundant bacterial genera; their proportions differed significantly among samples. Most Pseudomonas, Streptomyces, and 'norank' group members might be potential antagonistic microorganisms of powdery mildew pathogens, and Wolbachia and Rickettsia might be pathogen-transmitting vectors. Microascus, Clitopilus, and Ciliophora were the dominant fungi, and their community structures and abundances significantly differed among samples. Microascus, Talaromyces, Zopfiella, and Cryptococcus were relatively more abundant in the powdery mildew-infected strawberry plant rhizosphere soils. Fusarium, Trichoderma, Clitopilus, and 'unclassified' group members may be potential antagonistic populations. The results suggested that powdery mildew-infected strawberry fruits and plants cannot be consumed. This report is the first study to illustrate differences in the rhizosphere soil prokaryotic and fungal communities between powdery mildew-infected and noninfected strawberry plants in a greenhouse.

RevDate: 2020-04-21

Parker ES, Newton ILG, AP Moczek (2020)

(My Microbiome) Would Walk 10,000 miles: Maintenance and Turnover of Microbial Communities in Introduced Dung Beetles.

Microbial ecology pii:10.1007/s00248-020-01514-9 [Epub ahead of print].

Host-associated microbes facilitate diverse biotic and abiotic interactions between hosts and their environments. Experimental alterations of host-associated microbial communities frequently decrease host fitness, yet much less is known about if and how host-microbiome interactions are altered by natural perturbations, such as introduction events. Here, we begin to assess this question in Onthophagus dung beetles, a species-rich and geographically widely distributed genus whose members rely on vertically transmitted microbiota to support normal development. Specifically, we investigated to what extent microbiome community membership shifts during host introduction events and the relative significance of ancestral associations and novel environmental conditions in the structuring of microbial communities of introduced host species. Our results demonstrate that both evolutionary history and local environmental forces structure the microbial communities of these animals, but that their relative importance is shaped by the specific circumstances that characterize individual introduction events. Furthermore, we identify microbial taxa such as Dysgonomonas that may constitute members of the core Onthophagus microbiome regardless of host population or species, but also Wolbachia which associates with Onthophagus beetles in a species or even population-specific manner. We discuss the implications of our results for our understanding of the evolutionary ecology of symbiosis in dung beetles and beyond.

RevDate: 2020-04-20

Lau MJ, Ross PA, Endersby-Harshman NM, et al (2020)

Impacts of Low Temperatures on Wolbachia (Rickettsiales: Rickettsiaceae)-Infected Aedes aegypti (Diptera: Culicidae).

Journal of medical entomology pii:5822606 [Epub ahead of print].

In recent decades, the occurrence and distribution of arboviral diseases transmitted by Aedes aegypti mosquitoes has increased. In a new control strategy, populations of mosquitoes infected with Wolbachia are being released to replace existing populations and suppress arboviral disease transmission. The success of this strategy can be affected by high temperature exposure, but the impact of low temperatures on Wolbachia-infected Ae. aegypti is unclear, even though low temperatures restrict the abundance and distribution of this species. In this study, we considered low temperature cycles relevant to the spring season that are close to the distribution limits of Ae. aegypti, and tested the effects of these temperature cycles on Ae. aegypti, Wolbachia strains wMel and wAlbB, and Wolbachia phage WO. Low temperatures influenced Ae. aegypti life-history traits, including pupation, adult eclosion, and fertility. The Wolbachia-infected mosquitoes, especially wAlbB, performed better than uninfected mosquitoes. Temperature shift experiments revealed that low temperature effects on life history and Wolbachia density depended on the life stage of exposure. Wolbachia density was suppressed at low temperatures but densities recovered with adult age. In wMel Wolbachia there were no low temperature effects specific to Wolbachia phage WO. The findings suggest that Wolbachia-infected Ae. aegypti are not adversely affected by low temperatures, indicating that the Wolbachia replacement strategy is suitable for areas experiencing cool temperatures seasonally.

RevDate: 2020-04-17

Tantowijoyo W, Andari B, Arguni E, et al (2020)

Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia.

PLoS neglected tropical diseases, 14(4):e0008157 pii:PNTD-D-19-00023 [Epub ahead of print].

The successful establishment of the wMel strain of Wolbachia for the control of arbovirus transmission by Aedes aegypti has been proposed and is being implemented in a number of countries. Here we describe the successful establishment of the wMel strain of Wolbachia in four sites in Yogyakarta, Indonesia. We demonstrate that Wolbachia can be successfully introgressed after transient releases of wMel-infected eggs or adult mosquitoes. We demonstrate that the approach is acceptable to communities and that Wolbachia maintains itself in the mosquito population once deployed. Finally, our data show that spreading rates of Wolbachia in the Indonesian setting are slow which may reflect more limited dispersal of Aedes aegypti than seen in other sites such as Cairns, Australia.

RevDate: 2020-04-16

Seifert B (2020)

The Gene and Gene Expression (GAGE) species concept - an universal approach for all eukaryotic organisms.

Systematic biology pii:5820980 [Epub ahead of print].

The Gene and Gene Expression (GAGE) species concept, a new version of the Pragmatic Species Concept of Seifert (2014), is proposed as a concept applicable to any described recent or fossil eukaryotic organism independent from its mode of reproduction or evolutionary history. In addition to presenting the concept as such, the paper also provides practical recommendations for taxonomists when delimiting species and describing taxa. The wording of the new concept contains a heading core sentence plus five attached sentences addressing essential conditions for its translation into a sound taxonomic practice: "Species are separable clusters that have passed a threshold of evolutionary divergence and are exclusively defined by nuclear DNA sequences and/or their expression products. Nuclear DNA sequences and their expression products are different character systems but have a highly correlated indicative function. Character systems with the least risk of epigenetic or ontogenetic modification have superior indicative value when conflicts between character systems of integrative studies arise. All character systems have to be described by an adequate numerics allowing cluster formation and determination of thresholds. Thresholds for each character system should be fixed by consensus among the experts under the principle of avoiding oversplitting or lumping. Clusters must not be the expression of intraspecific polymorphism." Recognizing the distortions and conflicts caused to taxonomy through barcoding or through assessment on the basis of association with other organisms, the GAGE species concept strongly downgrades the use of cytoplasmic DNA of endosymbiotic origin (mtDNA, cpDNA) or DNA of closely associated microbes (e.g. Wolbachia bacteria) for final taxonomic decision making. Recognizing the distortion of phylogenies by the high frequency of reticulate evolution, it is argued that delimiting and naming species has to be separated from constructing bifurcating phylogenetic trees.

RevDate: 2020-04-13

Flores HA, Taneja de Bruyne J, O'Donnell TB, et al (2020)

Multiple Wolbachia strains provide comparative levels of protection against dengue virus infection in Aedes aegypti.

PLoS pathogens, 16(4):e1008433 pii:PPATHOGENS-D-19-01871 [Epub ahead of print].

The insect bacterium Wolbachia pipientis is being introgressed into Aedes aegypti populations as an intervention against the transmission of medically important arboviruses. Here we compare Ae. aegypti mosquitoes infected with wMelCS or wAlbB to the widely used wMel Wolbachia strain on an Australian nuclear genetic background for their susceptibility to infection by dengue virus (DENV) genotypes spanning all four serotypes. All Wolbachia-infected mosquitoes were more resistant to intrathoracic DENV challenge than their wildtype counterparts. Blocking of DENV replication was greatest by wMelCS. Conversely, wAlbB-infected mosquitoes were more susceptible to whole body infection than wMel and wMelCS. We extended these findings via mosquito oral feeding experiments, using viremic blood from 36 acute, hospitalised dengue cases in Vietnam, additionally including wMel and wildtype mosquitoes on a Vietnamese nuclear genetic background. As above, wAlbB was less effective at blocking DENV replication in the abdomen compared to wMel and wMelCS. The transmission potential of all Wolbachia-infected mosquito lines (measured by the presence/absence of infectious DENV in mosquito saliva) after 14 days, was significantly reduced compared to their wildtype counterparts, and lowest for wMelCS and wAlbB. These data support the use of wAlbB and wMelCS strains for introgression field trials and the biocontrol of DENV transmission. Furthermore, despite observing significant differences in transmission potential between wildtype mosquitoes from Australia and Vietnam, no difference was observed between wMel-infected mosquitoes from each background suggesting that Wolbachia may override any underlying variation in DENV transmission potential.

RevDate: 2020-04-11

Patterson EI, Villinger J, Muthoni JN, et al (2020)

Exploiting insect-specific viruses as a novel strategy to control vector-borne disease.

Current opinion in insect science, 39:50-56 pii:S2214-5745(20)30027-4 [Epub ahead of print].

Novel insect-specific viruses (ISVs) are being discovered in many important vectors due to advances in sequencing technology and a growing awareness of the virome. Several in vitro and in vivo studies indicate that ISVs are capable of modulating pathogenic arboviruses. In addition, there is growing evidence that both vertical and horizonal transmission strategies maintain ISVs in vector populations. As such there is potential to exploit ISVs for stand-alone vector control strategies and deploying them in synergy with other symbiont control approaches such as Wolbachia-mediated control. However, before the applied potential can be realized, a greater understanding of their basic biology is required, including their species range, ability to be maintained and transmitted in native and non-native vector hosts, and the effect of infection on a range of pathogens.

RevDate: 2020-04-10
CmpDate: 2020-04-10

Speer KA, Luetke E, Bush E, et al (2019)

A Fly on the Cave Wall: Parasite Genetics Reveal Fine-scale Dispersal Patterns of Bats.

The Journal of parasitology, 105(4):555-566.

Dispersal influences the evolution and adaptation of organisms, but it can be difficult to detect. Host-specific parasites provide information about the dispersal of their hosts and may be valuable for examining host dispersal that does not result in gene flow or that has low signals of gene flow. We examined the population connectivity of the buffy flower bat, Erophylla sezekorni (Chiroptera: Phyllostomidae), and its associated obligate ectoparasite, Trichobius frequens (Diptera: Streblidae), across a narrow oceanic channel in The Bahamas that has previously been implicated as a barrier to dispersal in bats. Due to the horizontal transmission of T. frequens, we were able to test the hypothesis that bats are dispersing across this channel, but this dispersal does not result in gene flow, occurs rarely, or started occurring recently. We developed novel microsatellite markers for the family Streblidae in combination with previously developed markers for bats to genotype individuals from 4 islands in The Bahamas. We provide evidence for a single population of the host, E. sezekorni, but 2 populations of its bat flies, potentially indicating a recent reduction of gene flow in E. sezekorni, rare dispersal, or infrequent transportation of bat flies with their hosts. Despite high population differentiation in bat flies indicated by microsatellites, mitochondrial DNA shows no polymorphism, suggesting that bacterial reproductive parasites may be contributing to mitochondrial DNA sweeps. Parasites, including bat flies, provide independent information about their hosts and can be used to test hypotheses of host dispersal that may be difficult to assess using host genetics alone.

RevDate: 2020-04-08

Crawford JE, Clarke DW, Criswell V, et al (2020)

Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations.

Nature biotechnology, 38(4):482-492.

The range of the mosquito Aedes aegypti continues to expand, putting more than two billion people at risk of arboviral infection. The sterile insect technique (SIT) has been used to successfully combat agricultural pests at large scale, but not mosquitoes, mainly because of challenges with consistent production and distribution of high-quality male mosquitoes. We describe automated processes to rear and release millions of competitive, sterile male Wolbachia-infected mosquitoes, and use of these males in a large-scale suppression trial in Fresno County, California. In 2018, we released 14.4 million males across three replicate neighborhoods encompassing 293 hectares. At peak mosquito season, the number of female mosquitoes was 95.5% lower (95% CI, 93.6-96.9) in release areas compared to non-release areas, with the most geographically isolated neighborhood reaching a 99% reduction. This work demonstrates the high efficacy of mosquito SIT in an area ninefold larger than in previous similar trials, supporting the potential of this approach in public health and nuisance-mosquito eradication programs.

RevDate: 2020-04-07

Singh R, TA Linksvayer (2020)

Wolbachia-infected ant colonies have increased reproductive investment and an accelerated life cycle.

The Journal of experimental biology pii:jeb.220079 [Epub ahead of print].

Wolbachia is a widespread group of maternally-transmitted endosymbiotic bacteria that often manipulates the reproductive strategy and life history of its hosts to favor its own transmission. Wolbachia mediated phenotypic effects are well characterized in solitary hosts, but effects in social hosts are unclear. The invasive pharaoh ant, Monomorium pharaonis, shows natural variation in Wolbachia infection between colonies and can be readily bred under laboratory conditions. We previously showed that Wolbachia-infected pharaoh ant colonies had more queen-biased sex ratios than uninfected colonies, which is expected to favor the spread of maternally-transmitted Wolbachia Here, we further characterize the effects of Wolbachia on the short- and longer-term reproductive and life history traits of pharaoh ant colonies. First, we characterized the reproductive differences between naturally infected and uninfected colonies at three discrete time points and found that infected colonies had higher reproductive investment (i.e. infected colonies produced more new queens), particularly when existing colony queens were three months old. Next, we compared the long-term growth and reproduction dynamics of infected and uninfected colonies across their whole life cycle. Infected colonies had increased colony-level growth and early colony reproduction, resulting in a shorter colony life cycle, when compared to uninfected colonies.

RevDate: 2020-04-03

Ross PA, Axford JK, Callahan AG, et al (2020)

Persistent deleterious effects of a deleterious Wolbachia infection.

PLoS neglected tropical diseases, 14(4):e0008204 pii:PNTD-D-19-02146 [Epub ahead of print].

Wolbachia are being used to reduce dengue transmission by Aedes aegypti mosquitoes around the world. To date releases have mostly involved Wolbachia strains with limited fitness effects but strains with larger fitness costs could be used to suppress mosquito populations. However, such infections are expected to evolve towards decreased deleterious effects. Here we investigate potential evolutionary changes in the wMelPop infection transferred from Drosophila melanogaster to Aedes aegypti more than ten years (~120 generations) ago. We show that most deleterious effects of this infection have persisted despite strong selection to ameliorate them. The wMelPop-PGYP infection is difficult to maintain in laboratory colonies, likely due to the persistent deleterious effects coupled with occasional maternal transmission leakage. Furthermore, female mosquitoes can be scored incorrectly as infected due to transmission of Wolbachia through mating. Infection loss in colonies was not associated with evolutionary changes in the nuclear background. These findings suggest that Wolbachia transinfections with deleterious effects may have stable phenotypes which could ensure their long-term effectiveness if released in natural populations to reduce population size.

RevDate: 2020-03-26

Paredes-Montero JR, Zia-Ur-Rehman M, Hameed U, et al (2020)

Genetic variability, community structure, and horizontal transfer of endosymbionts among three Asia II-Bemisia tabaci mitotypes in Pakistan.

Ecology and evolution, 10(6):2928-2943 pii:ECE36107.

Endosymbionts associated with the whitefly Bemisia tabaci cryptic species are known to contribute to host fitness and environmental adaptation. The genetic diversity and population complexity were investigated for endosymbiont communities of B. tabaci occupying different micro-environments in Pakistan. Mitotypes of B. tabaci were identified by comparative sequence analysis of the mitochondria cytochrome oxidase I (mtCOI) gene sequence. Whitefly mitotypes belonged to the Asia II-1, -5, and -7 mitotypes of the Asia II major clade. The whitefly-endosymbiont communities were characterized based on 16S ribosomal RNA operational taxonomic unit (OTU) assignments, resulting in 43 OTUs. Most of the OTUs occurred in the Asia II-1 and II-7 mitotypes (r2 = .9, p < .005), while the Asia II-5 microbiome was less complex. The microbiome OTU groups were mitotype-specific, clustering with a basis in phylogeographical distribution and the corresponding ecological niche of their whitefly host, suggesting mitotype-microbiome co-adaptation. The primary endosymbiont Portiera was represented by a single, highly homologous OTU (0%-0.67% divergence). Two of six Arsenophonus OTUs were uniquely associated with Asia II-5 and -7, and one occurred exclusively in Asia II-1, two only in Asia II-5, and one in both Asia II-1 and -7. Four other secondary endosymbionts, Cardinium, Hemipteriphilus, Rickettsia, and Wolbachia OTUs, were found at ≤29% frequencies. The most prevalent Arsenophonus OTU was found in all three Asia II mitotypes (55% frequency), whereas the same strain of Cardinium and Wolbachia was found in both Asia II-1 and -5, and a single Hemipteriphilus OTU occurred in Asia II-1 and -7. This pattern is indicative of horizontal transfer, suggestive of a proximity between mitotypes sufficient for gene flow at overlapping mitotype ecological niches.

RevDate: 2020-03-24

Guz N, Arshad M, Cagatay NS, et al (2020)

Detection of Wolbachia (Rickettsiales: Anaplasmataceae) and Candidatus Liberibacter asiaticus (Rhizobiales: Rhizobiaceae) Associated With Diaphorina citri (Hemiptera: Liviidae) Collected From Citrus reticulata (Sapindales: Rutaceae) and Alternate Host, Cordia myxa (Boraginales: Boraginaceae).

Journal of economic entomology pii:5811319 [Epub ahead of print].

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important insect pest of the citrus crop worldwide. It vectors the pathogen 'Candidatus Liberibacter asiaticus' (CLas) that causes a serious disease known as citrus greening. Here, we tested the infection frequency of Wolbachia and CLas from 100 D. citri individuals collected from two host plants belonging to families Rutaceae (Citrus reticulata Blanco) and Boraginaceae (Cordia myxa L.) using molecular methods. The following trend of endosymbionts infection in adult D. citri was found; 85.4% (35/41) by Wolbachia, and 19.5% (8/41) by CLas collected from C. reticulata plants and 65.4% (17/26) by Wolbachia, and 15.4% (4/26) by CLas in case of C. myxa plant. However, 61.5% (8/13) nymphs collected from C. reticulata and 20.0% (4/20) collected from C. myxa plants were infected by Wolbachia, while no nymph was infected by CLas collected from either host plants. Findings from this work represent the first report of CLas presence in D. citri feeding on C. myxa plants. By studying the presence of CLas with other endosymbiotic bacteria, future basic and applied research to develop control strategies can be prioritized.

RevDate: 2020-03-21

Bing XL, Zhao DS, Peng CW, et al (2020)

Similarities and spatial variations of bacterial and fungal communities in field rice planthopper (Hemiptera: Delphacidae) populationsh.

Insect science [Epub ahead of print].

Rice planthoppers are notorious plant sap-feeding pests that cause serious damage. While several microbes in rice planthoppers have been broadly characterized, the abundance and diversity of bacteria and fungi in field planthoppers are largely unknown. This study investigated the bacterial and fungal community compositions of Chinese wild rice planthoppers Laodelphax striatellus and Sogatella furcifera using parallel 16S rRNA gene amplicon and internal transcribed space region sequencing. The bacteria varied significantly between the species and were partitioned significantly by sexes, tissues and host environments in each species. The majority of bacteria were affiliated with the genera Wolbachia, Cardinium, Rickettsia and Pantoea. The abundance of Wolbachia was negatively correlated with that of Cardinium in both planthopper species. Compared with bacteria, the abundance and diversity of fungi did not differ between sexes but both were enriched in the gut. The bacterial community as a whole showed no significant correlation with the fungal community. The majority of fungi were related to Sarocladium, Alternaria, Malassezia, Aspergillus and Curvularia. A phylogenetic analysis revealed that these fungi were closely related to botanic symbionts or pathogens. Our results provide novel insights into the bacteria and fungi of rice planthoppers. This article is protected by copyright. All rights reserved.

RevDate: 2020-03-19

Dionysopoulou NK, Papanastasiou SA, Kyritsis GA, et al (2020)

Effect of host fruit, temperature and Wolbachia infection on survival and development of Ceratitis capitata immature stages.

PloS one, 15(3):e0229727 pii:PONE-D-19-25021.

The Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), holds an impressive record of successful invasions promoted by the growth and development of international fruit trade. Hence, survival of immatures within infested fruit that are subjected to various conditions during transportation seems to be a crucial feature that promotes invasion success. Wolbachia pipientis is a common endosymbiont of insects and other arthropods generating several biological effects on its hosts. Existing information report the influence of Wolbachia on the fitness traits of insect host species, including the Mediterranean fruit fly. However, little is known regarding effects of Wolbachia infection on immature development in different host fruits and temperatures. This study was conducted to determine the development and survival of immature stages of four different Mediterranean fruit fly populations, either infected or uninfected with Wolbachia, in two hosts (apples, bitter oranges) under three constant temperatures (15, 25 and 30°C), constant relative humidity (45-55 ± 5%), and a photoperiod of 14L:10D. Our findings demonstrate both differential response of two fruit fly lines to Wolbachia infection and differential effects of the two Wolbachia strains on the same Mediterranean fruit fly line. Larva-to-pupa and larva-to-adult survival followed similar patterns and varied a lot among the four medfly populations, the two host fruits and the different temperatures. Pupation rates and larval developmental time were higher for larvae implanted in apples compared to bitter oranges. The survival rates of wildish medflies were higher than those of the laboratory adapted ones, particularly in bitter oranges. The Wolbachia infected medflies, expressed lower survival rates and higher developmental times, especially the wCer4 infected line. High temperatures constrained immature development and were lethal for the Wolbachia infected wCer4 medfly line. Lower temperatures inferred longer developmental times to immature stages of all medfly populations tested, in both host fruits. Implications on the ecology and survival of the fly in nature are discussed.

RevDate: 2020-03-19

Fallon AM (2020)

Computational evidence for antitoxins associated with RelE/ParE, RatA, Fic, and AbiEii-family toxins in Wolbachia genomes.

Molecular genetics and genomics : MGG pii:10.1007/s00438-020-01662-0 [Epub ahead of print].

Wolbachia is an obligate intracellular Gram-negative alpha-proteobacterium that has diverse effects on reproduction of arthropod hosts, including cytoplasmic incompatibility, male killing, feminization, and parthenogenesis. Some of these effects have important potential for control of insect pests, including mosquitoes that vector pathogens of humans. In mosquitoes, and in most other arthropods, elimination of Wolbachia by antibiotic treatment has no effect on host survival and reverses the Wolbachia-associated phenotype. Elimination of Wolbachia strain wFol, which enables parthenogenetic reproduction of the Collembolan, Folsomia candida, would result in population extinction. However, F. candida adults remain viable and resume reproduction when antibiotics are removed, suggesting that wFol survives antibiotic treatment in a quiescent persister state similar to that induced by chromosomally encoded toxin-antitoxin (TA) modules in free-living bacteria. Computational approaches were used to document the presence of antitoxin genes upstream of Wolbachia RelE/ParE, Fic, and AbiEii toxin genes. Moreover, this analysis revealed that Wolbachia RatA toxin is encoded by a single copy gene associated with an ssrS noncoding RNA gene. Documentation of potentially functional TA modules expands our understanding of the metabolic capabilities of Wolbachia, and provides an explanation for variable and sometimes contradictory results of antibiotic treatments. The presence of chromosomal TA modules in Wolbachia genomes suggests that wFol, and potentially other strains of Wolbachia, can enter a quiescent persister state.

RevDate: 2020-03-18

Wu X, Lindsey ARI, Chatterjee P, et al (2020)

Distinct epigenomic and transcriptomic modifications associated with Wolbachia-mediated asexuality.

PLoS pathogens, 16(3):e1008397 pii:PPATHOGENS-D-19-02255 [Epub ahead of print].

Wolbachia are maternally transmitted intracellular bacteria that induce a range of pathogenic and fitness-altering effects on insect and nematode hosts. In parasitoid wasps of the genus Trichogramma, Wolbachia infection induces asexual production of females, thus increasing transmission of Wolbachia. It has been hypothesized that Wolbachia infection accompanies a modification of the host epigenome. However, to date, data on genome-wide epigenomic changes associated with Wolbachia are limited, and are often confounded by background genetic differences. Here, we took sexually reproducing Trichogramma free of Wolbachia and introgressed their genome into a Wolbachia-infected cytoplasm, converting them to Wolbachia-mediated asexuality. Wolbachia was then cured from replicates of these introgressed lines, allowing us to examine the genome-wide effects of wasps newly converted to asexual reproduction while controlling for genetic background. We thus identified gene expression and DNA methylation changes associated with Wolbachia-infection. We found no overlaps between differentially expressed genes and differentially methylated genes, indicating that Wolbachia-infection associated DNA methylation change does not directly modulate levels of gene expression. Furthermore, genes affected by these mechanisms exhibit distinct evolutionary histories. Genes differentially methylated due to the infection tended to be evolutionarily conserved. In contrast, differentially expressed genes were significantly more likely to be unique to the Trichogramma lineage, suggesting host-specific transcriptomic responses to infection. Nevertheless, we identified several novel aspects of Wolbachia-associated DNA methylation changes. Differentially methylated genes included those involved in oocyte development and chromosome segregation. Interestingly, Wolbachia-infection was associated with higher levels of DNA methylation. Additionally, Wolbachia infection reduced overall variability in gene expression, even after accounting for the effect of DNA methylation. We also identified specific cases where alternative exon usage was associated with DNA methylation changes with Wolbachia infection. These results begin to reveal distinct genes and molecular pathways subject to Wolbachia induced epigenetic modification and/or host responses to Wolbachia-infection.

RevDate: 2020-03-16

van den Bosch TJM, CU Welte (2020)

The Microbial Diversity of Cabbage Pest Delia radicum Across Multiple Life Stages.

Frontiers in microbiology, 11:315.

The cabbage root fly Delia radicum is a worldwide pest that causes yield losses of many common cabbage crops. The bacteria associated with D. radicum are suggested to influence the pest status of their host. In this study, we characterized insect-associated bacteria of D. radicum across multiple life stages and of their diet plant (turnip, Brassica rapa subsp. rapa) by sequencing the V3-V4 region of 16S rRNA genes using the Illumina MiSeq platform. In total, over 1.2M paired-end reads were obtained, identifying 1006 bacterial amplicon sequence variants (ASVs) in samples obtained from the eggs, larvae, pupae and adults of D. radicum, as well as turnips that were either fresh or infested with D. radicum larvae. The microbial community in D. radicum was dominated by Wolbachia, a common endosymbiont of arthropods which we found in all of the investigated insect samples, with the pupal stage having the highest relative abundance. Moderate amounts of Firmicutes were found only in adult D. radicum flies, but not in previous life stages. Actinobacteria were mostly found on the eggs and on the skin of fresh plants on which the eggs were deposited. These plants also harbored a large amount of Pseudomonas. The bacterial diversity of the healthy turnip was low, whereas the microbial community of decaying turnips that were heavily infested by D. radicum larvae and showing symptoms of advanced soft rot was characterized by a high bacterial diversity. Taken together, this work provides insights into the bacterial communities associated with the cabbage pest D. radicum and its associated disease symptoms.

RevDate: 2020-03-14

Rossitto De Marchi B, HA Smith (2020)

Bacterial Endosymbiont Diversity Among Bemisia tabaci (Hemiptera: Aleyrodidae) Populations in Florida.

Insects, 11(3): pii:insects11030179.

The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is a pest of many economically important agricultural crops and a vector of plant viruses. Bemisia tabaci harbors facultative endosymbiont species that have been implicated in pest status, including tolerance to insecticides, virus transmission efficiency and tolerance to high-temperatures. The facultative endosymbionts reported in B. tabaci include Arsenophonus, Hamiltonella, Wolbachia, Cardinium, Fritschea and Rickettsia. We collected whitefly populations from weed and crop hosts in south Florida and identified the whitefly species as well as the facultative endosymbionts present in these populations by molecular analysis. In addition, a phylogenetic analysis of whiteflies and their endosymbionts was performed. The only facultative endosymbionts found among the B. tabaci populations collected in Florida were Hamiltonella and Rickettsia. The phylogenetic analysis revealed the low genetic diversity of whiteflies and their endosymbionts. Additionally, the phylogenetic tree clustered Rickettsia from Florida in the R1 genetic group. The results will aid to understand the role of the bacterial endosymbionts in the whitefly host.

RevDate: 2020-03-13

Hu Y, Xi Z, Liu X, et al (2020)

Correction to: Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China.

Parasites & vectors, 13(1):124 pii:10.1186/s13071-020-3917-6.

Following publication of the original article [1], the corresponding author flagged that the article had published with two errors.

RevDate: 2020-03-12

Morrow JL, Schneider DI, Klasson L, et al (2020)

Parallel sequencing of Wolbachia wCer2 from donor and novel hosts reveals multiple incompatibility factors and genome stability after host transfers.

Genome biology and evolution pii:5803650 [Epub ahead of print].

The application of Wolbachia in insect pest and vector control requires the establishment of genotypically stable host associations. The cytoplasmic incompatibility (CI) inducing Wolbachia strain wCer2 naturally occurs in the cherry fruit fly Rhagoletis cerasi as co-infection with other strains and was transferred to other fruit flies by embryonic microinjections. We obtained wCer2 genome data from its native and three novel hosts, Drosophila simulans, Drosophila melanogaster and Ceratitis capitata and assessed its genome stability, characteristics and CI factor (cif) genes. De novo assembly was successful from Wolbachia cell-enriched singly infected D. simulans embryos, with minimal host and other bacterial genome traces. The low yield of Wolbachia sequence reads from total genomic extracts of one multiply infected R. cerasi pupa and one singly infected C. capitata adult limited de novo assemblies but was sufficient for comparative analyses. Across hosts wCer2 was stable in genome synteny and content. Polymorphic nucleotide sites were found in wCer2 of each host, however only one nucleotide was different between R. cerasi and C. capitata, and none between replicated D. simulans lines. The wCer2 genome is highly similar to wAu (D. simulans), wMel (D. melanogaster) and wRec (Drosophila recens). In contrast to wMel and wRec (each with one cif gene pair) and wAu (without any cif genes), wCer2 has three pairs of Type I cif genes and one Type IV cifB gene without a cifA complement. This may explain previously reported CI patterns of wCer2, including incomplete rescue of its own CI modification in three novel host species.

RevDate: 2020-03-10

Mancini MV, Herd CS, Ant TH, et al (2020)

Wolbachia strain wAu efficiently blocks arbovirus transmission in Aedes albopictus.

PLoS neglected tropical diseases, 14(3):e0007926 pii:PNTD-D-19-01910 [Epub ahead of print].

The global incidence of arboviral diseases transmitted by Aedes mosquitoes, including dengue, chikungunya, yellow fever, and Zika, has increased dramatically in recent decades. The release of Aedes aegypti carrying the maternally inherited symbiont Wolbachia as an intervention to control arboviruses is being trialled in several countries. However, these efforts are compromised in many endemic regions due to the co-localization of the secondary vector Aedes albopictus, the Asian tiger mosquito. Ae. albopictus has an expanding global distribution following incursions into a number of new territories. To date, only the wMel and wPip strains of Wolbachia have been reported to be transferred into and characterized in this vector. A Wolbachia strain naturally infecting Drosophila simulans, wAu, was selected for transfer into a Malaysian Ae. albopictus line to create a novel triple-strain infection. The newly generated line showed self-compatibility, moderate fitness cost and complete resistance to Zika and dengue infections.

RevDate: 2020-03-07

Duan DY, Liu GH, TY Cheng (2020)

Microbiome analysis of the saliva and midgut from partially or fully engorged female adult Dermacentor silvarum ticks in China.

Experimental & applied acarology pii:10.1007/s10493-020-00478-2 [Epub ahead of print].

Dermacentor silvarum is widely distributed in northern China and transmits several pathogens that cause diseases in humans and domestic animals. We analysed the comprehensive bacterial community of the saliva and midgut from partially and fully engorged female adult D. silvarum. Dermacentor silvarum samples were collected from Guyuan, China. Bacterial DNA was extracted from the saliva and midgut contents of partially or fully engorged female adult D. silvarum. Sequencing of the V3-V4 hypervariable regions of the 16S rRNA genes was performed using the IonS5TMXL platform. The bacterial diversity in saliva was higher than in the midgut. The bacterial diversity of saliva from fully engorged ticks was greater than in partially engorged tick saliva. The bacterial diversity in midguts from partially engorged ticks was greater than in fully engorged tick midguts. Proteobacteria was the most dominant bacterial phylum in all of the samples. Twenty-nine bacterial genera were detected in all of the samples. Rickettsia, Anaplasma, and Stenotrophomonas were the main genera. The symbionts Coxiella, Arsenophonus, and Wolbachia were also detected in all of the samples. Eight bacterial species were identified in all of the experimental samples. Anaplasma marginale was reported for the first time in D. silvarum.

RevDate: 2020-03-07

Epis S, Varotto-Boccazzi I, Crotti E, et al (2020)

Chimeric symbionts expressing a Wolbachia protein stimulate mosquito immunity and inhibit filarial parasite development.

Communications biology, 3(1):105 pii:10.1038/s42003-020-0835-2.

Wolbachia can reduce the capability of mosquitoes to transmit infectious diseases to humans and is currently exploited in campaigns for the control of arboviruses, like dengue and Zika. Under the assumption that Wolbachia-mediated activation of insect immunity plays a role in the reduction of mosquito vectorial capacity, we focused our attention on the Wolbachia surface protein (WSP), a potential inductor of innate immunity. We hypothesized that the heterologous expression of this protein in gut- and tissue-associated symbionts may reduce parasite transmission. We thus engineered the mosquito bacterial symbiont Asaia to express WSP (AsaiaWSP). AsaiaWSP induced activation of the host immune response in Aedes aegypti and Anopheles stephensi mosquitoes, and inhibited the development of the heartworm parasite Dirofilaria immitis in Ae. aegypti. These results consolidate previous evidence on the immune-stimulating property of WSP and make AsaiaWSP worth of further investigations as a potential tool for the control of mosquito-borne diseases.

RevDate: 2020-03-06

O'Driscoll M, Imai N, Ferguson NM, et al (2020)

Spatiotemporal variability in dengue transmission intensity in Jakarta, Indonesia.

PLoS neglected tropical diseases, 14(3):e0008102 pii:PNTD-D-19-01147 [Epub ahead of print].

BACKGROUND: Approximately 70% of the global burden of dengue disease occurs on the Asian continent, where many large urban centres provide optimal environments for sustained endemic transmission and periodic epidemic cycles. Jakarta, the capital of Indonesia, is a densely populated megacity with hyperendemic dengue transmission. Characterization of the spatiotemporal distribution of dengue transmission intensity is of key importance for optimal implementation of novel control and prevention programmes, including vaccination. In this paper we use mathematical models to provide the first detailed description of spatial and temporal variability in dengue transmission intensity in Jakarta.

We applied catalytic models in a Bayesian framework to age-stratified dengue case notification data to estimate dengue force of infection and reporting probabilities in 42 subdistricts of Jakarta. The model was fitted to yearly and average annual data covering a 10-year period between 2008 and 2017. We estimated a long-term average annual transmission intensity of 0.130 (95%CrI: 0.129-0.131) per year in Jakarta province, ranging from 0.090 (95%CrI: 0.077-0.103) to 0.164 (95%CrI: 0.153-0.174) across subdistricts. Annual average transmission intensity in Jakarta province during the 10-year period ranged from 0.012 (95%CrI: 0.011-0.013) in 2017 to 0.124 (95%CrI: 0.121-0.128) in 2016.

CONCLUSIONS/SIGNIFICANCE: While the absolute number of dengue case notifications cannot be relied upon as a measure of endemicity, the age-distribution of reported dengue cases provides valuable insights into the underlying nature of transmission. Our estimates from yearly and average annual case notification data represent the first detailed estimates of dengue transmission intensity in Jakarta's subdistricts. These will be important to consider when assessing the population-level impact and cost-effectiveness of potential control and prevention programmes in Jakarta province, such as the controlled release of Wolbachia-carrying mosquitoes and vaccination.

RevDate: 2020-03-06

Glowska E, Filutowska ZK, Dabert M, et al (2020)

Microbial composition of enigmatic bird parasites: Wolbachia and Spiroplasma are the most important bacterial associates of quill mites (Acariformes: Syringophilidae).

MicrobiologyOpen [Epub ahead of print].

BACKGROUND: The microbiome is an integral component of many animal species, potentially affecting behavior, physiology, and other biological properties. Despite this importance, bacterial communities remain vastly understudied in many groups of invertebrates, including mites. Quill mites (Acariformes: Syringophilidae) are a poorly known group of permanent bird ectoparasites that occupy quills of feathers and feed on bird subcutaneous tissue and fluids. Most of the known species have strongly female-biased sex ratio, and it was hypothesized that this is caused by endosymbiotic bacteria. Previously, Anaplasma phagocytophilum (Foggie) and a high diversity of Wolbachia strains were detected in quill mites via targeted PCR screens. Here, we use an unbiased 16S rRNA gene amplicon sequencing approach to determine other bacteria that potentially impact quill mite biology.

RESULTS: We performed 16S rRNA gene amplicon sequencing of 126 quill mite individuals from eleven species parasitizing twelve species (four families) of passeriform birds. In addition to Wolbachia, we found Spiroplasma as potential symbiont of quill mites. Consistently, high Spiroplasma titers were only found in individuals of two mite species associated with finches of the genus Carduelis, suggesting a history of horizontal transfers of Spiroplasma via the bird host. Furthermore, there was evidence for Spiroplasma negatively affecting Wolbachia titers. We found no evidence for the previously reported Anaplasma in quill mites, but detected sequences of high similarity to the potential pathogens Brucella and Bartonella at low abundances. Other amplicon sequence variants (ASVs) could be assigned to a diverse number of bacterial taxa, including several that were previously isolated from bird skin. Further, many frequently found ASVs were assigned to taxa that show a very broad distribution with no strong prior evidence for symbiotic association with animals. We interpret these findings as evidence for a scarcity of resident microbial associates (other than inherited symbionts) in quill mites.

RevDate: 2020-03-06

Bubici G, Prigigallo MI, Garganese F, et al (2020)

First Report of Aleurocanthus spiniferus on Ailanthus altissima: Profiling of the Insect Microbiome and MicroRNAs.

Insects, 11(3): pii:insects11030161.

We report the first occurrence of the orange spiny whitefly (Aleurocanthus spiniferus; OSW) on the tree of heaven (Ailanthus altissima) in Bari, Apulia region, Italy. After our first observation in 2016, the infestation recurred regularly during the following years and expanded to the neighboring trees. Since then, we have also found the insect on numerous patches of the tree of heaven and other plant species in the Bari province. Nevertheless, the tree of heaven was not particularly threatened by the insect, so that a possible contribution by OSW for the control of such an invasive plant cannot be hypothesized hitherto. This work was also aimed at profiling the microbiome of OSW feeding on A. altissima. For this purpose, we used the denaturing gradient gel electrophoresis (DGGE) and the deep sequencing of small RNAs (sRNAs). Both techniques unveiled the presence of "Candidatus Portiera" (primary endosymbiont), Wolbachia sp. and Rickettsia sp., endosymbionts already reported for other Aleyrodidae. Deep sequencing data were analyzed by four computational pipelines in order to understand the reliability of the detection of fungi, bacteria, and viruses: Kraken, Kaiju, Velvet, and VelvetOptimiser. Some contigs assembled by Velvet or VelvetOptimiser were associated with insects, but not necessarily in the Aleurocanthus genus or Aleyrodidae family, suggesting the non-specificity of sRNAs or possible traces of parasitoids in the sample (e.g., Eretmocerus sp.). Finally, deep sequencing data were used to describe the microtranscriptome of OSW: 56 canonical and at least four high-confidence novel microRNAs (miRNAs) were identified. The overall miRNA abundance in OSW was in agreement with previous works on Bemisia tabaci, and bantam-3p, miR-276a-3p, miR-317-3p, miR-750-3p, and mir-8-3p were the most represented miRNAs.

RevDate: 2020-03-05

Nikolouli K, Sassù F, Mouton L, et al (2020)

Combining sterile and incompatible insect techniques for the population suppression of Drosophila suzukii.

Journal of pest science, 93(2):647-661.

The spotted wing Drosophila, Drosophila suzukii, has recently invaded Europe and the Americas, and it is a major threat for a wide variety of commercial soft fruits both in open field and greenhouse production systems. D. suzukii infests a wide range of ripening fruits, leading to substantial yield and revenue losses. As the application of insecticides close to the harvest period poses great concerns, the development of an efficient environment-friendly control approach to fight D. suzukii is necessary. In this study, we exploited the sterile insect technique (SIT) in combination with Wolbachia symbiosis as a population suppression approach that can constitute a potential component of an area-wide integrated pest management program. We aimed to establish a combined SIT/incompatible insect technique (IIT) protocol that would require lower irradiation doses as a complementary tool for D. suzukii management. Two D. suzukii lines trans-infected with the Wolbachia wHa and wTei strains were irradiated at doses four times less than usual (e.g., 45 Gy), and the egg hatching and adult emergence were determined. Our results indicated that wHa and wTei females as well as wHa males were sterile at this low dose. The longevity, adult emergence and flight ability of adults were evaluated, and no major effect caused by irradiation was detected. Our data indicate that a SIT/IIT protocol can be a competent approach for D. suzukii management.

RevDate: 2020-03-04

Gallo-Franco JJ, N Toro-Perea (2020)

Variations in the Bacterial Communities in Anastrepha obliqua (Diptera: Tephritidae) According to the Insect Life Stage and Host Plant.

Current microbiology pii:10.1007/s00284-020-01939-y [Epub ahead of print].

Insects have established close relationships with a wide variety of microorganisms, which play a key role in insect ecology and evolution. Fruit flies in the Tephritidae family have economic importance at the global level, including species such as Anastrepha obliqua, which is an important pest in the neotropical region. Although several studies have been performed on the microbiota associated with fruit flies, there are still large gaps in our knowledge about the bacterial communities on the genus Anastrepha. During this study, we used high-throughput sequencing to characterize the bacterial communities of the polyphagous fly A. obliqua, and we evaluated the effect of the life stage (larvae and adults) and host plant (three plant species) on the structure of these communities. Our results show that the bacterial communities in A. obliqua appears to be structured according to the insect life stage and the host plant. The predominant genera belonging to the phylum Proteobacteria were Wolbachia and Enterobacter in both larvae and adults, and they displayed differences in abundance between them, with Wolbachia sp. being more abundant in larvae and Enterobacter sp. being more abundant in adults. Differences in the structures of the bacterial communities were also observed according to the host plant with higher abundance of Enterobacter and Acetobacter bacteria in mango and plum fruits. Based on our results, it can be hypothesized that the bacterial communities on A. obliqua reorganize according to the needs of these insects during their different life stages and could also play an important role in the establishment of this fly species on different host plants. This study represents the first approach to understanding microorganism-insect interactions in fruit flies in Colombia.

RevDate: 2020-03-04

Li Y, Liu X, Wang N, et al (2020)

Background-dependent Wolbachia-mediated insecticide resistance in Laodelphax striatellus.

Environmental microbiology [Epub ahead of print].

While facultative endosymbionts are now known to protect insect hosts against pathogens and parasitoids, the effects of endosymbionts on insecticide resistance are still unclear. Here we show that Wolbachia are associated with increased resistance to the commonly used insecticide, buprofezin, in the small brown planthopper (Laodelphax striatellus) in some genetic backgrounds while having no effect in other backgrounds. In three Wolbachia-infected lines from experimental buprofezin-resistant strains and one line from a buprofezin-susceptible line established from Chuxiong, Yunnan province, China, susceptibility to buprofezin increased after removal of Wolbachia. An increase in susceptibility was also evident in a Wolbachia-infected line established from a field population in Rugao, Jiangsu province. However, no increase was evident in two field populations from Nanjing and Fengxian, Jiangsu province, China. When Wolbachia was introgressed into different genetic backgrounds, followed by Wolbachia removal, the data pointed to Wolbachia effects that depend on the nuclear background as well as on the Wolbachia strain. However, there was no relationship between Wolbachia density and the component of buprofezin resistance associated with the symbiont. The results suggest that Wolbachia effects associated with chemical resistance are complex and unpredictable, but also that they can be substantial. This article is protected by copyright. All rights reserved.

RevDate: 2020-03-03

Turner JD, Marriott AE, Hong D, et al (2020)

Novel anti-Wolbachia drugs, a new approach in the treatment and prevention of veterinary filariasis?.

Veterinary parasitology, 279:109057 pii:S0304-4017(20)30037-6 [Epub ahead of print].

Filarial nematodes are tissue-dwelling parasitic worms that can cause a range of disfiguring pathologies in humans and potentially lethal infections of companion animals. The bacterial endosymbiont, Wolbachia, is present within most human and veterinary filarial pathogens, including the causative agent of heartworm disease, Dirofilaria immitis. Doxycycline-mediated drug targeting of Wolbachia leads to sterility, clearance of microfilariae and gradual death of adult filariae. This mode of action is attractive in the treatment of filariasis because it avoids severe host inflammatory adverse reactions invoked by rapid-killing anthelmintic agents. However, doxycycline needs to be taken for four weeks to exert curative activity. In this review, we discuss the evidence that Wolbachia drug targeting is efficacious in blocking filarial larval development as well as in the treatment of chronic filarial disease. We present the current portfolio of next-generation anti-Wolbachia candidates discovered through phenotypic screening of chemical libraries and validated in a range of in vitro and in vivo filarial infection models. Several novel chemotypes have been identified with selected narrow-spectrum anti-Wolbachia specificity and superior time-to-kill kinetics compared with doxycycline. We discuss the opportunities of developing these novel anti-Wolbachia agents as either cures, adjunct therapies or new preventatives for the treatment of veterinary filariasis.

RevDate: 2020-03-03

Ourry M, Lopez V, Hervé M, et al (2020)

Long lasting effects of antibiotics on bacterial communities of adult flies.

FEMS microbiology ecology pii:5775305 [Epub ahead of print].

Insect symbionts benefit their host and their study requires large spectrum antibiotic use like tetracycline to weaken or suppress symbiotic communities. While antibiotics have a negative impact on insect fitness, little is known about antibiotic effects on insect microbial communities and how long they last. We characterized the bacterial communities of adult cabbage root fly Delia radicum in a Wolbachia-free population, evaluated the effect of tetracycline treatment on these communities over several generations. Three D. radicum generations were used: the first and second generation flies either ingested tetracycline or not, while the third generation flies were untreated but differed with their parents and/or grand-parents that had or had not been treated. Fly bacterial communities were sequenced using a 16S rRNA gene. Tetracycline decreased fly bacterial diversity and induced modifications in both bacterial abundance and relative frequencies, still visible on untreated offspring which parents and/or grandparents had been treated therefore demonstrating long lasting trans-generational effects on animal microbiomes after antibiotic treatment. Flies with an antibiotic history shared bacterial genera, potentially tetracycline-resistant and heritable. Next, the transmission should be investigated by comparing several insect development stages and plant compartments to assess vertical and horizontal transmissions of D. radicum bacterial communities.

RevDate: 2020-02-29

Zhou JC, Liu QQ, Wang QR, et al (2020)

Optimal clutch size for quality control of bisexual and Wolbachia-infected thelytokous lines of Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) mass reared on eggs of a substitutive host, Antheraea pernyi Guérin-Méneville (Lepidoptera: Saturniidae).

Pest management science [Epub ahead of print].

BACKGROUND: Trichogramma dendrolimi has been widely used in augmentative biocontrol of lepidopteran pests in China. In mass production of T. dendrolimi using Antheraea pernyi eggs as substitutive hosts, which are large in size, clutch size is a parameter of importance to produce high quality parasitoids. Here, we aimed to determine the optimal clutch size for the bisexual Wolbachia-infected line (TdB) and Wolbachia-infected thelytokous line (TdT) of T. dendrolimi reared on A. pernyi eggs.

RESULTS: A medium clutch size of 42.75-62.27 for TdB and 52.93-57.14 for TdT was optimal to maximize fitness-correlated traits of parasitoid individual. The optimal clutch sizes with maximized parameters included adult emergence rate, adult body size, adult longevity, fecudity, and sum of fecundity of all females per brood were 58.31 (86.00%), 42.75 (231.11 μm), 50.92 (2.69 d), 62.27 (150.89 eggs), and 83.25 (7926.33 eggs) for TdB and 57.14 (94.54%), 52.93 (236.97 μm), 53.64 (2.62 d), 56.80 (161.01 eggs), and 70.10 (8579.71 eggs) for TdT. The Wolbachia-infected thelytokous line had a shorter adult longevity, longer development time, and higher adult emergence rate than did its non-infected bisexual counterpart.

CONCLUSION: A medium brood size in a A. pernyi egg host was optimal to produce offspring parasitoids with higher fitness parameters for both bisexual Wolbachia-uninfected and thelytokous Wolbachia-infected lines of T. dendrolimi. The determination of optimal clutch size for T. dendrolimi will provide the reference for the quality control of T. dendrolimi production and improvement of the field performance of the wasps. This article is protected by copyright. All rights reserved.

RevDate: 2020-02-25

Kaczmarczyk-Ziemba A, Zagaja M, Wagner GK, et al (2020)

First Insight into Microbiome Profiles of Myrmecophilous Beetles and Their Host, Red Wood Ant Formica polyctena (Hymenoptera: Formicidae)-A Case Study.

Insects, 11(2): pii:insects11020134.

Formica polyctena belongs to the red wood ant species group. Its nests provide a stable, food rich, and temperature and humidity controlled environment, utilized by a wide range of species, called myrmecophiles. Here, we used the high-throughput sequencing of the 16S rRNA gene on the Illumina platform for identification of the microbiome profiles of six selected myrmecophilous beetles (Dendrophilus pygmaeus, Leptacinus formicetorum, Monotoma angusticollis, Myrmechixenus subterraneus, Ptenidium formicetorum and Thiasophila angulata) and their host F. polyctena. Analyzed bacterial communities consisted of a total of 23 phyla, among which Proteobacteria, Actinobacteria, and Firmicutes were the most abundant. Two known endosymbionts-Wolbachia and Rickettsia-were found in the analyzed microbiome profiles and Wolbachia was dominant in bacterial communities associated with F. polyctena, M. subterraneus, L. formicetorum and P. formicetorum (>90% of reads). In turn, M. angusticollis was co-infected with both Wolbachia and Rickettsia, while in the microbiome of T. angulata, the dominance of Rickettsia has been observed. The relationships among the microbiome profiles were complex, and no relative abundance pattern common to all myrmecophilous beetles tested was observed. However, some subtle, species-specific patterns have been observed for bacterial communities associated with D. pygmaeus, M. angusticollis, and T. angulata.

RevDate: 2020-02-24

Hawryluk N (2020)

Macrofilaricides: An Unmet Medical Need for Filarial Diseases.

ACS infectious diseases [Epub ahead of print].

Neglected parasitic helminth diseases, such as onchocerciasis and lymphatic filariasis, affect an estimated 145 million people worldwide, creating a serious health burden in endemic areas such as sub-Saharan Africa and India. Although these diseases are not usually lethal, infections caused by Onchocerca volvulus (onchocerciasis) and Wuchereria/Brugia (LF) cause severe debilitation and chronic disability to infected individuals. The adult worms responsible for infection can reproduce from 5 to up to 14 years, releasing millions of microfilariae, juvenile worms, over an infected individual's lifetime. The current treatments for controlling human filarial infections is focused on killing microfilariae, the earliest larval stage. Currently, there is an unmet medical need for treatments consisting of a macrofilaricidal regimen, one that targets the adult stage of the parasite, increases the rate of elimination, allows for safe use in co-endemic regions of O. volvulus and L. loa, and provides a rapid method to resolve reinfections. Herein, recent approaches for targeting human filarial diseases are discussed including direct acting agents to target parasitic nematodes and anti-bacterial approaches to target the endosymbiotic bacteria, Wolbachia. Keywords: filariasis, onchocerciasis, Wolbachia, microfilaria, macrofilaria, Loa loa.

RevDate: 2020-02-20

Zhang D, Wang Y, He K, et al (2020)

Wolbachia limits pathogen infections through induction of host innate immune responses.

PloS one, 15(2):e0226736 pii:PONE-D-19-32787.

BACKGROUND: Wolbachia has been reported to suppress a variety of pathogen infections in mosquitoes, but the mechanism is undefined. Two possibilities have been proposed. One is that Wolbachia activates host immune responses, and the other one is that Wolbachia competes with pathogens for limited nutrients.

In this study, we compared host immune responses and the densities of two different strains of Wolbachia in naturally occurring parental and artificially created hybrid host genetic backgrounds. No significant difference in Wolbachia density was found between these hosts. We found that Wolbachia could activate host innate immune responses when the host genetic profile was different from that of its natural host. When these hosts were challenged with pathogenic bacteria, mosquitoes in new host-Wolbachia symbioses had a higher survival rate than in old host-Wolbachia symbioses.

CONCLUSIONS/SIGNIFICANCE: The presence of Wolbachia per se does not necessarily affect pathogen infections, suggesting that a competition for limited nutrients is not the main reason for Wolbachia-mediated pathogen suppression. Instead, host immune responses are responsible for it. The elucidation of an immunity nature of PI is important to guide future practice: Wolbachia may be genetically engineered to be more immunogenic, it is desired to search and isolate more strains of Wolbachia, and test more host-Wolbachia symbioses for future applications. Our results also suggest Wolbachia-based PI may be applied to naturally Wolbachia-infected mosquito populations, and extend to the control of a broader range of mosquito-borne diseases.

RevDate: 2020-02-20

Ross PA, Callahan AG, Yang Q, et al (2020)

An elusive endosymbiont: Does Wolbachia occur naturally in Aedes aegypti?.

Ecology and evolution, 10(3):1581-1591 pii:ECE36012.

Wolbachia are maternally inherited endosymbiotic bacteria found within many insect species. Aedes mosquitoes experimentally infected with Wolbachia are being released into the field for Aedes-borne disease control. These Wolbachia infections induce cytoplasmic incompatibility which is used to suppress populations through incompatible matings or replace populations through the reproductive advantage provided by this mechanism. However, the presence of naturally occurring Wolbachia in target populations could interfere with both population replacement and suppression programs depending on the compatibility patterns between strains. Aedes aegypti were thought to not harbor Wolbachia naturally but several recent studies have detected Wolbachia in natural populations of this mosquito. We therefore review the evidence for natural Wolbachia infections in A. aegypti to date and discuss limitations of these studies. We draw on research from other mosquito species to outline the potential implications of natural Wolbachia infections in A. aegypti for disease control. To validate previous reports, we obtained a laboratory population of A. aegypti from New Mexico, USA, that harbors a natural Wolbachia infection, and we conducted field surveys in Kuala Lumpur, Malaysia, where a natural Wolbachia infection has also been reported. However, we were unable to detect Wolbachia in both the laboratory and field populations. Because the presence of naturally occurring Wolbachia in A. aegypti could have profound implications for Wolbachia-based disease control programs, it is important to continue to accurately assess the Wolbachia status of target Aedes populations.

RevDate: 2020-02-18

Tan FHP, Liu G, Lau SA, et al (2020)

Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer's disease model and alleviated neurodegeneration in the eye.

Beneficial microbes, 11(1):79-89.

Alzheimer's disease (AD) is a progressive disease and one of the most common forms of neurodegenerative disorders. Emerging evidence is supporting the use of various strategies that modulate gut microbiota to exert neurological and psychological changes. This includes the utilisation of probiotics as a natural and dietary intervention for brain health. Here, we showed the potential AD-reversal effects of Lactobacillus probiotics through feeding to our Drosophila melanogaster AD model. The administration of Lactobacillus strains was able to rescue the rough eye phenotype (REP) seen in AD-induced Drosophila, with a more prominent effect observed upon the administration of Lactobacillus plantarum DR7 (DR7). Furthermore, we analysed the gut microbiota of the AD-induced Drosophila and found elevated levels of Wolbachia. The administration of DR7 restored the gut microbiota diversity of AD-induced Drosophila with a significant reduction in Wolbachia's relative abundance, accompanied by an increase of Stenotrophomonas and Acetobacter. Through functional predictive analyses, Wolbachia was predicted to be positively correlated with neurodegenerative disorders, such as Parkinson's, Huntington's and Alzheimer's diseases, while Stenotrophomonas was negatively correlated with these neurodegenerative disorders. Altogether, our data exhibited DR7's ability to ameliorate the AD effects in our AD-induced Drosophila. Thus, we propose that Wolbachia be used as a potential biomarker for AD.

RevDate: 2020-02-14

Madhav M, Brown G, Morgan JAT, et al (2020)

Wolbachia successfully replicate in a newly established horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae) cell line.

Pest management science [Epub ahead of print].

BACKGROUND: Haematobia spp., horn flies (HF) and buffalo flies (BF), are economically important ectoparasites of dairy and beef cattle. Control of these flies relies mainly on the treatment of cattle with chemical insecticides. However, the development of resistance to commonly used compounds is compromising the effectiveness of these treatments and alternative methods of control are required. Wolbachia are maternally transmitted endosymbiotic bacteria of arthropods that cause various reproductive distortions and fitness effects, making them a potential candidate for use in the biological control of pests. The first step towards this is the establishment and adaptation of xenobiotic infections of Wolbachia in target host cell lines.

RESULTS: Here we report the successful establishment of a continuous HF cell line (HIE-18) from embryonic cells and its stable transinfection with Wolbachia strains wAlbB native to mosquitoes, and wMel and wMelPop native to Drosophila melanogaster. The HIE-18 cells were typically round and diploid with ten chromosomes (2n = 10) or tetraploid with 20 chromosomes (4n = 20) with a doubling time of 67.2 h. Wolbachia density decreased significantly in the HIE-18 cells in the first 48 h of infection, possibly due to overexpression of antimicrobial peptides through the Imd immune signalling pathway. However, density recovered after this time and HIE-18 cell lines stably infected with the three strains of Wolbachia have now each been subcultured more than 50 times as persistently infected lines.

CONCLUSION: The amenability of HF cells to infection with different strains of Wolbachia and the establishment of stable sustaining infections suggests the potential for use of Wolbachia in novel approaches for the control of Haematobia spp. Further, the availability of the HIE-18 cell line will provide an important resource for the study of genetics, host-parasite interactions and chemical resistance in Haematobia populations. This article is protected by copyright. All rights reserved.

RevDate: 2020-02-13

Vaught RC, Voigt S, Dobler R, et al (2020)

Interactions between cytoplasmic and nuclear genomes confer sex-specific effects on lifespan in Drosophila melanogaster.

Journal of evolutionary biology [Epub ahead of print].

Genetic variation outside of the cell nucleus can affect the phenotype. The cytoplasm is home to the mitochondria, and in arthropods often hosts intracellular bacteria such as Wolbachia. While numerous studies have implicated epistatic interactions between cytoplasmic and nuclear genetic variation as mediators of phenotypic expression, two questions remain. Firstly, it remains unclear whether outcomes of cyto-nuclear interactions will manifest differently across the sexes, as might be predicted given that cytoplasmic genomes are screened by natural selection only through females as a consequence of their maternal inheritance. Secondly, the relative contribution of mitochondrial genetic variation to other cytoplasmic sources of variation, such as Wolbachia infection, in shaping phenotypic outcomes of cyto-nuclear interactions remains unknown. Here, we address these questions, creating a fully-crossed set of replicated cyto-nuclear populations derived from three geographically distinct populations of Drosophila melanogaster, measuring the lifespan of males and females from each population. We observed that cyto-nuclear interactions shape lifespan, and that the outcomes of these interactions differ across the sexes. Yet, we found no evidence that placing the cytoplasms from one population alongside the nuclear background of others (generating putative cyto-nuclear mismatches) leads to decreased lifespan in either sex. Although it was difficult to partition mitochondrial from Wolbachia effects, our results suggest at least some of the cytoplasmic genotypic contribution to lifespan was directly mediated by an effect of sequence variation in the mtDNA. Future work should explore the degree to which cyto-nuclear interactions result in sex differences in expression of other components of organismal life-history.

RevDate: 2020-02-13

Nakabachi A, Malenovský I, Gjonov I, et al (2020)

16S rRNA Sequencing Detected Profftella, Liberibacter, Wolbachia, and Diplorickettsia from Relatives of the Asian Citrus Psyllid.

Microbial ecology pii:10.1007/s00248-020-01491-z [Epub ahead of print].

The Asian citrus psyllid Diaphorina citri (Hemiptera: Psylloidea) is a serious pest of citrus species worldwide because it transmits Candidatus Liberibacter spp. (Alphaproteobacteria: Rhizobiales), the causative agents of the incurable citrus disease, huanglongbing or greening disease. Diaphorina citri possesses a specialized organ called a bacteriome, which harbors vertically transmitted intracellular mutualists, Ca. Carsonella ruddii (Gammaproteobacteria: Oceanospirillales) and Ca. Profftella armatura (Gammaproteobacteria: Betaproteobacteriales). Whereas Carsonella is a typical nutritional symbiont, Profftella is an unprecedented type of toxin-producing defensive symbiont, unusually sharing organelle-like features with nutritional symbionts. Additionally, many D. citri strains are infected with Wolbachia, which manipulate reproduction in various arthropod hosts. In the present study, in an effort to obtain insights into the evolution of symbioses between Diaphorina and bacteria, microbiomes of psyllids closely related to D. citri were investigated. Bacterial populations of Diaphorina cf. continua and Diaphorina lycii were analyzed using Illumina sequencing of 16S rRNA gene amplicons and compared with data obtained from D. citri. The analysis revealed that all three Diaphorina spp. harbor Profftella as well as Carsonella lineages, implying that Profftella is widespread within the genus Diaphorina. Moreover, the analysis identified Ca. Liberibacter europaeus and Diplorickettsia sp. (Gammaproteobacteria: Diplorickettsiales) in D. cf. continua, and a total of four Wolbachia (Alphaproteobacteria: Rickettsiales) lineages in the three psyllid species. These results provide deeper insights into the interactions among insects, bacteria, and plants, which would eventually help to better manage horticulture.

RevDate: 2020-02-12

Zélé F, Santos I, Matos M, et al (2020)

Endosymbiont diversity in natural populations of Tetranychus mites is rapidly lost under laboratory conditions.

Heredity pii:10.1038/s41437-020-0297-9 [Epub ahead of print].

Although the diversity of bacterial endosymbionts in arthropods is well documented, whether and how such diversity is maintained remains an open question. We investigated the temporal changes occurring in the prevalence and composition of endosymbionts after transferring natural populations of Tetranychus spider mites from the field to the laboratory. These populations, belonging to three different Tetranychus species (T. urticae, T. ludeni and T. evansi) carried variable infection frequencies of Wolbachia, Cardinium, and Rickettsia. We report a rapid change of the infection status of these populations after only 6 months of laboratory rearing, with an apparent loss of Rickettsia and Cardinium, while Wolbachia apparently either reached fixation or was lost. We show that Wolbachia had variable effects on host longevity and fecundity, and induced variable levels of cytoplasmic incompatibility (CI) in each fully infected population, despite no sequence divergence in the markers used and full CI rescue between all populations. This suggests that such effects are largely dependent upon the host genotype. Subsequently, we used these data to parameterize a theoretical model for the invasion of CI-inducing symbionts in haplodiploids, which shows that symbiont effects are sufficient to explain their dynamics in the laboratory. This further suggests that symbiont diversity and prevalence in the field are likely maintained by environmental heterogeneity, which is reduced in the laboratory. Overall, this study highlights the lability of endosymbiont infections and draws attention to the limitations of laboratory studies to understand host-symbiont interactions in natural populations.

RevDate: 2020-02-11

Lechner AM, Gastager H, Kern JM, et al (2020)

Case Report: Successful Treatment of a Patient with Microfilaremic Dirofilariasis Using Doxycycline.

The American journal of tropical medicine and hygiene [Epub ahead of print].

We report the case of a 56-year-old woman with microfilaremic dirofilariasis due to Dirofilaria repens, which is a very rare condition in humans. Of note, just one of six large-volume blood samples of this patient was positive for microfilariae. Polymerase chain reaction (PCR) and sequencing of the parasite gene determined the geographic origin of the causative helminth. The patient was treated successfully with doxycycline. This drug was chosen because of the patient's reluctance to the use of ivermectin and to provide an anthelmintic effect by targeting the bacterial endosymbiont Wolbachia present in most filarial species.

RevDate: 2020-02-11

Ekwudu O, Devine GJ, Aaskov JG, et al (2020)

Wolbachia strain wAlbB blocks replication of flaviviruses and alphaviruses in mosquito cell culture.

Parasites & vectors, 13(1):54 pii:10.1186/s13071-020-3936-3.

BACKGROUND: Wolbachia pipientis are bacterial endosymbionts of arthropods currently being implemented as biocontrol agents to reduce the global burden of arboviral diseases. Some strains of Wolbachia, when introduced into Aedes aegypti mosquitoes, reduce or block the replication of RNA viruses pathogenic to humans. The wAlbB strain of Wolbachia was originally isolated from Aedes albopictus, and when transinfected into Ae. aegypti, persists in mosquitoes under high temperature conditions longer than other strains. The utility of wAlbB to block a broad spectrum of RNA viruses has received limited attention. Here we test the ability of wAlbB to reduce or block the replication of a range of Flavivirus and Alphavirus species in cell culture.

METHODS: The C6/36 mosquito cell line was stably infected with the wAlbB strain using the shell-vial technique. The replication of dengue, West Nile and three strains of Zika (genus Flavivirus), and Ross River, Barmah Forest and Sindbis (genus Alphavirus) viruses was compared in wAlbB-infected cells with Wolbachia-free controls. Infectious virus titres were determined using either immunofocus or plaque assays. A general linear model was used to test for significant differences in replication between flaviviruses and alphaviruses.

RESULTS: Titres of all viruses were significantly reduced in cell cultures infected with wAlbB versus Wolbachia-free controls. The magnitude of reduction in virus yields varied among virus species and, within species, also among the strains utilized.

CONCLUSION: Our results suggest that wAlbB infection of arthropods could be used to reduce transmission of a wide range of pathogenic RNA viruses.

RevDate: 2020-02-11

Nazareth T, Craveiro I, Moutinho A, et al (2020)

What happens when we modify mosquitoes for disease prevention? A systematic review.

Emerging microbes & infections, 9(1):348-365.

The release of modified mosquitoes to suppress/replace vectors constitutes a promising tool for vector control and disease prevention. Evidence regarding these innovative modification techniques is scarce and disperse. This work conducted a systematic review, gathering and analysing research articles from PubMed and Biblioteca Virtual em Saúde databases whose results report efficacy and non-target effects of using modified insects for disease prevention, until 2016. More than 1500 publications were screened and 349 were analysed. Only 12/3.4% articles reported field-based evidence and 41/11.7% covered modification strategies' post-release efficacy. Variability in the effective results (90/25.7%) questioned its reproducibility in different settings. We also found publications reporting reversal outcomes 38/10.9%, (e.g. post-release increase of vector population). Ecological effects were also reported, such as horizontal transfer events (54/15.5%), and worsening pathogenesis induced by natural wolbachia (10/2.9%). Present work revealed promising outcomes of modifying strategies. However, it also revealed a need for field-based evidence mainly regarding epidemiologic and long-term impact. It pointed out some eventual irreversible and important effects that must not be ignored when considering open-field releases, and that may constitute constraints to generate the missing field evidence. Present work constitutes a baseline of knowledge, offering also a methodological approach that may facilitate future updates.

RevDate: 2020-02-10

Shang F, Niu J, Ding BY, et al (2020)

Comparative Insight into the Bacterial Communities in Alate and Apterous Morphs of Brown Citrus Aphid (Hemiptera: Aphididae).

Journal of economic entomology pii:5732530 [Epub ahead of print].

Wing polyphenism (alate and apterous morphs) in aphids is a trade-off between dispersal and reproduction. How bacterial communities are associated with wing polyphenism in aphids is still not clearly understood. This study used 16S rRNA sequencing to examine the differences in diversity of the bacterial community between alate and apterous morphs in Aphis citricidus, the main vector of the Citrus tristeza virus. Eighty-one operational taxonomic units (OTUs) belonging to 37 orders, 34 classes, and 13 phyla were identified from all samples. Among these OTUs, Wolbachia (79.17%), Buchnera (17.64%), and Pseudomonas (2.99%) were the dominant bacterial genera. The diversity of symbionts varied between the two morphs; apterous morphs had more bacterial diversity (69 OTUs belonging to 45 families, 21 classes, and 12 phyla) than alate morphs (45 OTUs belonging to 36 families, 15 classes, and 10 phyla). In addition, the abundance of five OTUs was significantly different between two morphs. Among these OTUs, two Pseudomonas species (Pseudomonas_brenneri [OTU21] and unclassified_Pseudomonas [OTU13]) represented a high proportion (3.93% and 2.06%) in alate morphs but were present in low abundance (0.006% and 0.002%) in apterous morphs. RT-qPCR showed consistent results with high-throughput DNA sequencing. The preliminary survey showed the difference in composition and frequency of bacteria between alate and apterous morphs. Thus, the results contribute to anew insight of microorganisms that may be involved in wing dimorphism and helpful for controlling the dispersal of this pest through artificial elimination or reinfection of bacterial symbionts or targeting symbiosis-related host genes by RNA interference in future.

RevDate: 2020-02-07

Hundertmark A, Goodacre SL, JFY Brookfield (2020)

Alternative evolutionary outcomes following endosymbiont-mediated selection on male mating preference alleles.

Journal of evolutionary biology [Epub ahead of print].

In many arthropods, intracellular bacteria, such as those of the genus Wolbachia, may spread through host populations as a result of cytoplasmic incompatibility (CI). Here, there is sterility or reduced fertility in crosses between infected males and uninfected females. As the bacterium is maternally-inherited, the reduced fertility of uninfected females increases the frequency of the infection. If the transmission fidelity of the bacterium is less than 100%, the bacterium cannot invade from a low frequency, but if its frequency exceeds a threshold, it increases to a high, stable, equilibrium frequency. We explore the expected evolutionary dynamics of mutant alleles that cause their male bearers to avoid mating with uninfected females. For alleles which create this avoidance behaviour conditional upon the male being infected, there is a wide zone of parameter space that allows the preference allele to drive Wolbachia from the population when it would otherwise stably persist. There is also a wide zone of parameter space that allows a joint stable equilibrium for the Wolbachia and a polymorphism for the preference allele. When the male's avoidance of uninfected females is unconditional, the preference allele's effect on Wolbachia frequency is reduced, but there is a narrow range of values for the transmission rate and CI fertility that allow an unconditional preference allele to drive Wolbachia from the population, in a process driven by positive linkage disequilibrium between Wolbachia and the preference allele. The possibility of the evolution of preference could hamper attempts to manipulate wild populations through Wolbachia introductions.

RevDate: 2020-02-07

Uni S, Mat Udin AS, Agatsuma T, et al (2020)

Description, molecular characteristics and Wolbachia endosymbionts of Onchocerca borneensis Uni, Mat Udin & Takaoka n. sp. (Nematoda: Filarioidea) from the Bornean bearded pig Sus barbatus Müller (Cetartiodactyla: Suidae) of Sarawak, Malaysia.

Parasites & vectors, 13(1):50 pii:10.1186/s13071-020-3907-8.

BACKGROUND: The genus Onchocerca Diesing, 1841 includes species of medical importance, such as O. volvulus (Leuckart, 1893), which causes river blindness in the tropics. Recently, zoonotic onchocercosis has been reported in humans worldwide. In Japan, O. dewittei japonica Uni, Bain & Takaoka, 2001 from wild boars is a causative agent for this zoonosis. Many filarioid nematodes are infected with Wolbachia endosymbionts which exhibit various evolutionary relationships with their hosts. While investigating the filarial fauna of Borneo, we discovered an undescribed Onchocerca species in the bearded pig Sus barbatus Müller (Cetartiodactyla: Suidae).

METHODS: We isolated Onchocerca specimens from bearded pigs and examined their morphology. For comparative material, we collected fresh specimens of O. d. dewittei Bain, Ramachandran, Petter & Mak, 1977 from banded pigs (S. scrofa vittatus Boie) in Peninsular Malaysia. Partial sequences of three different genes (two mitochondrial genes, cox1 and 12S rRNA, and one nuclear ITS region) of these filarioids were analysed. By multi-locus sequence analyses based on six genes (16S rDNA, ftsZ, dnaA, coxA, fbpA and gatB) of Wolbachia, we determined the supergroups in the specimens from bearded pigs and those of O. d. dewittei.

RESULTS: Onchocerca borneensis Uni, Mat Udin & Takaoka n. sp. is described on the basis of morphological characteristics and its genetic divergence from congeners. Molecular characteristics of the new species revealed its close evolutionary relationship with O. d. dewittei. Calculated p-distance for the cox1 gene sequences between O. borneensis n. sp. and O. d. dewittei was 5.9%, while that between O. d. dewittei and O. d. japonica was 7.6%. No intraspecific genetic variation was found for the new species. Wolbachia strains identified in the new species and O. d. dewittei belonged to supergroup C and are closely related.

CONCLUSIONS: Our molecular analyses of filarioids from Asian suids indicate that the new species is sister to O. d. dewittei. On the basis of its morphological and molecular characteristics, we propose to elevate O. d. japonica to species level as O. japonica Uni, Bain & Takaoka, 2001. Coevolutionary relationships exist between the Wolbachia strains and their filarial hosts in Borneo and Peninsular Malaysia.

RevDate: 2020-02-06

de Jesus CP, Dias FBS, Villela DMA, et al (2020)

Ovitraps Provide a Reliable Estimate of Wolbachia Frequency during wMelBr Strain Deployment in a Geographically Isolated Aedes aegypti Population.

Insects, 11(2): pii:insects11020092.

Deployment of Aedes aegypti mosquitoes carrying the endosymbiont bacterium Wolbachia has been identified as a promising strategy to reduce dengue, chikungunya, and Zika transmission. We investigated whether sampling larvae from ovitraps can provide reliable estimates on Wolbachia frequency during releases, as compared to the expensive adult-based BG-Sentinel. We conducted pilot releases in a semi-field system (SFS) divided into six cages of 21 m2, each with five ovitraps. Five treatments were chosen to represent different points of a hypothetical invasion curve: 10%, 25%, 50%, 75%, and 90% of Wolbachia frequency. Collected eggs were counted and hatched, and the individuals from a net sample of 27% of larvae per treatment were screened for Wolbachia presence by RT-qPCR. Ovitrap positioning had no effect on egg hatching rate. Treatment strongly affected the number of eggs collected and also the hatching rate, especially when Wolbachia was at a 10% frequency. A second observation was done during the release of Wolbachia in Rio under a population replacement approach when bacterium frequency was estimated using 30 BG-Sentinel traps and 45 ovitraps simultaneously. By individually screening 35% (N = 3904) of larvae collected by RT-qPCR, we were able to produce a similar invasion curve to the one observed when all adults were individually screened. If sampling is reduced to 20%, monitoring Wolbachia frequency with 45 ovitraps would be roughly half the cost of screening all adult mosquitoes captured by 30 BG-Sentinels. Our findings support the scale-up of Wolbachia releases, especially in areas with limited resources to afford massive trapping with BG-Sentinel traps.

RevDate: 2020-02-05

Woodhams DC, Bletz MC, Becker CG, et al (2020)

Host-associated microbiomes are predicted by immune system complexity and climate.

Genome biology, 21(1):23 pii:10.1186/s13059-019-1908-8.

BACKGROUND: Host-associated microbiomes, the microorganisms occurring inside and on host surfaces, influence evolutionary, immunological, and ecological processes. Interactions between host and microbiome affect metabolism and contribute to host adaptation to changing environments. Meta-analyses of host-associated bacterial communities have the potential to elucidate global-scale patterns of microbial community structure and function. It is possible that host surface-associated (external) microbiomes respond more strongly to variations in environmental factors, whereas internal microbiomes are more tightly linked to host factors.

RESULTS: Here, we use the dataset from the Earth Microbiome Project and accumulate data from 50 additional studies totaling 654 host species and over 15,000 samples to examine global-scale patterns of bacterial diversity and function. We analyze microbiomes from non-captive hosts sampled from natural habitats and find patterns with bioclimate and geophysical factors, as well as land use, host phylogeny, and trophic level/diet. Specifically, external microbiomes are best explained by variations in mean daily temperature range and precipitation seasonality. In contrast, internal microbiomes are best explained by host factors such as phylogeny/immune complexity and trophic level/diet, plus climate.

CONCLUSIONS: Internal microbiomes are predominantly associated with top-down effects, while climatic factors are stronger determinants of microbiomes on host external surfaces. Host immunity may act on microbiome diversity through top-down regulation analogous to predators in non-microbial ecosystems. Noting gaps in geographic and host sampling, this combined dataset represents a global baseline available for interrogation by future microbial ecology studies.

RevDate: 2020-02-04
CmpDate: 2020-02-04

Singh JA (2019)

Informed consent and community engagement in open field research: lessons for gene drive science.

BMC medical ethics, 20(1):54 pii:10.1186/s12910-019-0389-3.

BACKGROUND: The development of the CRISPR/Cas9 gene editing system has generated new possibilities for the use of gene drive constructs to reduce or suppress mosquito populations to levels that do not support disease transmission. Despite this prospect, social resistance to genetically modified organisms remains high. Gene drive open field research thus raises important questions regarding what is owed to those who may not consent to such research, or those could be affected by the proposed research, but whose consent is not solicited. The precise circumstances under which informed consent must be obtained, and from whom, requires careful consideration. Furthermore, appropriate engagement processes should be central to any introduction of genetically modified mosquitos in proposed target settings.

DISCUSSION: In this work, international guidance documents on informed consent and engagement are reviewed and applied to the genetically modified mosquito research context. Five analogous research endeavours that involve area-wide / open field experiments are reviewed. The approach of each in respect to the solicitation of individual informed consent and community engagement are highlighted.

CONCLUSIONS: While the solicitation of individual informed consent in host settings of gene drive field trials may not be possible or feasible in some instances, local community and stakeholder engagement will be key to building trust towards the proposed conduct of such research. In this regard, the approaches taken by investigators and sponsors of political science field research and weather modification field research should be avoided. Rather, proponents of gene drive field research should look to the Eliminate Dengue field trials, cluster randomised trials, and pragmatic clinical trials for guidance regarding how the solicitation of individual informed consent of host communities ought to be managed, and how these communities ought to be engaged.

RevDate: 2020-01-30

Cattarino L, Rodriguez-Barraquer I, Imai N, et al (2020)

Mapping global variation in dengue transmission intensity.

Science translational medicine, 12(528):.

Intervention planning for dengue requires reliable estimates of dengue transmission intensity. However, current maps of dengue risk provide estimates of disease burden or the boundaries of endemicity rather than transmission intensity. We therefore developed a global high-resolution map of dengue transmission intensity by fitting environmentally driven geospatial models to geolocated force of infection estimates derived from cross-sectional serological surveys and routine case surveillance data. We assessed the impact of interventions on dengue transmission and disease using Wolbachia-infected mosquitoes and the Sanofi-Pasteur vaccine as specific examples. We predicted high transmission intensity in all continents straddling the tropics, with hot spots in South America (Colombia, Venezuela, and Brazil), Africa (western and central African countries), and Southeast Asia (Thailand, Indonesia, and the Philippines). We estimated that 105 [95% confidence interval (CI), 95 to 114] million dengue infections occur each year with 51 (95% CI, 32 to 66) million febrile disease cases. Our analysis suggests that transmission-blocking interventions such as Wolbachia, even at intermediate efficacy (50% transmission reduction), might reduce global annual disease incidence by up to 90%. The Sanofi-Pasteur vaccine, targeting only seropositive recipients, might reduce global annual disease incidence by 20 to 30%, with the greatest impact in high-transmission settings. The transmission intensity map presented here, and made available for download, may help further assessment of the impact of dengue control interventions and prioritization of global public health efforts.

RevDate: 2020-01-28
CmpDate: 2020-01-28

Attardo GM, Abd-Alla AMM, Acosta-Serrano A, et al (2019)

Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes.

Genome biology, 20(1):187 pii:10.1186/s13059-019-1768-2.

BACKGROUND: Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity.

RESULTS: Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges.

CONCLUSIONS: Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.

RevDate: 2020-01-28
CmpDate: 2020-01-28

Yang S, Zhao Y, Yu J, et al (2019)

Establishment of Viral Infection and Analysis of Host-Virus Interaction in Drosophila Melanogaster.

Journal of visualized experiments : JoVE.

Virus spreading is a major cause of epidemic diseases. Thus, understanding the interaction between the virus and the host is very important to extend our knowledge of prevention and treatment of viral infection. The fruit fly Drosophila melanogaster has proven to be one of the most efficient and productive model organisms to screen for antiviral factors and investigate virus-host interaction, due to powerful genetic tools and highly conserved innate immune signaling pathways. The procedure described here demonstrates a nano-injection method to establish viral infection and induce systemic antiviral responses in adult flies. The precise control of the viral injection dose in this method enables high experimental reproducibility. Protocols described in this study include the preparation of flies and the virus, the injection method, survival rate analysis, the virus load measurement, and an antiviral pathway assessment. The influence effects of viral infection by the flies' background were mentioned here. This infection method is easy to perform and quantitatively repeatable; it can be applied to screen for host/viral factors involved in virus-host interaction and to dissect the crosstalk between innate immune signaling and other biological pathways in response to viral infection.

RevDate: 2020-01-27

Ehrens A, Lunde CS, Jacobs RT, et al (2020)

In vivo efficacy of the boron-pleuromutilin AN11251 against Wolbachia of the rodent filarial nematode Litomosoides sigmodontis.

PLoS neglected tropical diseases, 14(1):e0007957 pii:PNTD-D-19-01205 [Epub ahead of print].

The elimination of filarial diseases such as onchocerciasis and lymphatic filariasis is hampered by the lack of a macrofilaricidal-adult worm killing-drug. In the present study, we tested the in vivo efficacy of AN11251, a boron-pleuromutilin that targets endosymbiotic Wolbachia bacteria from filarial nematodes and compared its efficacy to doxycycline and rifampicin. Doxycycline and rifampicin were previously shown to deplete Wolbachia endosymbionts leading to a permanent sterilization of the female adult filariae and adult worm death in human clinical studies. Twice-daily oral treatment of Litomosoides sigmodontis-infected mice with 200 mg/kg AN11251 for 10 days achieved a Wolbachia depletion > 99.9% in the adult worms, exceeding the Wolbachia reduction by 10-day treatments with bioequivalent human doses of doxycycline and a similar reduction as high-dose rifampicin (35 mg/kg). Wolbachia reductions of > 99% were also accomplished by 14 days of oral AN11251 at a lower twice-daily dose (50 mg/kg) or once-per-day 200 mg/kg AN11251 treatments. The combinations tested of AN11251 with doxycycline had no clear beneficial impact on Wolbachia depletion, achieving a > 97% Wolbachia reduction with 7 days of treatment. These results indicate that AN11251 is superior to doxycycline and comparable to high-dose rifampicin in the L. sigmodontis mouse model, allowing treatment regimens as short as 10-14 days. Therefore, AN11251 represents a promising pre-clinical candidate that was identified in the L. sigmodontis model, and could be further evaluated and developed as potential clinical candidate for human lymphatic filariasis and onchocerciasis.

RevDate: 2020-01-23

Ross PA, Axford JK, Yang Q, et al (2020)

Heatwaves cause fluctuations in wMel Wolbachia densities and frequencies in Aedes aegypti.

PLoS neglected tropical diseases, 14(1):e0007958 pii:PNTD-D-19-01580.

Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being released into natural mosquito populations in the tropics as a way of reducing dengue transmission. High temperatures adversely affect wMel, reducing Wolbachia density and cytoplasmic incompatibility in some larval habitats that experience large temperature fluctuations. We monitored the impact of a 43.6°C heatwave on the wMel infection in a natural population in Cairns, Australia, where wMel was first released in 2011 and has persisted at a high frequency. Wolbachia infection frequencies in the month following the heatwave were reduced to 83% in larvae sampled directly from field habitats and 88% in eggs collected from ovitraps, but recovered to be near 100% four months later. Effects of the heatwave on wMel appeared to be stage-specific and delayed, with reduced frequencies and densities in field-collected larvae and adults reared from ovitraps but higher frequencies in field-collected adults. Laboratory experiments showed that the effects of heatwaves on cytoplasmic incompatibility and density are life stage-specific, with first instar larvae being the most vulnerable to temperature effects. Our results indicate that heatwaves in wMel-infected populations will have only temporary effects on Wolbachia frequencies and density once the infection has established in the population. Our results are relevant to ongoing releases of wMel-infected Ae. aegypti in several tropical countries.

RevDate: 2020-01-21

Covey H, Hall RH, Krafsur A, et al (2020)

Cryptic Wolbachia (Rickettsiales: Rickettsiaceae) Detection and Prevalence in Culicoides (Diptera: Ceratopogonidae) Midge Populations in the United States.

Journal of medical entomology pii:5713395 [Epub ahead of print].

Culicoides midges vector numerous veterinary and human pathogens. Many of these diseases lack effective therapeutic treatments or vaccines to limit transmission. The only effective approach to limit disease transmission is vector control. However, current vector control for Culicoides midges is complicated by the biology of many Culicoides species and is not always effective at reducing midge populations and impacting disease transmission. The endosymbiont Wolbachia pipientis Hertig may offer an alternative control approach to limit disease transmission and affect Culicoides populations. Here the detection of Wolbachia infections in nine species of Culicoides midges is reported. Infections were detected at low densities using qPCR. Wolbachia infections were confirmed with the sequencing of a partial region of the 16S gene. Fluorescence in situ hybridization of Culicoides sonorensis Wirth and Jones adults and dissected ovaries confirm the presence of Wolbachia infections in an important vector of Bluetongue and Epizootic hemorrhagic disease viruses. The presence of Wolbachia in Culicoides populations in the United States suggests the need for further investigation of Wolbachia as a strategy to limit transmission of diseases vectored by Culicoides midges.

RevDate: 2020-01-20

Bing XL, Zhao DS, Sun JT, et al (2020)

Genomic analysis of Wolbachia from Laodelphax striatellus (Delphacidae, Hemiptera) reveals insights into its "Jekyll and Hyde" mode of infection pattern.

Genome biology and evolution pii:5709815 [Epub ahead of print].

Wolbachia is a widely distributed intracellular bacterial endosymbiont among invertebrates. The wStriCN, the Wolbachia strain that naturally infects an agricultural pest Laodelphax striatellus, has a "Jekyll and Hyde" mode of infection pattern with positive and negative effects: it kills many offspring by inducing cytoplasmic incompatibility (CI) but also significantly increases host fecundity at the same time. In this study, we assembled the draft genome of wStriCN and compared it to other Wolbachia genomes to look for clues to its Jekyll and Hyde characteristics. The assembled wStriCN draft genome is 1.79 Mb in size, which is the largest Wolbachia genome in supergroup B. Phylogenomic analysis showed wStriCN is closest to Wolbachia from Asian citrus psyllid Diaphorina citri. These strains formed a mono-phylogentic clade within supergroup B. Compared to other Wolbachia genomes, wStriCN contains the most diverse insertion sequence families, the largest amount of prophage sequences and the most ankyrin domain protein coding genes. The wStriCN genome encodes components of multiple secretion systems, including Types I, II, IV, VI, Sec and Tac. We detected three pairs of homologs for CI factors CifA and CifB. These proteins harbor the catalytic domains responsible for CI phenotypes but are phylogenetically and structurally distinct from all known Cif proteins. The genome retains pathways for synthesizing biotin and riboflavin, which may explain the beneficial roles of wStriCN in its host planthoppers, which feed on nutrient-poor plant sap. Altogether, the genomic sequencing of wStriCN provides insight into understanding the phylogeny and biology of Wolbachia.

RevDate: 2020-01-20

Zhang H, R Lui (2020)

Releasing Wolbachia-infected Aedes aegypti to prevent the spread of dengue virus: A mathematical study.

Infectious Disease Modelling, 5:142-160 pii:S2468-0427(19)30044-2.

Wolbachia is a bacterium that is present in 60% of insects but it is not generally found in Aedes aegypti, the primary vector responsible for the transmission of dengue virus, Zika virus, and other human diseases caused by RNA viruses. Wolbachia has been shown to stop the growth of a variety of RNA viruses in Drosophila and in mosquitoes. Wolbachia-infected Ae. aegypti have both reproductive advantages and disadvantages over wild types. If Wolbachia-infected females are fertilized by either normal or infected males, the offspring are healthy and Wolbachia-positive. On the other hand, if Wolbachia-negative females are fertilized by Wolbachia-positive males, the offspring do not hatch. This phenomenon is called cytoplasmic incompatibility. Thus, Wolbachia-positive females have a reproductive advantage, and the Wolbachia is expanded in the population. On the other hand, Wolbachia-infected mosquitoes lay fewer eggs and generally have a shorter lifespan. In recent years, scientists have successfully released these Wolbachia-adapted mosquitoes into the wild in several countries and have achieved a high level of replacement with Wolbachia-positive mosquitoes. Here, we propose a minimal mathematical model to investigate the feasibility of such a release method. The model has five steady-states two of which are locally asymptotically stable. One of these stable steady-states has no Wolbachia-infected mosquitoes while for the other steady-state, all mosquitoes are infected with Wolbachia. We apply optimal control theory to find a release method that will drive the mosquito population close to the steady-state with only Wolbachia-infected mosquitoes in a two-year time period. Because some of the model parameters cannot be accurately measured or predicted, we also perform uncertainty and sensitivity analysis to quantify how variations in our model parameters affect our results.

RevDate: 2020-01-16

Zhu YX, Song ZR, Huo SM, et al (2020)

Variation in the microbiome of the spider mite Tetranychus truncatus with sex, instar, and endosymbiont infection.

FEMS microbiology ecology pii:5704398 [Epub ahead of print].

Most arthropod-associated bacterial communities play a crucial role in host functional traits, whose structure could be dominated by endosymbionts. The spider mite Tetranychus truncatus is a notorious agricultural pest harboring various endosymbionts, yet the effects of endosymbionts on spider mite microbiota remain largely unknown. Here, using deep sequencing of the 16S rRNA gene, we characterized the microbiota of male and female T. truncatus with different endosymbionts (Wolbachia and Spiroplasma) across different developmental stages. Although the spider mite microbiota composition varied across the different developmental stages, Proteobacteria were the most dominant bacteria harbored in all samples. Positive relationships among related OTUs dominated the significant coassociation networks among bacteria. Moreover, the spider mites coinfected with Wolbachia and Spiroplasma had a significantly higher daily fecundity and juvenile survival rate than the singly infected or uninfected spider mites. The possible function of spider-mite associated bacteria was discussed. Our results highlight the dynamics of spider mite microbiotas across different life stages, and the potential role of endosymbionts in shaping the microbiota of spider mites and improving host fitness.

RevDate: 2020-01-15

Perlmutter JI, Meyers JE, SR Bordenstein (2020)

Transgenic Testing Does Not Support a Role for Additional Candidate Genes in Wolbachia Male Killing or Cytoplasmic Incompatibility.

mSystems, 5(1): pii:5/1/e00658-19.

Endosymbiotic bacteria in the genus Wolbachia remarkably infect nearly half of all arthropod species. They spread in part because of manipulations of host sexual reproduction that enhance the maternal transmission of the bacteria, including male killing (death of infected males) and unidirectional cytoplasmic incompatibility (CI; death of offspring from infected fathers and uninfected mothers). Recent discoveries identified several genes in prophage WO of Wolbachia (wmk, cifA, and cifB) that fully or partially recapitulate male killing or CI when transgenically expressed in Drosophila melanogaster However, it is not yet fully resolved if other gene candidates contribute to these phenotypes. Here, we transgenically tested 10 additional gene candidates for their involvement in male killing and/or CI. The results show that despite sequence and protein architecture similarities or comparative associations with reproductive parasitism, transgenic expression of the candidates does not recapitulate male killing or CI. Sequence analysis across Wmk and its closest relatives reveals amino acids that may be important to its function. In addition, evidence is presented to propose new hypotheses regarding the relationship between wmk transcript length and its ability to kill a given host, as well as copy number of wmk homologs within a bacterial strain, which may be predictive of host resistance. Together, these analyses continue to build the evidence for identification of wmk, cifA, and cifB as the major genes that have thus far been shown to cause reproductive parasitism in Wolbachia, and the transgenic resources provide a basis for further functional study of phage WO genes.IMPORTANCEWolbachia are widespread bacterial endosymbionts that manipulate the reproduction of diverse arthropods to spread through a population and can substantially shape host evolution. Recently, reports identified three prophage WO genes (wmk, cifA, and cifB) that transgenically recapitulate many aspects of reproductive manipulation in Drosophila melanogaster Here, we transgenically tested 10 additional gene candidates for CI and/or male killing in flies. The results yield no evidence for the involvement of these gene candidates in reproductive parasitism, bolstering the evidence for identification of the cif and wmk genes as the major factors involved in their phenotypes. In addition, evidence supports new hypotheses for prediction of male-killing phenotypes or lack thereof based on wmk transcript length and copy number. These experiments inform efforts to understand the full basis of reproductive parasitism for basic and applied purposes and lay the foundation for future work on the function of an interesting group of Wolbachia and phage WO genes.

RevDate: 2020-01-15

Hu Y, Xi Z, Liu X, et al (2020)

Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China.

Parasites & vectors, 13(1):28 pii:10.1186/s13071-020-3899-4.

BACKGROUND: Aedes albopictus is naturally infected with Wolbachia spp., maternally transmitted bacteria that influence the reproduction of hosts. However, little is known regarding the prevalence of infection, multiple infection status, and the relationship between Wolbachia density and dengue outbreaks in different regions. Here, we assessed Wolbachia infection in natural populations of Ae. albopictus in China and compared Wolbachia density between regions with similar climates, without dengue and with either imported or local dengue.

RESULTS: To explore the prevalence of Wolbachia infection, Wolbachia DNA was detected in mosquito samples via PCR amplification of the 16S rRNA gene and the surface protein gene wsp. We found that 93.36% of Ae. albopictus in China were positive for Wolbachia. After sequencing gatB, coxA, hcpA, ftsZ, fbpA and wsp genes of Wolbachia strains, we identified a new sequence type (ST) of wAlbB (464/465). Phylogenetic analysis indicated that wAlbA and wAlbB strains formed a cluster with strains from other mosquitoes in a wsp-based maximum likelihood (ML) tree. However, in a ML tree based on multilocus sequence typing (MLST), wAlbB STs (464/465) did not form a cluster with Wolbachia strains from other mosquitoes. To better understand the association between Wolbachia spp. and dengue infection, the prevalence of Wolbachia in Ae. albopictus from different regions (containing local dengue cases, imported dengue cases and no dengue cases) was determined. We found that the prevalence of Wolbachia was lower in regions with only imported dengue cases.

CONCLUSIONS: The natural prevalence of Wolbachia infections in China was much lower than in other countries or regions. The phylogenetic relationships among Wolbachia spp. isolated from field-collected Ae. albopictus reflected the presence of dominant and stable strains. However, wAlbB (464/465) and Wolbachia strains did not form a clade with Wolbachia strains from other mosquitoes. Moreover, lower densities of Wolbachia in regions with only imported dengue cases suggest a relationship between fluctuations in Wolbachia density in field-collected Ae. albopictus and the potential for dengue invasion into these regions.

RevDate: 2020-01-13

Bezerra-Santos MA, Nogueira BCF, Yamatogi RS, et al (2020)

Ticks, fleas and endosymbionts in the ectoparasite fauna of the black-eared opossum Dipelphis aurita in Brazil.

Experimental & applied acarology pii:10.1007/s10493-020-00468-4 [Epub ahead of print].

Ticks and fleas are essential vectors of pathogens that affect humans and animals, and among their hosts, synanthropic animals such as the black-eared opossum, Didelphis aurita, play a role in public health due to their ability to move between urban centers and forested areas in Brazil. This study aimed to assess the ectoparasite fauna of D. aurita, as well as the presence of pathogens and endosymbionts in ticks and fleas. Opossums (n = 58) captured in Tomahawk livetraps were examined for ectoparasites, and their blood sampled for further analysis. Additionally, spleen samples were collected in individuals found dead. Samples were PCR screened for Rickettsia spp., Borrelia spp., Anaplasmataceae, and Babesia spp. Two tick species were morphologically identified as Ixodes loricatus 24/58 (41.4%) and Amblyomma sculptum 1/58 (1.7%). For fleas, Ctenocephalides felis was detected in 60.3% (35/58) of the animals, and Xenopsylla cheopis in 5.2% (3/58). PCR analysis detected Anaplasmataceae DNA in 34% (16/47) of pooled samples of C. felis, and in 66.7% (2/3) pooled samples of X. cheopis. Sequence analysis revealed Wolbachia pipientis symbiont in all positive samples. Tick, blood and spleen samples were all negative for the microorganisms assessed. These findings suggest that these arthropods circulate among wildlife and urban environments, which may implicate in their participation in the cycle of zoonotic pathogens among opossums, humans and companion animals.

RevDate: 2020-01-13

Li Y, X Liu (2020)

Modeling and control of mosquito-borne diseases with Wolbachia and insecticides.

Theoretical population biology pii:S0040-5809(19)30206-0 [Epub ahead of print].

Mosquitoes cause more human suffering than any other organism. It is estimated that over one million people worldwide die from mosquito-borne diseases every year. With the continuous efforts of many researchers, Wolbachia gets more and more attention due to its characteristics of maternal transmission in mosquito population and it may cause cytoplasmic incompatibility (CI) which makes healthy females cannot fertilize normally after mating with infected males. In this paper, mathematical model is established to study Wolbachia transmission in mosquito population, and an integrated mosquito control strategy is explored. Firstly, a classical ordinary differential system with general birth and death rate functions is established to describe the maternal transmission and CI effect. It is shown that the replacement strategy that the Wolbachia-uninfected mosquitoes are replaced by the infected ones is determined by the initial infection frequency. And Wolbachia spreads more easily for greater maternal transmission and CI rate. Moreover, all the wild mosquitoes will eventually be infected with Wolbachia if the maternal transmission is complete. Secondly, an impulsive state feedback control model is constructed to describe the integrated mosquito control. Besides Wolbachia, insecticides are sprayed when the quantity of mosquitoes reaches some Economic Threshold. The existence and stability of Wolbachia replacement periodic solution are discussed. Finally, some discussions are done and the future research directions are prospected.

RevDate: 2020-01-13

Alfano N, Tagliapietra V, Rosso F, et al (2019)

Changes in Microbiota Across Developmental Stages of Aedes koreicus, an Invasive Mosquito Vector in Europe: Indications for Microbiota-Based Control Strategies.

Frontiers in microbiology, 10:2832.

Since it has been understood that gut microbiota of vector mosquitoes can influence their vector competence, efforts have been undertaken to develop new control strategies based on host microbiota manipulation, and aimed at suppressing the vector population or replacing it with a less competent one. For the proper design of such control strategies it is necessary to know the microbiota composition of the target vector species, how it is acquired, and how it changes throughout the host's life cycle. In this study, 16S rRNA amplicon high-throughput sequencing was used to characterize the changes in microbiota from the aquatic environment (larval breeding sites) to the different developmental stages of field-collected Aedes koreicus in Italy, an emerging invasive mosquito species in Europe and a potential vector of several pathogens. The bacterial communities of the aquatic breeding sites, larvae, pupae and adults showed distinctive structures to one another. Indeed, 84% of community members were unique to a given sample type. Nevertheless, almost 40% of the sequences generated were assigned to bacteria detected in all sample types, suggesting the importance of bacteria transstadially transmitted from water to the adult stage in constituting mosquito microbiota. Among these, genus C39 largely constituted water microbiota, family Burkholderiaceae was the most abundant in larvae and pupae, and genus Asaia dominated adult communities. In addition, Asaia constituted a core microbiota across all sample types. Our results suggest that the microbiota of Ae. koreicus mosquitoes is composed by a community which derives from the aquatic bacteria of the larval breeding sites, is then filtered by the larval gut, where only certain members are able to persist, rearranged by metamorphosis and finally modified by the change in diet at the adult stage. Understanding how the microbiota of Ae. koreicus changes through the mosquito life cycle represents a first step in selecting bacterial candidates for use in microbiota-based intervention measures for this species. The properties which Asaia exhibits in this species, such as dominance, high prevalence and transstadial transmission, prevent the use of Wolbachia but make Asaia an ideal candidate for paratransgenesis.

RevDate: 2020-01-15

Garcia GA, Hoffmann AA, Maciel-de-Freitas R, et al (2020)

Aedes aegypti insecticide resistance underlies the success (and failure) of Wolbachia population replacement.

Scientific reports, 10(1):63.

Mosquitoes that carry Wolbachia endosymbionts may help control the spread of arboviral diseases, such as dengue, Zika and chikungunya. Wolbachia frequencies systematically increase only when the frequency-dependent advantage due to cytoplasmic incompatibility exceeds frequency-independent costs, which may be intrinsic to the Wolbachia and/or can be associated with the genetic background into which Wolbachia are introduced. Costs depend on field conditions such as the environmental pesticide load. Introduced mosquitoes need adequate protection against insecticides to ensure survival after release. We model how insecticide resistance of transinfected mosquitoes determines the success of local Wolbachia introductions and link our theoretical results to field data. Two Ae. aegypti laboratory strains carrying Wolbachia were released in an isolated district of Rio de Janeiro, Brazil: wMelBr (susceptible to pyrethroids) and wMelRio (resistant to pyrethroids). Our models elucidate why releases of the susceptible strain failed to result in Wolbachia establishment, while releases of the resistant strain led to Wolbachia transforming the native Ae. aegypti population. The results highlight the importance of matching insecticide resistance levels in release stocks to those in the target natural populations during Wolbachia deployment.

RevDate: 2020-01-08

Reeves DD, Price SL, Ramalho MO, et al (2020)

The Diversity and Distribution of Wolbachia, Rhizobiales, and Ophiocordyceps Within the Widespread Neotropical Turtle Ant, Cephalotes atratus (Hymenoptera: Formicidae).

Neotropical entomology pii:10.1007/s13744-019-00735-z [Epub ahead of print].

Ants are an ecologically and evolutionarily diverse group, and they harbor a wide range of symbiotic microbial communities that often greatly affect their biology. Turtle ants (genus Cephalotes) engage in mutualistic relationships with gut bacteria and are exploited by microbial parasites. Studies have shown that associations among these microbial lineages and the turtle ant hosts vary geographically. However, these studies have been limited, and thorough within-species analyses of the variation and structure of these microbial communities have yet to be conducted. The giant turtle ant, Cephalotes atratus (Linnaeus 1758), is a geographically widespread, genetically diverse Neotropical species that has been sampled extensively across its geographic range, making it ideal for analysis of microbial associations. In this study, we verified the presence, genetic variation, and geographic patterns at the individual, colony, and population level of three microbial groups associated with the giant turtle ant: Wolbachia, a genus of facultative bacteria which are often parasitic, affecting host reproduction; Rhizobiales, a mutualistic order of bacteria hypothesized to be an obligate nutritional symbiont in turtle ants; and Ophiocordyceps, a genus of endoparasitic fungi infecting many arthropod species by manipulating their behavior for fungal reproduction. In this study, we found varying degrees of prevalence for two distantly related genotypes (haplogroups) of Wolbachia and high degree of prevalence of Rhizobiales across colonies with little genetic variation. In addition, we found low occurrence of Ophiocordyceps. This study highlights a key first step in understanding the diversity, distribution, and prevalence of the microbial community of C. atratus.

RevDate: 2020-01-08

Chrostek E, Hurst GDD, EA McGraw (2020)

Infectious Diseases: Antiviral Wolbachia Limits Dengue in Malaysia.

Current biology : CB, 30(1):R30-R32.

Vector-borne viral diseases pose an urgent public health challenge, particularly in the tropics. Field releases of mosquitoes carrying bacterial symbionts that reduce vector competence are ongoing in Kuala Lumpur, Malaysia. Early results show that wAlbB Wolbachia can persist in mosquitoes in urban settings and decrease dengue incidence in humans.

RevDate: 2020-01-04

Madhav M, Parry R, Morgan JAT, et al (2020)

Wolbachia endosymbiont of the horn fly Haematobia irritans irritans: a supergroup A strain with multiple horizontally acquired cytoplasmic incompatibility genes.

Applied and environmental microbiology pii:AEM.02589-19 [Epub ahead of print].

The horn fly, Haematobia irritans irritans, is a hematophagous parasite of livestock distributed throughout Europe, Africa, Asia, and the Americas. Welfare losses on livestock due to horn fly infestation are estimated to cost between USD 1-2.5 billion annually in North America and Brazil. The endosymbiotic bacterium Wolbachia pipientis is a maternally inherited manipulator of reproductive biology in arthropods and naturally infects laboratory colonies of horn flies from Kerrville, USA and Alberta, Canada, but has also been identified in wild-caught samples from Canada, USA, Mexico and Hungary. Re-assembly of PacBio long-read and Illumina genomic DNA libraries from the Kerrville H. i. irritans genome project allowed for a complete and circularised 1.3 Mb Wolbachia genome (wIrr). Annotation of wIrr yielded 1249 coding genes, 34 tRNAs, three rRNAs, and five prophage regions. Comparative genomics and whole genome Bayesian evolutionary analysis of wIrr compared to published Wolbachia genomes suggests that wIrr is most closely related to and diverged from Wolbachia supergroup A strains known to infect Drosophila spp. Whole-genome synteny analyses between wIrr and closely related genomes indicates that wIrr has undergone significant genome rearrangements while maintaining high nucleotide identity. Comparative analysis of the cytoplasmic incompatibility (CI) genes of wIrr suggests two phylogenetically distinct CI loci and acquisition of another CifB homolog from phylogenetically distant supergroup A Wolbachia strains suggesting horizontal acquisition of these loci. The wIrr genome provides a resource for future examination of the impact Wolbachia may have in both biocontrol and potential insecticide resistance of horn flies.Importance Horn flies, Haematobia irritans irritans, are obligate hematophagous parasites of cattle having significant effects on production and animal welfare. Control of horn flies mainly relies on the use of insecticides, but issues with resistance have increased interest in development of alternative means of control. Wolbachia pipientis is an endosymbiont bacterium known to have a range of effects on host reproduction such as induction of cytoplasmic incompatibility, feminization, male killing, and also impacts on vector transmission. These characteristics of Wolbachia have been exploited in biological control approaches for a range of insect pests. Here we report the assembly and annotation of the circular genome of the Wolbachia strain of the Kerrville, USA horn fly (wIrr). Annotation of wIrr suggests its unique features including the horizontal acquisition of additional transcriptionally active cytoplasmic incompatibility loci. This study will provide the foundation for future Wolbachia-induced biological effect studies for control of horn flies.

RevDate: 2020-01-08

Lefoulon E, Vaisman N, Frydman HM, et al (2019)

Author Correction: Large Enriched Fragment Targeted Sequencing (LEFT-SEQ) Applied to Capture of Wolbachia Genomes.

Scientific reports, 9(1):20184 pii:10.1038/s41598-019-55305-5.

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

RevDate: 2020-01-08

Asimakis ED, Doudoumis V, Hadapad AB, et al (2019)

Detection and characterization of bacterial endosymbionts in Southeast Asian tephritid fruit fly populations.

BMC microbiology, 19(Suppl 1):290 pii:10.1186/s12866-019-1653-x.

BACKGROUND: Various endosymbiotic bacteria, including Wolbachia of the Alphaproteobacteria, infect a wide range of insects and are capable of inducing reproductive abnormalities to their hosts such as cytoplasmic incompatibility (CI), parthenogenesis, feminization and male-killing. These extended phenotypes can be potentially exploited in enhancing environmentally friendly methods, such as the sterile insect technique (SIT), for controlling natural populations of agricultural pests. The goal of the present study is to investigate the presence of Wolbachia, Spiroplasma, Arsenophonus and Cardinium among Bactrocera, Dacus and Zeugodacus flies of Southeast Asian populations, and to genotype any detected Wolbachia strains.

RESULTS: A specific 16S rRNA PCR assay was used to investigate the presence of reproductive parasites in natural populations of nine different tephritid species originating from three Asian countries, Bangladesh, China and India. Wolbachia infections were identified in Bactrocera dorsalis, B. correcta, B. scutellaris and B. zonata, with 12.2-42.9% occurrence, Entomoplasmatales in B. dorsalis, B. correcta, B. scutellaris, B. zonata, Zeugodacus cucurbitae and Z. tau (0.8-14.3%) and Cardinium in B. dorsalis and Z. tau (0.9-5.8%), while none of the species tested, harbored infections with Arsenophonus. Infected populations showed a medium (between 10 and 90%) or low (< 10%) prevalence, ranging from 3 to 80% for Wolbachia, 2 to 33% for Entomoplasmatales and 5 to 45% for Cardinium. Wolbachia and Entomoplasmatales infections were found both in tropical and subtropical populations, the former mostly in India and the latter in various regions of India and Bangladesh. Cardinium infections were identified in both countries but only in subtropical populations. Phylogenetic analysis revealed the presence of Wolbachia with some strains belonging either to supergroup B or supergroup A. Sequence analysis revealed deletions of variable length and nucleotide variation in three Wolbachia genes. Spiroplasma strains were characterized as citri-chrysopicola-mirum and ixodetis strains while the remaining Entomoplasmatales to the Mycoides-Entomoplasmataceae clade. Cardinium strains were characterized as group A, similar to strains infecting Encarsia pergandiella.

CONCLUSIONS: Our results indicated that in the Southeast natural populations examined, supergroup A Wolbachia strain infections were the most common, followed by Entomoplasmatales and Cardinium. In terms of diversity, most strains of each bacterial genus detected clustered in a common group. Interestingly, the deletions detected in three Wolbachia genes were either new or similar to those of previously identified pseudogenes that were integrated in the host genome indicating putative horizontal gene transfer events in B. dorsalis, B. correcta and B. zonata.

RevDate: 2020-01-17

Conte CA, Segura DF, Milla FH, et al (2019)

Wolbachia infection in Argentinean populations of Anastrepha fraterculus sp1: preliminary evidence of sex ratio distortion by one of two strains.

BMC microbiology, 19(Suppl 1):289 pii:10.1186/s12866-019-1652-y.

BACKGROUND: Wolbachia, one of the most abundant taxa of intracellular Alphaproteobacteria, is widespread among arthropods and filarial nematodes. The presence of these maternally inherited bacteria is associated with modifications of host fitness, including a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, host feminization and male-killing. Wolbachia has attracted much interest for its role in biological, ecological and evolutionary processes as well as for its potential use in novel and environmentally-friendly strategies for the control of insect pests and disease vectors including a major agricultural pest, the South American fruit fly, Anastrepha fraterculus Wiedemann (Diptera: Tephritidae).

RESULTS: We used wsp, 16S rRNA and a multilocus sequence typing (MLST) scheme including gatB, coxA, hcpA, fbpA, and ftsZ genes to detect and characterize the Wolbachia infection in laboratory strains and wild populations of A. fraterculus from Argentina. Wolbachia was found in all A. fraterculus individuals studied. Nucleotide sequences analysis of wsp gene allowed the identification of two Wolbachia nucleotide variants (named wAfraCast1_A and wAfraCast2_A). After the analysis of 76 individuals, a high prevalence of the wAfraCast2_A variant was found both, in laboratory (82%) and wild populations (95%). MLST analysis identified both Wolbachia genetic variants as sequence type 13. Phylogenetic analysis of concatenated MLST datasets clustered wAfraCast1/2_A in the supergroup A. Paired-crossing experiments among single infected laboratory strains showed a phenotype specifically associated to wAfraCast1_A that includes slight detrimental effects on larval survival, a female-biased sex ratio; suggesting the induction of male-killing phenomena, and a decreased proportion of females producing descendants that appears attributable to the lack of sperm in their spermathecae.

CONCLUSIONS: We detected and characterized at the molecular level two wsp gene sequence variants of Wolbachia both in laboratory and wild populations of A. fraterculus sp.1 from Argentina. Crossing experiments on singly-infected A. fraterculus strains showed evidence of a male killing-like mechanism potentially associated to the wAfraCast1_A - A. fraterculus interactions. Further mating experiments including antibiotic treatments and the analysis of early and late immature stages of descendants will contribute to our understanding of the phenotypes elicited by the Wolbachia variant wAfraCast1_A in A. fraterculus sp.1.

RevDate: 2019-12-31

Hübner MP, Gunderson E, Vogel I, et al (2019)

Short-course quinazoline drug treatments are effective in the Litomosoides sigmodontis and Brugia pahangi jird models.

International journal for parasitology. Drugs and drug resistance, 12:18-27 [Epub ahead of print].

The quinazolines CBR417 and CBR490 were previously shown to be potent anti-wolbachials that deplete Wolbachia endosymbionts of filarial nematodes and present promising pre-clinical candidates for human filarial diseases such as onchocerciasis. In the present study we tested both candidates in two models of chronic filarial infection, namely the Litomosoides sigmodontis and Brugia pahangi jird model and assessed their long-term effect on Wolbachia depletion, microfilariae counts and filarial embryogenesis 16-18 weeks after treatment initiation (wpt). Once per day (QD) oral treatment with CBR417 (50 mg/kg) for 4 days or twice per day (BID) with CBR490 (25 mg/kg) for 7 days during patent L. sigmodontis infection reduced the Wolbachia load by >99% and completely cleared peripheral microfilaremia from 10-14 wpt. Similarly, 7 days of QD treatments (40 mg/kg) with CBR417 or CBR490 cleared >99% of Wolbachia from B. pahangi and reduced peritoneal microfilariae counts by 93% in the case of CBR417 treatment. Transmission electron microscopy analysis indicated intensive damage to the B. pahangi ovaries following CBR417 treatment and in accordance filarial embryogenesis was inhibited in both models after CBR417 or CBR490 treatment. Suboptimal treatment regimens of CBR417 or CBR490 did not lead to a maintained reduction of the microfilariae and Wolbachia load. In conclusion, CBR417 or CBR490 are pre-clinical candidates for filarial diseases, which achieve long-term clearance of Wolbachia endosymbionts of filarial nematodes, inhibit filarial embryogenesis and clear microfilaremia with treatments as short as 7 days.

RevDate: 2020-01-11

Fauver JR, Martin J, Weil GJ, et al (2019)

De novo Assembly of the Brugia malayi Genome Using Long Reads from a Single MinION Flowcell.

Scientific reports, 9(1):19521.

Filarial nematode infections cause a substantial global disease burden. Genomic studies of filarial worms can improve our understanding of their biology and epidemiology. However, genomic information from field isolates is limited and available reference genomes are often discontinuous. Single molecule sequencing technologies can reduce the cost of genome sequencing and long reads produced from these devices can improve the contiguity and completeness of genome assemblies. In addition, these new technologies can make generation and analysis of large numbers of field isolates feasible. In this study, we assessed the performance of the Oxford Nanopore Technologies MinION for sequencing and assembling the genome of Brugia malayi, a human parasite widely used in filariasis research. Using data from a single MinION flowcell, a 90.3 Mb nuclear genome was assembled into 202 contigs with an N50 of 2.4 Mb. This assembly covered 96.9% of the well-defined B. malayi reference genome with 99.2% identity. The complete mitochondrial genome was obtained with individual reads and the nearly complete genome of the endosymbiotic bacteria Wolbachia was assembled alongside the nuclear genome. Long-read data from the MinION produced an assembly that approached the quality of a well-established reference genome using comparably fewer resources.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )