Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Endosymbiosis

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 09 Mar 2025 at 01:35 Created: 

Endosymbiosis

A symbiotic relationship in which one of the partners lives within the other, especially if it lives within the cells of the other, is known as endosymbiosis. Mitochondria, chloroplasts, and perhaps other cellular organelles are believed to have originated from a form of endosymbiosis. The endosymbiotic origin of eukaryotes seems to have been a biological singularity — that is, it happened once, and only once, in the history of life on Earth.

Created with PubMed® Query: endosymbiont NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2025-03-05

Leybourne DJ (2025)

Genetic diversity and association with bacterial endosymbionts influence phenotype in two important cereal aphid species.

Bulletin of entomological research pii:S0007485325000124 [Epub ahead of print].

Aphids are important pests of cereal crops and cause economically significant damage through direct feeding and the transmission of plant viruses. In Europe, the aphid species of greatest concern are the grain aphid (Sitobion avenae Fabricius) and the bird cherry-oat aphid, (Rhopalosiphum padi Linnaeus). Often, cereal crops are dominated by a small number of prolific clonal populations and these populations can differ in phenotypic traits of agricultural importance. There are two heritable factors that influence aphid phenotype: aphid genetic diversity and the presence of endosymbionts.Here, multiple cereal aphid populations are used to determine how heritable factors influence aphid phenotype. Several agriculturally important phenotypic traits are examined, and both endosymbiont- and genotype-derived phenotypes are identified. For S. avenae, aphid genotype influences all phenotypic traits assessed, and association with the facultative endosymbiont Regiella insecticola influences alate morph production with co-infection of R. insecticola and Fukatsuia symbiotica increasing reproductive output. For R. padi, adult aphid morph (apterous or alate) is the key driver behind reproductive output, with a genotype × morph effect also found to influence development time.Overall, these results provide insight into the biological drivers behind phenotypic diversity in agriculturally important aphid species. Being able to associate heritable factors with key phenotypes can generate biological insights into the processes underpinning the dominance of specific aphid clones and can be used to develop pest and disease management strategies based around the phenotypic risk of the aphid populations present.

RevDate: 2025-03-04

Han X, Zhou J, Guo Q, et al (2025)

Diversity and genomics of bacteriome-associated symbionts in treehopper Darthula hardwickii (Hemiptera: Aetalionidae) and implications of their nutritional functions.

Applied and environmental microbiology [Epub ahead of print].

Symbionts play important roles in insect nutritional ecology, and the phylogenies of some vertically transmitted symbionts mirror the host phylogeny. Here we report the diversity, distribution, transmission, and potential functions of symbionts harbored in the aetalionid treehopper Darthula hardwickii (Aetalionidae) using multiple methods and compare the potential functions of its obligate symbiont Karelsulcia with that of the related aetalionid Aetalion reticulatum. D. hardwickii harbors Karelsulcia in bacteriomes, a yeast-like fungal symbiont (YLS) in fat bodies, and Tisiphia in both the bacteriomes and fat bodies. Karelsulcia and YLS are vertically transmitted to the ovaries but do not cluster to form a "symbiont ball" in terminal oocytes, as is the case in other auchenorrhynchan insects. YLS harbored in D. hardwickii represents the first known instance of a fungal symbiont being associated with treehoppers. Phylogenetic analysis revealed that Aetalionidae are derived from within Membracidae. Gene truncation and absence were revealed in the tryptophan biosynthetic pathway of Karelsulcia from D. hardwickii, suggesting this symbiont is no longer capable of providing this essential amino acid (EAA) to its host. Tryptophan is presumed to be supplied to D. hardwickii by YLS since tryptophan-related genes are either absent or degraded in Karelsulcia and Tisiphia. No truncated genes were found in Karelsulcia from A. reticulatum, but it has lost genes related to the synthesis of other EAAs, as in some leafhoppers. This study sheds new light on the diversity and functions of the nutritional endosymbionts of Membracoidea and processes that may have precipitated symbiont replacement in this diverse insect lineage.IMPORTANCESymbionts in sap-feeding insects play important roles related to nutrition of their hosts, which may change through evolutionary time and vary across host and symbiont lineages. This comparative genomic study indicates that, compared to the related symbionts of other leaf- and treehoppers, the Karelsulcia symbiont of the treehopper Darthula hardwickii has lost the ability to provide the EAA tryptophan to its host. This function is apparently being performed by a coexisting yeast-like symbiont (YLS). This is the first report of a YLS in a species of treehopper, which suggests that the processes involved in symbiont replacement in treehoppers are similar to those observed in other sap-sucking auchenorrhynchan insects. Phylogenetic analyses of Karelsulcia lineages of Membracoidea largely mirror the host insect phylogeny but suggest that Aetalionidae may have originated from Membracidae, in contrast to some recent phylogenies based on the genomic data from the host insects.

RevDate: 2025-03-03

Santana-Molina C, Williams TA, Snel B, et al (2025)

Chimeric origins and dynamic evolution of central carbon metabolism in eukaryotes.

Nature ecology & evolution [Epub ahead of print].

The origin of eukaryotes was a key event in the history of life. Current leading hypotheses propose that a symbiosis between an asgardarchaeal host cell and an alphaproteobacterial endosymbiont represented a crucial step in eukaryotic origin and that metabolic cross-feeding between the partners provided the basis for their subsequent evolutionary integration. A major unanswered question is whether the metabolism of modern eukaryotes bears any vestige of this ancestral syntrophy. Here we systematically analyse the evolutionary origins of the eukaryotic gene repertoires mediating central carbon metabolism. Our phylogenetic and sequence analyses reveal that this gene repertoire is chimeric, with ancestral contributions from Asgardarchaeota and Alphaproteobacteria operating predominantly in glycolysis and the tricarboxylic acid cycle, respectively. Our analyses also reveal the extent to which this ancestral metabolic interplay has been remodelled via gene loss, transfer and subcellular retargeting in the >2 billion years since the origin of eukaryotic cells, and we identify genetic contributions from other prokaryotic sources in addition to the asgardarchaeal host and alphaproteobacterial endosymbiont. Our work demonstrates that, in contrast to previous assumptions, modern eukaryotic metabolism preserves information about the nature of the original asgardarchaeal-alphaproteobacterial interactions and supports syntrophy scenarios for the origin of the eukaryotic cell.

RevDate: 2025-03-01

Diesbourg EE, Kidd KA, BG Perrotta (2025)

Effects of municipal wastewater effluents on the invertebrate microbiomes of an aquatic-riparian food web.

Environmental pollution (Barking, Essex : 1987) pii:S0269-7491(25)00321-5 [Epub ahead of print].

Municipal wastewater effluents (MWWEs) contain antimicrobials and other contaminants that can alter the microbiomes of exposed aquatic animals, potentially negatively impacting host health. Contaminants and nutrients from MWWEs may be transferred across the aquatic - riparian boundary by aquatic insects, potentially altering the microbiomes of both prey and consumers. We evaluated host microbiome compositions of several taxa of freshwater larval and adult insects and riparian spiders at sites upstream and downstream of three wastewater treatment plants. Host microbiome compositions were analyzed by sequencing the 16S rRNA gene and MWWE exposure was assessed using stable carbon (δ[13]C) and nitrogen (δ[15]N) isotopes and effluent-associated bacteria. Most downstream insects and riparian spiders were enriched in δ[13]C and δ[15]N, indicating exposure to MWWEs and transfer of MWWE-derived nutrients to riparian consumers. Within sites, insect microbiomes varied after metamorphosis with a greater proportion of endosymbionts and effluent-associated bacteria and decreased alpha diversity in adults, and the microbiomes of Tetragnathidae spiders were dominated by endosymbionts (mainly Rickettsia and Wolbachia) compared to all other taxa. Downstream, Larval caddisfly (Hydropsychidae) microbiomes had a significantly lower proportion of endosymbionts (Rickettsia) and higher diversity, and Araneidae spiders also had higher diversity. However, there were no significant downstream changes in endosymbiont proportions or alpha diversity of larval and adult chironomids, larval and adult mayflies, larval stoneflies, or Tetragnathidae spiders. Most downstream invertebrates (except larval Chironomidae, adult Diptera, and Tetragnathidae spiders) had altered beta diversity (community compositions); however, host taxonomy explained more of the variation in microbiome composition than site or the interaction between them did. Overall, MWWE bacteria and nutrients were incorporated into most insect larvae and retained throughout metamorphosis, however there were taxa-dependent alterations in downstream insect microbiomes and minimal microbiome alterations to their riparian spider predators.

RevDate: 2025-02-28

Xie X, Sun K, Liu A, et al (2025)

Analysis of gill and skin microbiota in Larimichthys crocea reveals bacteria associated with cryptocaryoniasis resistance potential.

Fish & shellfish immunology pii:S1050-4648(25)00117-2 [Epub ahead of print].

Cryptocaryoniasis, caused by the ciliate parasite Cryptocaryon irritans, poses a significant threat to the large yellow croaker (Larimichthys crocea) in intensive marine aquaculture. This study explores the interaction between skin and gill microbiota and C. irritans infection, focusing on the role of commensal microbes in disease resistance. Fish were challenged with 100 theronts per gram of body weight, leading to substantial microbial dysbiosis, characterized by decreased alpha diversity and disrupted co-occurrence networks, particularly on the skin. Post-infection, Vibrio abundance significantly increased in both gills and skin, suggesting potential for secondary infections. Conversely, lower Vibrio levels correlated with higher populations of Bdellovibrio-like organisms (BALOs), which may play a beneficial role in microbial balance. Fish showed varying susceptibility, with mildly infected individuals exhibiting less histopathological damage and a stronger immune response, indicated by elevated interleukin-1β (IL-1β) and interleukin-8 (IL-8) levels. Correlation analyses revealed significant relationships between relative infection intensity (RII) and microbial composition, with certain bacteria known for anti-eukaryotic microbial properties showing negative correlations with RII. Additionally, the abundance of nitrogen-metabolizing bacteria also correlated negatively with RII. Functional predictions indicated increased bacterial genes related to denitrification and vitamin biosynthesis post-infection. Notably, Candidatus Midichloria was identified as a potential biomarker for C. irritans infection and is thought to be an endosymbiont of C. irritans, with its presence validated through PCR analysis. These findings illuminate microbial dynamics during C. irritans infection and suggest probiotic candidates for managing cryptocaryoniasis.

RevDate: 2025-02-27

Qin Y, Wang Q, Lin Q, et al (2025)

Multi-omics analysis reveals associations between gut microbiota and host transcriptome in colon cancer patients.

mSystems [Epub ahead of print].

UNLABELLED: Colon cancer (CC) is one of the most common cancers globally, which is associated with the gut microbiota intimately. In current research, exploring the complex interaction between microbiomes and CC is a hotspot. However, the information on microbiomes in most previous studies is based on fecal, which does not fully display the microbial environment of CC. Herein, we collected mucosal and tissue samples from both the tumor and normal regions of 19 CC patients and clarified the composition of mucosal microbiota by 16S rRNA and metagenomic sequencing. Additionally, RNA-Seq was also conducted to identify the different expression genes between tumor and normal tissue samples. We revealed significantly different microbial community structures and expression profiles to CC. Depending on correlation analysis, we demonstrated that 1,472 genes were significantly correlated with CC tumor microbiota. Our study reveals a significant enrichment of Campylobacter jejuni in the mucosa of CC, which correlates with bile secretion. Additionally, we observe a negative correlation between C. jejuni and immune cells CD4+ Tem and mast cells. Finally, we discovered that metabolic bacterial endosymbiont of Bathymodiolus sp., Bacillus wiedmannii, and Mycobacterium tuberculosis had a significant survival value for CC, which was ignored by previous research. Overall, our study expands the understanding of the complex interplay between microbiota and CC and provides new targets for the treatment of CC.

IMPORTANCE: This study contributes to our understanding of the interaction between microbiota and colon cancer (CC). By examining mucosal and tissue samples rather than solely relying on fecal samples, we have uncovered previously unknown aspects of CC-associated microbiota. Our findings reveal distinct microbial community structures and gene expression profiles correlated with CC progression. Notably, the enrichment of Campylobacter jejuni in CC mucosa, linked to bile secretion, underscores potential mechanisms in CC pathogenesis. Additionally, observed correlations between microbial taxa and immune cell populations offer new avenues for immunotherapy research in CC. Importantly, this study introduces CC-associated microbiota with survival implications for CC, expanding therapeutic targets beyond conventional strategies. By elucidating these correlations, our study not only contributes to uncovering the potential role of gut microbiota in colon cancer but also establishes a foundation for mechanistic studies of gut microbiota in colon cancer, emphasizing the broader impact of microbiota research on cancer biology.

RevDate: 2025-02-26
CmpDate: 2025-02-26

Kokusho R, S Katsuma (2025)

Baculoviruses remodel the cytoskeleton of insect hemocytes to breach the host basal lamina.

Communications biology, 8(1):268.

Many pathogens and endosymbionts hijack the host's cytoskeleton for efficient propagation and transfer within or between host cells. Once released into the host's circulatory system, however, they have to confront structural barriers without utilizing host cell functions. Many insect viruses and insect-borne viruses can re-enter from the hemolymph into insect tissues despite the barrier of the basal lamina (BL), but the molecular mechanism remains unclear in many cases. Here, we demonstrate that Bombyx mori nucleopolyhedrovirus (BmNPV) remodels host hemocytes to breach the BL. We found that the viral membrane protein actin rearrangement-inducing factor 1 (ARIF-1) induces filopodia-like protrusions and invadosome-like structures in hemocytes, which play a critical role in attaching to the tissue surface, penetrating the tracheal BL and thus facilitating the transport of viral nucleocapsids into host tissues. Our findings clearly show the role of hemocyte infection in viral systemic spread and its molecular basis.

RevDate: 2025-02-26

Tashyreva D, Votýpka J, Yabuki A, et al (2025)

Description of new diplonemids (Diplonemea, Euglenozoa) and their endosymbionts: Charting the morphological diversity of these poorly known heterotrophic flagellates.

Protist, 177:126090 pii:S1434-4610(25)00006-9 [Epub ahead of print].

Diplonemids are a hyperdiverse group of flagellated protists, but with less than two dozen formally described representatives. Here, we describe four new species of cultured diplonemids, identified on the basis of their 18S rRNA sequences, light-, fluorescence-, scanning- and transmission electron microscopy. Three new species belong to the genus Rhynchopus (R. asiaticus sp.n., R. granulatus sp.n., and R. valaseki sp.n.), while the fourth species is an unusual representative of the genus Lacrimia (L. aflagellata sp.n.). The latter organism is the first diplonemid outside the genus Rhynchopus (as defined previously) to show a gliding trophic stage with flagellar stubs concealed inside the flagellar pocket and a highly motile dispersive swimming stage. Since this character is thus no longer a genus-specific apomorphy, we provide a taxonomic revision of the genus Rhynchopus with separation of the new genus Natarhynchopus gen. n. We also identify bacterial endosymbionts of L. aflagellata and R. asiaticus as Ca. Syngnamydia medusae (Chlamydiales, Simkaniaceae) and Ca. Cytomitobacter rhynchopi sp. n. (Alphaproteobacteria, Holosporaceae), respectively, and discuss their potential functions. This is the first report of a chlamydial symbiont within a diplonemid host. We also propose that diplonemids may serve as vectors for chlamydial pathogens of marine fish.

RevDate: 2025-02-26

Kratou M, Maitre A, Abuin-Denis L, et al (2025)

Microbial community variations in adult Hyalomma dromedarii ticks from single locations in Saudi Arabia and Tunisia.

Frontiers in microbiology, 16:1543560.

INTRODUCTION: The camel-infesting tick, Hyalomma dromedarii, is a prominent ectoparasite in the Middle East and North Africa (MENA) region, critically impacting camel health and acting as a vector for tick-borne pathogens. Despite prior studies on its microbiota, the effects of geographic origin and sex on microbial community structure and functional stability remain poorly understood.

METHODS: To address this, we characterized the bacterial microbiota of H. dromedarii ticks collected from camels in Tunisia (TUN) and Saudi Arabia (SA) using 16S rRNA gene sequencing, microbial network analysis, and metabolic pathway prediction.

RESULTS: Our findings indicate a dominant presence of Francisella endosymbionts in Tunisian ticks, suggesting adaptive roles of H. dromedarii ticks in arid ecosystems. Keystone taxa, particularly Staphylococcus and Corynebacterium, were identified as central to microbial network structure and resilience. Moreover, network robustness analyses demonstrated enhanced ecological stability in the Tunisian tick microbiota under perturbation, indicative of higher resilience to environmental fluctuations compared to Saudi Arabian ticks. Additionally, functional pathway predictions further revealed geographically distinct metabolic profiles between both groups (Tunisia vs. Saudi Arabia and males vs. females), underscoring environmental and biological influences on H. dromedarii microbiota assembly.

DISCUSSION: These results highlight region-specific and sex-specific microbial adaptations in H. dromedarii, with potential implications for pathogen transmission dynamics and vector resilience. Understanding these microbial interactions may contribute to improved strategies for tick control and tick-borne disease prevention.

RevDate: 2025-02-26

Duan YX, Zhuang YH, Wu YX, et al (2025)

Wolbachia Infection Alters the Microbiota of the Invasive Leaf-Miner Liriomyza huidobrensis (Diptera: Agromyzidae).

Microorganisms, 13(2): pii:microorganisms13020302.

Microbe-microbe interactions within a host drive shifts in the host's microbiota composition, profoundly influencing host physiology, ecology, and evolution. Among these microbes, the maternally inherited endosymbiont Wolbachia is widespread in the invasive pest Liriomyza huidorbrensis (Diptera: Agromyzidae). However, its influence on the host microbiota remains largely unexplored. In the study presented herein, we investigated the bacterial communities of Wolbachia wLhui-infected (wLhui+) and -uninfected lines (wLhui-) of L. huidorbrensis using 16S rRNA gene high-throughput sequencing. For both leaf-miner lines, Bacteroidota was the dominant phylum (relative abundance: 59.18%), followed by Pseudomonadota (36.63%), Actinomycetota (2.42%), and Bacillota (0.93%). We found no significant differences in alpha-diversity indices between the wLhui+ and wLhui- lines (p > 0.05). However, principal coordinates analysis revealed significant differences in microbiota composition between the wLhui+ and wLhui- lines (PERMANOVA: p < 0.001), explaining 76.70% of the variance in microbiota composition. Correlation network analysis identified robust negative and positive associations between Wolbachia and several genera, suggesting that Wolbachia shapes microbial composition through competitive or cooperative interactions with specific taxa. Overall, our study suggests that Wolbachia plays a key role in shaping the leaf-miner microbiome, potentially affecting host fitness.

RevDate: 2025-02-26

Shamoon-Pour M, Canessa EH, Macher J, et al (2025)

Genomic and Proteomic Analyses of Bacterial Communities of Ixodes scapularis Ticks from Broome County, New York.

Microorganisms, 13(2): pii:microorganisms13020258.

The microbial communities of Ixodes scapularis, the primary vector of Lyme disease in North America, exhibit regional variations that may affect pathogen transmission and vector competence. We analyzed bacterial communities in I. scapularis ticks collected from Broome County, New York, using 16S rRNA gene sequencing (18 ticks) as well as mass spectrometry-based proteomics (36 ticks). According to the 16S rRNA analysis, the endosymbiont Rickettsia buchneri was the most abundant species, with significantly higher (p = 0.0011) abundance in females (54.76%) compared to males (31.15%). We detected Borreliella burgdorferi in 44.44% of ticks and Anaplasma phagocytophilum in two nymphs but in high relative abundances (12.73% and 46.46%). Male ticks exhibited higher bacterial diversity, although the community composition showed no significant clustering by sex or life stage. Co-occurrence analysis revealed negative associations between R. buchneri and Pseudomonas (p = 0.0245), but no associations with B. burgdorferi. Proteomic analysis identified 12 R. buchneri-specific proteins, additionally detecting the protozoan pathogen Babesia microti in 18.18% of females. These findings provide the first comprehensive characterization of I. scapularis microbiomes in the Southern Tier region of New York and suggest broader distribution of R. buchneri across tick life stages than previously recognized, with potential implications for pathogen transmission dynamics.

RevDate: 2025-02-26

Gwiazdowska A, Rutkowski R, M Sielezniew (2025)

Conservation Genetics of the Endangered Danube Clouded Yellow Butterfly Colias myrmidone (Esper, 1780) in the Last Central European Stronghold: Diversity, Wolbachia Infection and Balkan Connections.

Insects, 16(2): pii:insects16020220.

The Danube Clouded Yellow (Colias myrmidone) has experienced one of the most dramatic declines among European butterflies. To estimate genetic diversity in the last population in Poland that has survived in the Knyszyn Forest (KF), we analyzed mitochondrial (COI) and nuclear (EF-1α) polymorphisms in individuals sampled in 2014 and 2022. The results were compared with genetic data obtained in 2014 from a recently extirpated nearby population (Czerwony Bór, CB). Because mtDNA polymorphisms in insects can be modulated by endosymbionts, the samples were screened for Wolbachia. The polymorphism of EF-1α indicated that diversity was gradually decreasing. The KF experienced rapid demographic processes, manifested by a significant change in allele frequency. The small differentiation in nuclear markers between the KF and CB in 2014 suggests that the regional population used to be genetically uniform. Four COI haplotypes that were identified in this study probably belong to two different haplogroups. Wolbachia was detected only in individuals with one specific haplotype, and the prevalence was female-biased, suggesting the induction of two reproductive manipulations. The most common COI haplotype found in Poland was the same as that reported from other parts of Europe, not only for C. myrmidone but also C. caucasica. These results allow us to question the distinctiveness of each taxa.

RevDate: 2025-02-26

Price G, Simard A, BA McGraw (2025)

Evaluation of Bacterial Communities of Listronotus maculicollis Kirby Reared on Primary and Secondary Host Plants.

Insects, 16(2): pii:insects16020114.

The annual bluegrass weevil (Listronotus maculicollis Kirby) is a devastating insect pest of annual bluegrass (Poa annua L.) and, to a lesser extent, creeping bentgrass (Agrostis stolonifera L.) on golf courses. Listronotus maculicollis-reared A. stolonifera, a comparatively tolerant host, incurs fitness costs, including longer developmental periods and reduced larval survivorship. This study sought to characterize microbiota diversity in L. maculicollis adults and larvae reared on P. annua and A. stolonifera cultivars (Penncross & A4) to explore whether intrinsic factors, such as microbial community composition, vary across host plants and developmental stages, potentially influencing host suitability. Alpha diversity analyses showed adults feeding on A4 exhibited higher bacterial species richness than their offspring reared on the same cultivar. Beta diversity analysis revealed significant dissimilarities between L. maculicollis adults and offspring regardless of host. Pseudomonas sp. was consistently abundant in larvae across all turfgrasses, indicating a potential association with larval development. Elevated levels of Wolbachia sp., known for insect reproductive manipulation, were observed in adults, but appear to be unrelated to host plant effects. The most prevalent bacterium detected was Candidatus Nardonella, a conserved endosymbiont essential for cuticular hardening in weevils. Given the role of cuticular integrity in insecticide resistance, further investigations into insect-microbe-plant interactions could guide the development of targeted pest management strategies, reducing resistance and improving control measures for L. maculicollis.

RevDate: 2025-02-25

Mizutani M, Fujikawa T, Fukatsu T, et al (2025)

Complete genome of the mutualistic symbiont "Candidatus Carsonella ruddii" from a Japanese island strain of the Asian citrus psyllid Diaphorina citri.

Microbiology resource announcements [Epub ahead of print].

The complete genome, 173,958 bp in size, of "Candidatus Carsonella ruddii" DC-OKEB1, an obligate bacterial endosymbiont of the Asian citrus psyllid Diaphorina citri, was determined. The genome sequence provides valuable information for comparative and evolutionary aspects of the intimate insect-microbe mutualism.

RevDate: 2025-02-25

Mizutani M, Moriyama M, Fukatsu T, et al (2025)

Complete genome of the mutualistic symbiont "Candidatus Nardonella sp." Pin-AIST from the black hard weevil Pachyrhynchus infernalis.

Microbiology resource announcements [Epub ahead of print].

The complete genome, 226,287 bps in size, of "Candidatus Nardonella sp." Pin-AIST, an obligatory bacterial endosymbiont of the black hard weevil Pachyrhynchus infernalis, was sequenced. The extremely reduced endosymbiont genome is specialized for tyrosine synthesis, which contributes to the hardness of the beetle's exoskeleton.

RevDate: 2025-02-25

Mohammadi A, Dalimi A, Ghaffarifar F, et al (2025)

Detection of Acanthamoeba Harboring Campylobacter jejuni Endosymbionts in Hospital Environments of Markazi Province, Iran.

Journal of parasitology research, 2025:6626888.

Most Acanthamoebas contain endosymbionts such as viruses, yeasts, protists, and bacteria, some of which are potential human pathogens, including Campylobacter jejuni which often causes gastroenteritis and septicemia in humans. Amoebae have been shown to be resistant to chlorination and apparently protect ingested bacteria such as C. jejuni from free chlorine. Such resistance can have health implications, especially for drinking water treatment. The aim of this study is to identify Acanthamoeba in hospital samples in Markazi province, to determine the identity of C. jejuni endosymbiont in positive samples of Acanthamoeba in natural and laboratory conditions, and to determine the relationship between the two. The main aim of this study was to determine the identity of C. jejuni endosymbiont in Acanthamoeba-positive samples in natural and laboratory conditions. In this study, 134 samples including water, soil, and dust were collected from hospital environments. After molecular detection, the identity of the symbiotic Campylobacter jejuni in Acanthamoeba was determined by microscopic and PCR methods. Then, the ability of bacteria to infect the parasite was examined by cocultivation in vitro using real-time PCR. Finally, their relationship was examined based on statistical tests. The rate of contamination of hospital samples with Acanthamoeba was 44.7% on average. Out of 42 Acanthamoeba PCR-positive samples, seven isolates (16.67%) were found to be positive in terms of C. jejuni endosymbiont according to sampling location. The results showed that Helicobacter is able to penetrate and enter the Acanthamoeba parasite. In conclusion, our results showed that C. jejuni is able to contaminate Acanthamoeba in natural and laboratory conditions. The presence of pathogenic Acanthamoeba in various hospital environments and the hiding of Helicobacter as an endosymbiont inside it can pose a serious threat to the health of hospitalized patients.

RevDate: 2025-02-22

Song MJ, Freund F, Tribble CM, et al (2025)

The nitrogen-fixing fern Azolla has a complex microbiome characterized by varying degrees of cophylogenetic signal.

American journal of botany [Epub ahead of print].

PREMISE: Azolla is a genus of floating ferns that has closely evolved with a vertically transmitted obligate cyanobacterium endosymbiont-Anabaena azollae-that fixes nitrogen. There are also other lesser-known Azolla symbionts whose role and mode of transmission are unknown.

METHODS: We sequenced 112 Azolla specimens collected across the state of California and characterized their metagenomes to identify the common bacterial endosymbionts and assess their patterns of interaction.

RESULTS: Four genera were found across all samples, establishing that multiple Azolla endosymbionts were consistently present. We found varying degrees of cophylogenetic signal across these taxa as well as varying degrees of isolation by distance and of pseudogenation, which demonstrates that multiple processes underlie how this endosymbiotic community is constituted. We also characterized the entire Azolla leaf pocket microbiome.

CONCLUSIONS: These results show that the Azolla symbiotic community is complex and features members at potentially different stages of symbiosis evolution, further supporting the utility of the Azolla microcosm as a system for studying the evolution of symbioses.

RevDate: 2025-02-21

Mtawali M, Cooney EC, Adams J, et al (2025)

Phylogenomic resolution of marine to freshwater dinoflagellate transitions.

The ISME journal pii:8029727 [Epub ahead of print].

Dinoflagellates are an abundant and diverse group of protists that inhabit aquatic environments worldwide. They are characterized by numerous unique cellular and molecular traits, and have adapted to an unusually broad range of life strategies, including phototrophy, heterotrophy, parasitism, and all combinations of these. For most microbial groups, transitions from marine to freshwater environments are relatively rare, as changes in salinity are thought to lead to significant osmotic challenges that are difficult for the cell to overcome. Recent work has shown that dinoflagellates have overcome these challenges relatively often in evolutionary time, but because this is mostly based on single gene trees with low overall support, many of the relationships between freshwater and marine groups remain unresolved. Normally, phylogenomics could clarify such conclusions, but despite the recent surge in data, virtually no freshwater dinoflagellates have been characterized at the genome-wide level. Here, we generated 30 transcriptomes from cultures and single cells collected from freshwater environments to infer a robustly supported phylogenomic tree from 217 conserved genes, resolving at least seven transitions to freshwater in dinoflagellates. Mapping the distribution of ASVs from freshwater environmental samples onto this tree confirms these groups and identifies additional lineages where freshwater dinoflagellates likely remain unsampled. We also sampled two species of Durinskia, a genus of "dinotoms" with both marine and freshwater lineages containing Nitzschia-derived tertiary plastids. Ribosomal RNA phylogenies show that the host cells are closely related, but their endosymbionts are likely descended from two distantly-related freshwater Nitzschia species that were acquired in parallel and relatively recently.

RevDate: 2025-02-21
CmpDate: 2025-02-21

Martinez G, Leander BS, E Park (2025)

Morphology and Molecular Phylogeny of Endosymbiotic Ciliates (Peritrichia, Mobilida) of Marine Invertebrates with Descriptions of Two Novel Species Urceolaria clepsydra n. sp. and Urceolaria bratalia n. sp.

The Journal of eukaryotic microbiology, 72(2):e70003.

Mobilid ciliates are a morphologically distinct group of protists that form a wide range of symbiotic relationships with aquatic animals and includes three subgroups: Trichodinidae, Urceolariidae, and Polycyclidae. Trichodinids are best known for infecting fishes, whereas urceolariids infect diverse marine invertebrates. Polycyclidae was established for mobilid ciliates infecting sea cucumbers; however, molecular data have been unavailable for this group. In this study, we discovered and characterized two novel mobilid species, one infecting two species of sea cucumbers (Eupentacta quinquesemita and Cucumaria miniata) and one infecting brachiopods or lamp shells (Terebratalia transversa) collected from the Northeast Pacific Ocean. These new mobilid species were characterized at the morphological level using light microscopy (LM) and scanning electron microscopy (SEM). We also inferred the molecular phylogenetic positions of these species using small subunit (SSU) rDNA sequences. Based on combined morphological and molecular data, we demonstrate that the two new species belong to Urceolaria, U. clepsydra n. sp. and U. bratalia n. sp., and support synonymization of Polycycla with Urceolaria. By providing the first molecular data from new species of mobilids infecting sea cucumbers and brachiopods, we expand the host range and improve our knowledge of this diverse but poorly understood group of symbionts.

RevDate: 2025-02-20
CmpDate: 2025-02-20

Thompson S, Wang J, Schott T, et al (2025)

Genomes of the Bacterial Endosymbionts of Carrot Psyllid Trioza apicalis Suggest Complementary Biosynthetic Capabilities.

Current microbiology, 82(4):145.

Carrot psyllid Trioza apicalis is a serious pest of cultivated carrot and also a vector of the plant pathogen 'Candidatus Liberibacter solanacearum' (Lso). To find out whether T. apicalis harbours other species of bacteria that might affect the Lso infection rate, the bacterial communities and metagenome in T. apicalis were studied. Lso haplotype C was detected in a third of the psyllids sampled, at different relative amounts. Surprisingly, T. apicalis was found to harbour only one secondary endosymbiont, a previously unknown species of gamma proteobacterium endosymbiont (Gpe), beside the primary endosymbiont 'Candidatus Carsonella ruddii' (CCr). The relative abundancies of these two endosymbionts were approximately equal. The genomes of CCr, Gpe and Lso were assembled from a T. apicalis metagenome sample. Based on the 16S rRNA gene, the closest relative of Gpe of T. apicalis could be a secondary endosymbiont of Trioza magnoliae. The 253.171 kb Gpe genome contains all the tRNA and rRNA genes and most of the protein-coding genes required for DNA replication, transcription and translation, but it lacks most of the genes for amino acid biosynthesis. Gpe has no genes encoding cell wall peptidoglycan synthesis, suggesting it has no cell wall, and could thus live as an intracellular endosymbiont. Like the CCr of other psyllids, CCr of T. apicalis retains a broad amino acid biosynthetic capacity, whilst lacking many genes required for DNA replication and repair and for transcription and translation. These findings suggest that these two endosymbionts of T. apicalis are complementary in their biosynthetic capabilities.

RevDate: 2025-02-20
CmpDate: 2025-02-20

Sharpe SR, Madhav M, Klein MJ, et al (2025)

Characterisation of the virome of Culicoides brevitarsis Kieffer (Diptera: Ceratopogonidae), a vector of bluetongue virus in Australia.

The Journal of general virology, 106(2):.

Culicoides spp., a common biting midge genus, are haematophagous insects that can transmit pathogens to humans and other animals. Some species transmit arboviruses, including bluetongue virus, epizootic haemorrhagic disease virus, African horse sickness virus and Schmallenberg virus to vertebrates, which can be detrimental to livestock and wild animals. Culicoides spp. can also have a diversity of insect-specific viruses (ISVs) that can only be transmitted between insects and others related to known arboviruses. For Culicoides brevitarsis and other Culicoides spp. in Australia, the virome is largely unexplored. We used high-throughput sequencing to characterise the virome of C. brevitarsis collected from Casino, New South Wales, Australia. For virus detection, the total RNA was extracted from pools of C. brevitarsis followed by rRNA depletion and Illumina short-read-based RNA sequencing. The reads were quality-checked, filtered and assembled into contigs, compared with the non-redundant protein and conserved domain databases for viral detection and genome organisation, respectively. The phylogenetic analysis was used to further characterise the viruses. We detected new virus diversity including ten viruses belonging to eight different families with complete or near-complete coding regions. Seven of these were novel virus species belonging to the families: Chuviridae, Orthomyxoviridae, Peribunyaviridae, Qinviridae, Rhabdoviridae and Solemoviridae. In addition, the novel Peribunyaviridae virus should also be considered part of a new genus. Whilst most of the detected viruses grouped into families with viruses that can infect insects, animals or both, the novel species of Solemoviridae was closely related to an economically important plant pathogen, the sugarcane yellow leaf virus. Our quantitative PCR-based screening confirmed the absence of any Wolbachia endosymbiont within the collected samples. Furthermore, we detected fragments of three more virus families known to infect fungi and plants. The detection of potential arboviruses and ISVs in Culicoides spp. is important in understanding virus epidemiology.

RevDate: 2025-02-19

Ma Z, Gao J, Wang G, et al (2025)

Effects of Wolbachia on mitochondrial DNA variation in Aedes albopictus (Diptera: Culicidae).

Acta tropica pii:S0001-706X(25)00040-3 [Epub ahead of print].

Wolbachia species are symbiotic bacteria that are commonly found in arthropods and nematodes and live inside their cells. In nature, endosymbiont-host interactions and dynamics are complex, often depending on environmental conditions and evolutionary history. Both Wolbachia and mitochondrial DNA are maternally inherited in cells, and after a long period of coexistence, the presence of Wolbachia may have an impact on mitochondrial sequence diversity, thereby confounding mtDNA-based host phylogeny. The universal and typing primers for the wsp gene were used for PCR amplification, the number of positive samples was counted, and the infection pattern was analysed. The mitochondrial DNA diversity of four groups (Wolbachia-infected and uninfected samples, as well as between singly and double infected samples.) was analysed. PACo and ParaFitGlobal tests were used to explore evolutionary associations. The overall prevalence of Wolbachia in the 22 natural populations was 94.2%, with Type A, Type B and A × B mixed infections detected in Aedes albopictus and coinfection between wAlbA and wAlbB prevalent. The mitochondrial DNA haplotype associated with Wolbachia (Hap1) became the dominant haplotype and was the most abundant and widely distributed in the population. The linkage map showed the predominant haplotype, Hap1, was more closely associated with wAlbA than with wAlbB. Neutral evolution deviated significantly from zero. The diversity of mtDNA COI genes associated with Wolbachia infection was reduced. Wolbachia infection may lead to the selective sweep of mitochondrial DNA in Ae. albopictus.

RevDate: 2025-02-18
CmpDate: 2025-02-19

Jain A, Li T, Huston DC, et al (2025)

Insights from draft genomes of Heterodera species isolated from field soil samples.

BMC genomics, 26(1):158.

BACKGROUND: The nematode phylum includes many species key to soil food webs with trophic behaviours extending from feeding on microbes to macrofauna and plant roots. Among these, the plant parasitic cyst nematodes retain their eggs in protective cysts prolonging their survival under harsh conditions. These nematodes, including those from the genus Heterodera, cause significant economic losses in agricultural systems. Understanding of nematode diversity and ecology has expanded through application of genomic research, however, for Heterodera species there are very few available whole genome sequences. Sequencing and assembling Heterodera genomes is challenging due to various technical limitations imposed by the biology of Heterodera. Overcoming these limitations is essential for comprehensive insights into Heterodera parasitic interactions with plants, population studies, and for Australian biosecurity implications.

RESULTS: We hereby present draft genomes of six species of which Heterodera australis, H. humuli, H. mani and H. trifolii are presently recorded in Australia and two species, H. avenae and H. filipjevi, currently absent from Australia. The draft genomes were sequenced from genomic DNA isolated from 50 cysts each using an Illumina NovaSeq short read sequencing platform. The data revealed disparity in sequencing yield between species. What was previously identified as H. avenae in Australia using morphological traits is now confirmed as H. australis and may have consequences for wheat breeding programs in Australia that are breeding for resistance to H. avenae. A multigene phylogeny placed the sequenced species into taxonomic phylogenetic perspective. Genomic comparisons within the Avenae species group revealed orthologous gene clusters within the species, emphasising the shared and unique features of the group. The data also revealed the presence of a Wolbachia species, a putative bacterial endosymbiont from Heterodera humuli short read sequencing data.

CONCLUSION: Genomic research holds immense significance for agriculture, for understanding pest species diversity and the development of effective management strategies. This study provides insight into Heterodera, cyst nematode genomics and the associated symbionts and this work will serve as a baseline for further genomic analyses in this economically important nematode group.

RevDate: 2025-02-17

Prabhu D, Dharshini MKD, Rajamanikandan S, et al (2025)

Potential Anti-Filarial Molecules Against ATP Binding Site of MurE Enzyme: A Molecular Docking and Dynamics Approach to Combat Lymphatic Filariasis.

Biotechnology and applied biochemistry [Epub ahead of print].

Lymphatic filariasis (LF) is a mosquito-borne disease caused by parasitic nematodes Brugia malayi, Brugia timori, and Wuchereria bancrofti. The drugs available are effective in several cases, and the absence of vaccination is the crucial factor hindering the elimination of LF. The UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase (MurE) plays an important role in the peptidoglycan biosynthesis of Wolbachia endosymbiont B. malayi, which are reported to be a vital drug target for bacterial and endosymbiotic hosts. Thus, we selected the ATP binding cavity of MurE as the potential site to screen inhibitors. The MurE structure was modeled using AlphaFold due to the absence of an experimental structure. Structure-based screening identified five potent phytochemicals targeting the ATP binding site with higher Glide scores and affinity. The top five phytochemicals CID 311, CID 445713, CID 441626, CID 39077, and CID 10814 showed a docking score of -16.812, -16.117, -15.668, -15.324, and -13.442 kcal/mol, respectively. Further, the molecular dynamics simulations depicted the binding stability of the phytochemical inhibitors bound to the MurE complex. Moreover, ADME assessment and Density Functional Theory analyses of the predicted compounds have shown acceptable pharmacokinetic properties and high reactivity with the drug target of MurE.

RevDate: 2025-02-15
CmpDate: 2025-02-15

Khogali R, Bastos A, Getange D, et al (2025)

Exploring the microbiomes of camel ticks to infer vector competence: insights from tissue-level symbiont-pathogen relationships.

Scientific reports, 15(1):5574.

Ticks are blood-feeding ectoparasites that harbor diverse pathogens and endosymbionts. Their microbial communities vary based on tick species, stage, sex, geographical location, surrounding environment, and tissue type. Understanding tick microbiota at the tissue level is crucial for unraveling how microbiomes are distributed in tick tissues and influence pathogen transmission. We used V1-V2 16 S rRNA gene sequencing to analyze tissue-specific bacterial compositions (hemolymph, saliva, salivary glands, and midgut) of Amblyomma gemma, Rhipicephalus pulchellus, Hyalomma dromedarii, and Hyalomma rufipes ticks collected from camels in Marsabit County, northern Kenya. The V1-V2 region of the 16 S rRNA gene effectively differentiated 43 Rickettsia africae and 16 Rickettsia aeschlimannii tick samples from other rickettsial species, as well as Coxiella endosymbionts from Coxiella burnetii. In contrast, the V3-V4 region sequences of these species could not be clearly distinguished. Coxiella endosymbionts were most common in Am. gemma and Rh. pulchellus, while Francisella endosymbionts predominated in Hyalomma ticks; both were primarily localized in the salivary glands. High abundances of Coxiella endosymbionts, as well as Pseudomonas, were associated with the absence or low abundance of Rickettsia pathogens in both Am. gemma and Rh. pulchellus, suggesting competitive interactions between these microbes. Additionally, Proteus mirabilis, an opportunistic pathogen of the urinary tract in humans, was found predominantly in Hyalomma ticks, except for the salivary glands, which were most abundant with Francisella endosymbionts. Furthermore, we detected the Acinetobacter, Pseudomonas, and Corynebacterium genera in all the tick tissues, supporting the hypothesis that these bacteria might circulate between camel blood and ticks. Saliva and hemolymph generally harbored more extracellular bacteria than the salivary glands and midgut. This study provides a new approach to unravel tick-endosymbiont-pathogen interactions by examining the tissue localization of tick-borne pathogens and symbionts in Am. gemma, Rh. pulchellus, Hy. dromedarii, and Hy. rufipes from camels in northern Kenya. Our findings establish a baseline for developing an understanding of the functional capacities of symbionts and for designing symbiont-based control strategies.

RevDate: 2025-02-15

Napo M, Kock A, Alayande KA, et al (2025)

Tomato rot by Rhizopus microsporus alters native fungal community composition and secondary metabolite production.

Frontiers in microbiology, 16:1508519.

Rhizopus rot is considered one of the most common diseases influencing global production and yield of horticulture commodities. However, the factors contributing to this pattern of prevalence are uncertain. Here, we focused on R. microsporus, which is known to rely on its endosymbiotic bacterium, Mycetohabitans, to produce toxins that interfere with plant development and inhibit the growth of other fungi. We assessed the impact of the symbiotic R. microsporus harboring its endosymbiont as well as the fungus cured of it on: (1) the magnitude of spoilage in tomato fruits, as evaluated by Koch's postulate for pathogenicity, (2) the shifts in native communities of endophytic fungi inhabiting these fruits, as examined by ITS rRNA gene metabarcoding and (3) secondary metabolites generated by these communities, as analyzed using multi-analyte LC-MS/MS. The pathogenicity test showed that the symbiotic endobacterium-containing R. microsporus W2-50 was able to cause tomato fruit spoilage. This was accompanied by decreased relative abundance of Alternaria spp. and an increase in the relative abundance of Penicillium spp. that may have facilitated the observed spoilage. In conclusion, symbiotic W2-50 appeared to facilitate fruit spoilage, possibly through successful colonization or toxin production by its endosymbiont.

RevDate: 2025-02-14

Cassens J, Oliva Chávez AS, Tufts DM, et al (2025)

Whole Genome Sequencing Reveals Clade-Specific Genetic Variation in Blacklegged Ticks.

Ecology and evolution, 15(2):e70987.

Ticks and tick-borne pathogens represent the greatest vector-borne disease threat in the United States. Blacklegged ticks are responsible for most human cases, yet the disease burden is unevenly distributed across the northern and southern United States. Understanding the genetic characteristics influencing phenotypic differences in tick vectors is critical to elucidating disparities in tick-borne pathogen transmission dynamics. Applying evolutionary analyses to molecular variation in natural tick populations across ecological gradients will help identify signatures of local adaptation, which will improve control and mitigation strategies. In this study, we performed whole genome nanopore sequencing of individual (n = 1) blacklegged ticks across their geographical range (Minnesota, Pennsylvania, and Texas) to evaluate genetic divergence among populations. Our integrated analyses identified genetic variants associated with numerous biological processes and molecular functions that segregated across populations. Notably, northern populations displayed genetic variants in genes linked to xenobiotic detoxification, transmembrane transport, and sulfation that may underpin key phenotypes influencing tick dispersal, host associations, and vectorial capacity. Nanopore sequencing further allowed the recovery of complete mitochondrial and commensal endosymbiont genomes. Our study provides further evidence of genetic divergence in epidemiologically relevant gene families among blacklegged tick clades. This report emphasizes the need to elucidate the genetic basis driving divergence among conspecific blacklegged tick clades in the United States.

RevDate: 2025-02-12

Chakraborty A, Dutta P, Amrit R, et al (2025)

Antagonistic activity of butanamine 2,2-dinitro-N-methyl- synthesized by endosymbiotic Bacillus amyloliquefaciens VITAPRJS1 acquired from horse milk.

International microbiology : the official journal of the Spanish Society for Microbiology [Epub ahead of print].

Endosymbiotic bacteria are known to synthesize bioactive compounds which have biotechnological potentials that enhance immune responses by stimulating the production of immune cells. Horse milk is widely known to have nutraceutical and antimicrobial activities; however, there are no scientific reports on its inhibitory effects. VITAPRJS1, isolated from horse milk, showed non-hemolytic properties and was significantly tolerant to bile salt and NaCl. The isolate also exhibited potent antibacterial activity against pathogenic bacterial strains such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus cereus. The bioactive antibacterial compounds were extracted using dichloromethane and were subsequently purified and identified as butanamine, 2,2-dinitro-N-methyl- through UPLC, GC-MS, and LC-MS analyses. Fourier transform infrared spectroscopy (FTIR) confirmed the presence of functional groups such as alkane, amine, and monosubstituted 1,2-disubstituted. The screened bacterial isolate was identified as Bacillus amyloliquefaciens (OR501558) upon 16S rRNA gene sequencing. To our knowledge, this study represents the first-time report on the presence of Bacillus amyloliquefaciens in horse milk having potent antibacterial activity, highlighting its unexplored potential in biotechnological and pharmaceutical applications.

RevDate: 2025-02-12

Rogowska-van der Molen MA, Manzano-Marín A, Postma JL, et al (2025)

From Eggs to Guts: Symbiotic Association of Sodalis nezarae sp. nov. with the Southern Green Shield Bug Nezara viridula.

FEMS microbiology ecology pii:8010861 [Epub ahead of print].

Phytophagous insects engage in symbiotic relationships with bacteria that contribute to digestion, nutrient supplementation, and development of the host. The analysis of shield bug microbiomes has been mainly focused on the gut intestinal tract predominantly colonized by Pantoea symbionts, and other microbial community members in the gut or other organs have hardly been investigated. In this study, we reveal that the Southern green shield bug Nezara viridula harbours a Sodalis symbiont in several organs, with a notable prevalence in salivary glands, and anterior regions of the midgut. Removing external egg microbiota via sterilization profoundly impacted insect viability but did not disrupt the vertical transmission of Sodalis and Pantoea symbionts. Based on the dominance of Sodalis in testes, we deduce that N. viridula males could be involved in symbiont vertical transmission. Genomic analyses comparing Sodalis species revealed that Sodalis sp. Nvir shares characteristics with both free-living and obligate insect-associated Sodalis spp. Sodalis sp. Nvir also displays genome instability typical of endosymbiont lineages, which suggests ongoing speciation to an obligate endosymbiont. Together, our study reveals that shield bugs harbour unrecognized symbionts that might be paternally transmitted.

RevDate: 2025-02-12

Boudreau V, Larson BT, Gerbich TM, et al (2025)

The cell biology and genome of Stentor pyriformis, a giant cell that embeds symbiotic algae in a microtubule meshwork.

Molecular biology of the cell [Epub ahead of print].

Endosymbiotic events in which an endosymbiont is retained within a cell that remains capable of phagocytosis, a situation known as mixotrophy, provide potentially important clues about the eukaryotic evolution. Here we describe the cell biology and genome of the giant mixotrophic ciliate Stentor pyriformis. We show that S. pyriformis contains Chlorella variabilis as an endosymbiont that retains the ability to live outside the host. Within the host, the Chlorella cells surrounded by microtubule "baskets" near the cell surface. Photosynthetic efficiency of the Chlorella is reduced inside the Stentor cell compared to outside the host, due to increased non-photochemical quenching. S. pyriformis displays positive phototaxis via directed swimming that requires the presence of the Chlorella, implying a potential flow of information from the symbiont to direct the orientation and swimming of the host cell. We sequenced the S. pyriformis genome and found that it employs a standard genetic code, similar to other Stentor species but different from most other ciliates. We propose that S. pyriformis will serve as a useful model system for studying endosymbiosis, with unique advantages in terms of size and regenerative ability as well as distinct cellular and genomic features compared with other mixotrophic ciliate models. [Media: see text] [Media: see text] [Media: see text] [Media: see text].

RevDate: 2025-02-11
CmpDate: 2025-02-12

Perlmutter JI, Atadurdyyeva A, Schedl ME, et al (2025)

Wolbachia enhances the survival of Drosophila infected with fungal pathogens.

BMC biology, 23(1):42.

BACKGROUND: Wolbachia bacteria of arthropods are at the forefront of basic and translational research on multipartite host-symbiont-pathogen interactions. These vertically transmitted microbes are the most widespread endosymbionts on the planet due to factors including host reproductive manipulation and fitness benefits. Importantly, some strains of Wolbachia can inhibit viral pathogenesis within and between arthropod hosts. Mosquitoes carrying the wMel Wolbachia strain of Drosophila melanogaster have a greatly reduced capacity to spread viruses like dengue and Zika to humans. While significant research efforts have focused on viruses, relatively little attention has been given to Wolbachia-fungal interactions despite the ubiquity of fungal entomopathogens in nature.

RESULTS: Here, we demonstrate that Wolbachia increase the longevity of their Drosophila melanogaster hosts when challenged with a spectrum of yeast and filamentous fungal pathogens. We find that this pattern can vary based on host genotype, sex, and fungal species. Further, Wolbachia correlates with higher fertility and reduced pathogen titers during initial fungal infection, indicating a significant fitness benefit. Finally, RNA sequencing results show altered expression of many immune and stress response genes in the context of Wolbachia and fungal infection, suggesting host immunity may be involved in the mechanism.

CONCLUSIONS: This study demonstrates Wolbachia's protective role in diverse fungal pathogen interactions and determines that the phenotype is broad, but with several variables that influence both the presence and strength of the phenotype. It also is a critical step forward to understanding how symbionts can protect their hosts from a variety of pathogens.

RevDate: 2025-02-11
CmpDate: 2025-02-11

Lintnerova E, Shaw C, Keys M, et al (2025)

Plant-like heliotropism in a photosymbiotic animal.

The Journal of experimental biology, 228(3):.

As in plants, photosynthesis also represents a key energy source in photosymbiotic cnidarians bearing microalgae. We observed that the cnidarian sea anemone Anemonia viridis, commonly known as the snakelocks anemone, displayed heliotropism or solar tracking in their natural habitats. When exposed to sunlight, A. viridis point their tentacles towards the sun while remaining sessile, facing east at dawn and west at dusk as they track the sun's relative position through the day. This phenomenon was previously only observed in plants. Solar tracking movements in A. viridis are driven by peak wavelengths that prompt photosynthesis in their endosymbionts. The heliotropic response was absent in both bleached (aposymbiotic) A. viridis and in symbiotic A. viridis with chemically inhibited photosynthesis. We revealed a direct correlation between heliotropism and symbiont oxygen production in A. viridis and showed how photosymbiotic A. viridis utilises this mechanism to modulate exposure to solar irradiation. Our study exemplifies how photosynthetic organisms such as plants and symbiotic sea anemones, display similar behaviour in response to similar environmental pressures.

RevDate: 2025-02-11
CmpDate: 2025-02-08

Das BK, Gadnayak A, Chakraborty HJ, et al (2025)

Exploring microbial players for metagenomic profiling of carbon cycling bacteria in sundarban mangrove soils.

Scientific reports, 15(1):4784.

The Sundarbans, the world's largest tidal mangrove forest, acts as a crucial ecosystem for production, conservation, and the cycling of carbon and nitrogen. The study explored the hypothesis that microbial communities in mangrove ecosystems exhibit unique taxonomic and functional traits that play a vital part in carbon cycling and ecosystem resilience. Using metagenomic analysis to evaluate microbial communities in mangrove and non-mangrove environment, evaluating their composition, functional functions, and ecological relevance. The analysis revealed distinct microbial profiles, in mangrove and non-mangrove environments, with bacteria, proteobacteria, and viruses being the most prevalent groups, with varying abundances in each environment. Functional and taxonomical analysis identified genes involved in carbon regulation, including Triacylglycerol lipase, NarG, DsrB, DNA-binding transcriptional dual regulator CRP, Vanillate O-demethylase oxygenase, succinate-CoA ligase, Tetrahydrofolate ligase, Carboxylase, Ribulose-1,5-bisphosphate carboxylase/oxygenase, Glycine hydroxymethyltransferase, MAG: urease, Endosymbiont of Oligobrachia haakonmosbiensis, Ribulose bisphosphate carboxylase, Aconitate hydratase AcnA, and nitrous oxide reductase, suggesting the metabolic versatility of these microbial communities for carbon cycling. The findings emphasize the key role of microbial activity in preserving mangrove ecosystem health and resilience, highlighting the intricate interplay between microbial diversity, functional capabilities, and environmental factors.

RevDate: 2025-02-06

Páez-Triana L, Martinez D, Patiño LH, et al (2025)

Exploring endosymbionts and pathogens in Rhipicephalus sanguineus and Ctenocephalides felis felis with Oxford Nanopore Technology.

Research in veterinary science, 185:105562 pii:S0034-5288(25)00036-0 [Epub ahead of print].

Fleas and ticks play a crucial role in public health as vectors of multiple diseases affecting humans and animals. Several rickettsial pathogens and endosymbionts are transmitted by fleas and ticks. Therefore, understanding this group of microorganisms is essential for fully grasping the spectrum of pathogens transmitted by vectors and the interactions between endosymbiotic microorganisms and their hosts. This study evaluated the presence and diversity of Rickettsiales species in fleas and ticks collected from the Santander department in Colombia. For the methodology a 16S gene amplification approach through Oxford Nanopore sequencing technologies in Rhipicephalus sanguineus and Ctenocephalides felis felis was used. Our findings revealed the presence of multiple pathogenic and endosymbiotic microorganisms, particularly from the Rickettsia and Wolbachia groups. We observed a clear association between Rickettsia species and ticks, while Wolbachia was predominantly found in fleas. Additionally, other important microorganisms were identified, including Anaplasma phagocytophilum, Rickettsia conorii, and different strains of Wolbachia that serve as endosymbionts in various arthropods. These results underscore the importance of fleas and ticks in the transmission of both pathogenic and endosymbiotic microorganisms. The distinct patterns of association between specific pathogens and vectors provide insight into their transmission dynamics. Identifying pathogens such as Anaplasma phagocytophilum and Rickettsia conorii further highlights the need for continued research into vector-borne diseases in Colombia. Understanding the interactions between endosymbionts and pathogenic microorganisms in these vectors could lead to the development of more effective strategies for controlling diseases transmitted by fleas and ticks.

RevDate: 2025-02-05

Carbonara M, Perles L, Venco L, et al (2025)

Dirofilaria spp. infection in cats from the Mediterranean basin: diagnosis and epidemiology.

International journal for parasitology pii:S0020-7519(25)00022-0 [Epub ahead of print].

Dirofilaria immitis and Dirofilaria repens, causing heartworm disease and subcutaneous dirofilariosis, respectively, are zoonotic mosquito-borne filarioids infecting a plethora of hosts including cats. Only fragmented data are available on the diagnosis and epidemiology of feline dirofilariosis. We assessed the occurrence of both nematode infections, their risk factors and clinicopathological abnormalities in cats, from six countries of the Mediterranean Basin. In addition, Wolbachia spp. endosymbionts were assessed in Dirofilaria spp.-positive animals. Blood and sera samples were obtained from cats with outdoor access from Spain (n=354), Portugal (n=287), Italy (n=125), Greece (n=116), Israel (n=101) and France (n=100). Cat sera were tested by both direct antigenic (SNAP test, commercial ELISA kit) and indirect antibodies (in-house ELISA) serological tools, and blood samples by real time and conventional PCR targeting Dirofilaria spp. DNA, followed by sequencing. A statistical analysis was run to assess the link between Dirofilaria spp. infection and independent variables, as well as among feline immunodeficiency virus (FIV) and/or feline leukaemia virus (FeLV) co-infections, and clinicopathological abnormalities. Overall, 3.8% (i.e., 41/1,083) cats scored positive for Dirofilaria spp. infection with prevalences ranging from 2% in Israel to 7.8% in Greece. Of the 41 positive cats, 16 were infected by D. immitis (by SNAP test and/or PCR) and two by D. repens (by PCR); the remaining animals were antibody-positive for Dirofilaria spp. using the in-house ELISA. Wolbachia DNA was detected in one D. immitis-infected cat. Nematode positivity was significantly associated with age, breed, hyporexia, dandruff, and dyspnoea. This study provides data on the prevalence of Dirofilaria spp. infection in cats from the Mediterranean Basin, as well as new insights on its diagnosis, revealing the importance of performing strategic chemoprophylactic treatments for cats living in areas where the infection is also endemic in dogs.

RevDate: 2025-02-05

Singh P, Bruijning M, Carver GD, et al (2025)

Characterizing the evolution of defense in a tripartite marine symbiosis using adaptive dynamics.

Evolution letters, 9(1):105-114.

The evolution and maintenance of symbiotic systems remains a fascinating puzzle. While the coevolutionary dynamics of bipartite (host-symbiont) systems are well-studied, the dynamics of more complex systems have only recently garnered attention with increasing technological advances. We model a tripartite system inspired by the marine symbiotic relationship between the alga Bryopsis sp., its intracellular defensive bacterial symbiont "Candidatus Endobryopsis kahalalidifaciens," which produces a toxin that protects the alga against fish herbivores, and the sea-slug Elysia rufescens (Zan et al., 2019), which is not deterred by the toxin. We disentangle the role of selection on different actors within this system by investigating evolutionary scenarios where defense evolves as (i) a host-controlled trait that reduces algal reproductive ability; (ii) a symbiont-controlled trait that impacts symbiont transmission; and (iii) a trait jointly controlled by both host and symbiont. Optimal investment in defensive toxins varies based on the characteristics of the host, symbiont, and sea slug; and evolutionary trajectories are modulated by trade-off shape, i.e., a strongly decelerating trade-off between defense and symbiont transmission can drive symbiont diversification via evolutionary branching. Increasing slug herbivory reduces host investment in defense to favor reproduction, while symbiont investment in defense first declines and then increases as host density declines to the degree that horizontal symbiont transmission is no longer beneficial. Increasing vertical transmission selects for reduced defense by the host when it evolves as a jointly controlled trait, as a result of investment by the symbiont. Our theoretical exploration of the evolution of defensive symbiosis in scenarios involving interactions with multiple herbivores provides a first window into the origin and maintenance of the Bryopsis sp. system, and adds another piece to the puzzle of the evolution of symbiotic systems.

RevDate: 2025-02-04
CmpDate: 2025-02-04

Whiteman NK (2025)

Insect herbivory: An inordinate fondness for plant cell wall degrading enzymes.

Current biology : CB, 35(3):R107-R109.

Tens of thousands of species of leaf beetles rely on plant cell wall degrading enzymes in order to make the most of nutritionally depauperate plant tissues. Many of the genes encoding these enzymes were acquired from microbial donors, either through horizontal gene transfer or by hosting microbial endosymbionts. A new study explores how these insects have leveraged this metabolic potential to diversify and expand into new niches.

RevDate: 2025-02-03

Chappell L, Peguero R, Conner WR, et al (2025)

Fexinidazole and Corallopyronin A target Wolbachia -infected sheath cells present in filarial nematodes.

bioRxiv : the preprint server for biology pii:2025.01.23.634442.

The discovery of the endosymbiotic bacteria Wolbachia as an obligate symbiont of filarial nematodes has led to antibiotic-based treatments for filarial diseases. While lab and clinical studies have yielded promising results, recent animal studies reveal that Wolbachia levels may rebound following treatment with suboptimal doses of the antibiotic rifampicin. Previous work showed that a likely source of the bacterial rebound in females were dense clusters of Wolbachia in ovarian tissue. The number, size, and density of these Wolbachia clusters were not diminished despite antibiotic treatment. Here we define the cellular characteristics of the Wolbachia clusters in Brugia pahangi (wBp) and identify drugs that also target them. We have evidence that the Wolbachia clusters originate from newly formed sheath cells adjacent to the ovarian Distal Tip Cells. The dramatically enlarged volume of an infected sheath cell is strikingly similar to endosymbiont-induced bacteriocytes found in many insect species. Ultrastructural analysis reveals that the clustered Wolbachia present within the sheath cells exhibit a distinct morphology and form direct connections with the oocyte membrane and possibly the cytoplasm. This includes membrane-based channels providing a connection between Wolbachia -infected sheath cells and oocytes. We also determined that the Wolbachia within the sheath cells are either quiescent or replicating at a very low rate. Screens of known antibiotics and other drugs revealed that two drugs, Fexinidazole and Corallopyronin A, significantly reduced the number of clustered Wolbachia located within the sheath cells.

RevDate: 2025-02-03

Kelly JB, Carlson DE, Reuter M, et al (2025)

Genomic signatures of adaptation to stress reveal shared evolutionary trends between Tetrahymena utriculariae and its algal endosymbiont, Micractinium tetrahymenae.

Molecular biology and evolution pii:7997048 [Epub ahead of print].

The evolution of intracellular endosymbiosis marks a major transition in the biology of the host and endosymbiont. Yet, how adaptation manifests in the genomes of the participants remains relatively understudied. We investigated this question by sequencing the genomes of Tetrahymena utriculariae, a commensal of the aquatic carnivorous bladderwort Utricularia reflexa, and its intracellular algae, Micractinium tetrahymenae. We discovered an expansion in copy number and negative selection in a TLD domain-bearing gene family in the genome of T. utriculariae, identifying it as a candidate for being an adaptive response to oxidative stress resulting from the physiology of its endosymbionts. We found that the M. tetrahymenae genome is larger than those of other Micractinium and Chlorella and contains a greater number of rapidly expanding orthogroups. These were enriched for Gene Ontology terms relevant to the regulation of intracellular signal transduction and cellular responses to stress and stimulus. Single-exon tandem repeats were overrepresented in paralogs belonging to these rapidly expanding orthogroups, which implicates long terminal repeat retrotransposons (LTRs) as potential agents of adaptation. We additionally performed a comparative transcriptomic analysis of M. tetrahymenae in a free-living state and in endosymbiosis with T. utriculariae and discovered that the genes that are differentially expressed were enriched for pathways that evidence shifts in energy generation and storage and in cellular protection strategies. Together, our results elucidate the axes along which the participants must adapt in this young endosymbiosis and highlight evolutionary responses to stress as a shared trend.

RevDate: 2025-02-01

Dudzic JP, McPherson AE, Taylor KE, et al (2025)

Candidate DNA and RNA viruses of Drosophila suzukii from Canada and Germany, and their interactions with Wolbachia.

Journal of invertebrate pathology pii:S0022-2011(25)00008-4 [Epub ahead of print].

Some species of insects harbour strains of the endosymbiotic bacteria Wolbachia that do not cause obvious reproductive manipulations, and so it is unclear why they persist in host populations. There is some evidence that some of these endosymbionts may provide their hosts with protection against viruses, which would help to explain their persistence, but few studies have explored associations between Wolbachia and naturally occurring, common viruses in natural populations. Here, we asked whether individuals of the invasive vinegar fly Drosophila suzukii infected with the wSuz strain of Wolbachia were less likely to be infected by naturally occurring viruses in its invaded range, in western North America and in Europe. First, using next-generation sequencing, we conducted a virome survey of adult and larval D. suzukii in British Columbia, Canada, finding eight candidate RNA viruses and two candidate DNA viruses, all but one have not been reported previously. Only the previously described Teise virus, an RNA virus, was abundant in our virome survey. We then screened individual flies from British Columbia and Germany for Teise virus and Wolbachia. Wolbachia-infected D. suzukii from the field were not less likely to be infected by Teise virus. Overall, our results do not provide conclusive evidence that wSuz provides strong protection for D. suzukii against viruses that are common in natural populations. However, the other viruses that we discovered in this study, particularly the novel candidate Drosophila nudivirus, deserve further characterization in terms of their pathogenicity to D. suzukii and the frequency and dynamics of infection in wild populations.

RevDate: 2025-01-31

Awuoche EO, Smallenberger G, Bruzzese DL, et al (2025)

Spiroplasma endosymbiont reduction of host lipid synthesis and Stomoxyn-like peptide contribute to trypanosome resistance in the tsetse fly Glossina fuscipes.

PLoS pathogens, 21(1):e1012692 pii:PPATHOGENS-D-24-02291 [Epub ahead of print].

Tsetse flies (Glossina spp.) vector African trypanosomes that cause devastating diseases in humans and domestic animals. Within the Glossina genus, species in the Palpalis subgroup exhibit greater resistance to trypanosome infections compared to those in the Morsitans subgroup. Varying microbiota composition and species-specific genetic traits can significantly influence the efficiency of parasite transmission. Notably, infections with the endosymbiotic bacterium Spiroplasma have been documented in several Palpalis subgroup species, including Glossina fuscipes fuscipes (Gff). While Spiroplasma infections in Gff are known to hinder trypanosome transmission, the underlying mechanisms remain unknown. To investigate Spiroplasma-mediated factors affecting Gff vector competence, we conducted high-throughput RNA sequencing of the gut tissue along with functional assays. Our findings reveal elevated oxidative stress in the gut environment in the presence of Spiroplasma, evidenced by increased expression of nitric oxide synthase, which catalyzes the production of trypanocidal nitric oxide. Additionally, we observed impaired lipid biosynthesis leading to a reduction of this important class of nutrients essential for parasite and host physiologies. In contrast, trypanosome infections in Gff's midgut significantly upregulated various immunity-related genes, including a small peptide, Stomoxyn-like, homologous to Stomoxyn first discovered in the stable fly, Stomoxys calcitrans. We observed that the Stomoxyn-like locus is exclusive to the genomes of Palpalis subgroup tsetse species. GffStomoxyn is constitutively expressed in the cardia (proventriculus) and synthetic GffStomoxyn exhibits potent activity against Escherichia coli and bloodstream form of Trypanosoma brucei parasites, while showing no effect against insect stage procyclic forms or tsetse's commensal endosymbiont Sodalis in vitro. Reducing GffStomoxyn levels significantly increased trypanosome infection prevalence, indicating its potential trypanocidal role in vivo. Collectively, our results suggest that the enhanced resistance to trypanosomes observed in Spiroplasma-infected Gff may be due to the reduced lipid availability necessary for parasite metabolic maintenance. Furthermore, GffStomoxyn could play a crucial role in the initial immune response(s) against mammalian parasites early in the infection process in the gut and prevent gut colonization. We discuss the molecular characteristics of GffStomoxyn, its spatial and temporal expression regulation and its microbicidal activity against Trypanosome parasites. Our findings reinforce the nutritional influences of microbiota on host physiology and host-pathogen dynamics.

RevDate: 2025-01-31
CmpDate: 2025-01-31

Yao RK, Gomgnimbou MK, Coulibaly IZ, et al (2025)

Molecular detection of Wolbachia sp. and Cytoplasmic incompatibility factors (CifA/B) in wild caught mosquitoes in Côte d'Ivoire.

Molecular biology reports, 52(1):181.

BACKGROUND: Wolbachia is an endosymbiont bacterium known to stimulate host immunity against arboviruses and protozoa. Côte d'Ivoire is in a malaria-endemic region, and has experienced several dengue epidemics in recent decades as well. In order to help reduce the transmission of pathogens by mosquito vectors, we studied the prevalence of Wolbachia and the distribution of Cytoplasmic incompatibility factors (Cif) genes in different mosquito species caught in the wild in Cote d'Ivoire.

METHODS AND RESULTS: Mosquitoes of the genera Anopheles, Aedes, Culex, Eretmapodites and Mansonia were captured in five cities. Mosquitoes were collected at larval stage in breeding sites and adults were captured using BG sentinel traps. The mosquitoes were identified morphologically and Wolbachia and Cif were screened using qPCR targeting the 16s rRNA gene and the CifA, B genes. A total of 518 mosquito samples belonging to 15 species and 4 genera were examined. 60% of the species were infected with Wolbachia. The three medically important mosquito species Aedes aegypti, Anopheles gambiae s.l. and Culex quinquefasciatus had a prevalence of 12.84%, 13.46% and 72.64% respectively. The Wolbachia strains infecting the different mosquito species of the genus Culex encoded 98.46% for the CifA gene and 77.69% for the CifB gene.

CONCLUSION: The presence of Wolbachia and CifA, B genes in mosquitoes of different species in Côte d'Ivoire offer a promising opportunity to reduce the competence of mosquito vectors. Characterization of Wolbachia strains and cytoplasmic incompatibility factors will provide a better understanding of these endosymbionts, enabling the development of vector control strategies.

RevDate: 2025-01-28

Gürelli G, FI Kesbiç (2025)

Morphology and phylogeny of Pararaabena dentata Wolska, 1968 and further insights into the molecular evolution of trichostome ciliates (Ciliophora, Litostomatea).

European journal of protistology, 97:126133 pii:S0932-4739(25)00001-X [Epub ahead of print].

The morphology and phylogenetic position of a trichostome ciliate, Pararaabena dentata, isolated from the intestine of an Asian elephant (Elaphas maximus) in Gaziantep Zoo, Turkey, were studied using pyridinated silver carbonate impregnation, scanning electron microscopy, and the 18S rRNA gene. Pararaabena dentata clustered together with Raabena bella and both taxa were phylogenetically not related to members of the family Blepharocorythidae, as expected in the past. Phylogenetic trees indicated that amphibian intestinal ciliates represented by Balantidium grimi, B. duodeni, and B. entozoon are basal to all other trichostome ciliates, causing the family Balantidiidae to be polyphyletic. The molecular evolution of the subclass Trichostomatia is thoroughly discussed.

RevDate: 2025-01-28
CmpDate: 2025-01-28

Leung K, Beukeboom LW, BJ Zwaan (2025)

Inbreeding and Outbreeding Depression in Wild and Captive Insect Populations.

Annual review of entomology, 70(1):271-292.

Major changes in genetic variation are generally considered deleterious to populations. The massive biodiversity of insects distinguishes them from other animal groups. Insect deviant effective population sizes, alternative modes of reproduction, advantageous inbreeding, endosymbionts, and other factors translate to highly specific inbreeding and outbreeding outcomes. We review the evidence for inbreeding and outbreeding depression and consequences across wild and captive insect populations, highlighting conservation, invasion, and commercial production entomology. We not only discern patterns but also explain why they are often inconsistent or absent. We discuss how insect inbreeding and outbreeding depression operates in complex, sometimes contradictory directions, such as inbreeding being detrimental to individuals but beneficial to populations. We conclude by giving recommendations to (a) more comprehensively account for important variables in insect inbreeding and outbreeding depression, (b) standardize the means of measuring genetic variation and phenotypic impacts for insect populations so as to more reliably predict when inbreeding or outbreeding depression applies, and (c) outline possible remediation options, both nongenetic and genetic, including revision of restrictive international trade laws.

RevDate: 2025-01-28

Barzilay D, Alcino JPB, Ribeiro GM, et al (2024)

Re-evaluating evidence for giant genomes in amoebae.

Genetics and molecular biology, 47Suppl 1(Suppl 1):e20240092 pii:S1415-47572024000200116.

Here we reassess available evidence for the long-held misconception of amoebae possessing exceptionally large genomes. Traditionally, estimates relied on inaccurate methods like DNA weight measurements, leading to inflated sizes. These methods failed to account for contaminating DNA from prey, endosymbionts, and intrinsic genomic features like ribosomal operon amplification. Modern sequencing techniques unveil a different picture. Fully sequenced amoebozoa genomes range from 14.4 to 52.37 mega basepairs, well within the typical single-celled eukaryote expectation. While the whole genome of the historically relevant Amoeba proteus has not yet been fully sequenced, we provide here a statistical analysis using protein-coding genes from transcriptomic data, suggesting that the genome size is consistent with this range, far smaller than previously claimed. The misconception likely originated in the early 21st century and perpetuated through popular science materials. We conclude that there is no longer reason to reaffirm that amoeba genomes are giant.

RevDate: 2025-01-28
CmpDate: 2025-01-27

Packer JA, Zavadska D, Weston EJ, et al (2025)

Characterization of Allobodo yubaba sp. nov. and Novijibodo darinka gen. et sp. nov., cultivable free-living species of the phylogenetically enigmatic kinetoplastid taxon Allobodonidae.

The Journal of eukaryotic microbiology, 72(1):e13072.

Kinetoplastids are a large and diverse protist group, spanning ecologically important free-living forms to medically important parasites. The taxon Allobodonidae holds an unresolved position within kinetoplastids, and the sole described species, Allobodo chlorophagus, is uncultivated, being a necrotroph/parasite of macroalgae. Here we describe Allobodo yubaba sp. nov. and Novijibodo darinka gen. nov. et sp. nov., both free-living bacterivores isolated into monoeukaryotic cultures. Electron microscopy shows that both A. yubaba and N. darinka have a microtubular prism in the feeding apparatus (absent in A. chlorophagus), and an ovoid eukinetoplast, rather than pan-kDNA as in A. chlorophagus. Phylogenetic analyses of SSU rDNA sequences robustly place A. yubaba as the sister to A. chlorophagus, while N. darinka branches separately within Allobodonidae, as a sister group of undescribed freshwater isolates. We view Allobodonidae as containing at least four genus-level clades: Allobodo (A. chlorophagus and A. yubaba n. sp.), an undescribed fresh-water clade, an undescribed marine clade, and now Novijibodo-with N. darinka as its sole known member. Electron microscopy also revealed a rod-shaped gram-negative bacterial cytoplasmic endosymbiont in our N. darinka isolate. The availability of these species in monoeukaryotic culture should facilitate future research, including resolving the position of Allobodonidae using phylogenomic approaches.

RevDate: 2025-01-27

Jiménez-Leiva A, Juárez-Martos RA, Cabrera JJ, et al (2025)

Dual Oxygen-Responsive Control by RegSR of Nitric Oxide Reduction in the Soybean Endosymbiont Bradyrhizobium diazoefficiens.

Antioxidants & redox signaling [Epub ahead of print].

Aims: To investigate the role of the RegSR-NifA regulatory cascade in the oxygen control of nitric oxide (NO) reduction in the soybean endosymbiont Bradyrhizobium diazoefficiens. Results: We have performed an integrated study of norCBQD expression and NO reductase activity in regR, regS1, regS2, regS1/2, and nifA mutants in response to microoxia (2% O2) or anoxia. An activating role of RegR and NifA was observed under anoxia. In contrast, under microaerobic conditions, RegR acts as a repressor by binding to a RegR box located between the -10 and -35 regions within the norCBQD promoter. In addition, both RegS1 and RegS2 sensors cooperated with RegR in repressing norCBQD genes. Innovation: NO is a reactive gas that, at high levels, acts as a potent inhibitor of symbiotic nitrogen fixation. In this paper, we report new insights into the regulation of NO reductase, the major enzyme involved in NO removal in rhizobia. This knowledge will be crucial for the development of new strategies and management practices in agriculture, in particular, for improving legume production. Conclusion: Our results demonstrate, for the first time, a dual control of the RegSR two-component regulatory system on norCBQD genes control in response to oxygen levels. Antioxid. Redox Signal. 00, 000-000.

RevDate: 2025-01-26
CmpDate: 2025-01-26

Haskett TL, Cooke L, Green P, et al (2025)

Regulation of Rhizobial Nodulation Genes by Flavonoid-Independent NodD Supports Nitrogen-Fixing Symbioses With Legumes.

Environmental microbiology, 27(1):e70014.

Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis. Although evidence suggests differential regulation of nodD expression and NF biosynthesis during symbiosis, the necessity of this regulation for the formation of nitrogen-fixing nodules remains uncertain. Here, we demonstrate that deletion of the Rlv3841 NodD regulatory domain results in a constitutively active protein (NodDFI) capable of activating NF biosynthesis gene expression without the presence of flavonoids. Optimised constitutive expression of nodDFI or nodD3 in nodD null mutants led to wild-type levels of nodulation and nitrogen fixation in pea and M. truncatula, respectively, indicating that flavonoid-regulated nodD expression is not essential for supporting symbiosis. These findings illustrate that transcriptional control of flavonoid-independent NodD regulators can be employed to drive NF biosynthesis, which holds potential for engineering symbiosis between rhizobia and cereals equipped with reconstituted NF receptors.

RevDate: 2025-01-25

Ramos GS, Hayashida R, Ikuno PHP, et al (2025)

Quality Assessment and Host Preference of Telenomus podisi (Hymenoptera: Scelionidae) for Fresh and Cryopreserved Euschistus heros (Hemiptera: Pentatomidae) Eggs.

Insects, 16(1): pii:insects16010086.

The development of the mass rearing technique for the egg parasitoid Telenomus podisi has been under study for about 20 years, with increasing attention on the development of quality control. Here, we evaluated the behavior, biological parameters, morphometrics and presence of endosymbionts of T. podisi produced in cryopreserved eggs compared to those produced in traditional fresh stink bug eggs. Parasitoids reared from cryopreserved eggs showed similar parasitism and emergence rates, sex ratios, longevity, morphometrics, and proportions of flyers compared to those originating from fresh eggs. Slight differences, including an increase in egg-to-adult development time and differences in the presence of endosymbionts, were observed. Despite these differences, we conclude that the use of cryopreserved eggs is suitable for T. podisi mass rearing, allowing more options for timed inundative parasitoid releases for biological control.

RevDate: 2025-01-24
CmpDate: 2025-01-24

Aliyu M, Salman AA, Ibrahim MA, et al (2025)

Analysis of Possible Coexistence of Microsporidia, Plasmodium falciparum and Wuchereria bancrofti in Anopheles gambiae s.l within Ahmadu Bello University, Zaria, Nigeria.

Acta parasitologica, 70(1):23.

PURPOSE: Anopheles gambiae is a vector of Plasmodium falciparum and Wuchereria bancrofti. Endosymbionts are reported to block development of various parasites in mosquitoes. Microsporidia was reported to affect the development of P. falciparum in mosquitoes. Data on such observation is limited in Nigeria.

METHODS: Therefore, the prevalence of Microsporidia and its coinfection with W. bancrofti and P. falciparum in An. gambiae s.l was studied within Ahmadu Bello University, Zaria.

RESULTS: Of the 912 mosquitoes sampled, 124 were An. gambiae s.l The midgut assessment of the Anopheles mosquitoes using light microscopy and polymerase chain reaction (PCR) showed a 12% prevalence of a mono microsporidia infection with no coinfection with either P. falciparum or W. bancrofti. Only 4.03% of the An. gambiae s.l. were found to be coinfected with P. falciparum and W. bancrofti while no mosquito harboured all the microorganisms CONCLUSION: This data further supports the potential of Microsporidia as an antagonist for the development of pathogens in mosquitoes.

RevDate: 2025-01-24
CmpDate: 2025-01-24

Yun JH, Park J, Xi H, et al (2024)

Comprehensive Analysis of the Fourteen Complete Genome Sequences of Buchnera aphidicola Isolated from Aphis Species.

Journal of microbiology and biotechnology, 35:e2409004 pii:jmb.2409.09004.

Endosymbionts are important for insect species as they provide essential substances to the host. Due to the technical advance of NGS technology and de novo assemblers, many endosymbionts bacterial genomes are available now. Here, we analysed fourteen endosymbiont bacterial genomes of Aphis genius, one of notorious pest species. Fourteen genomes displayed the length between 628,098 bp to 634,931 bp; GC ratio was from 24.2 % to 25.6 % with no structural variation found. The nucleotide diversity distribution across the 14 endosymbiont genomes revealed three distinct regions, each separated by varying levels of nucleotide diversity. Intraspecific variations identified from endosymbiont bacterial genomes of the same host species revealed numbers of SNPs ranging from 31 (0.0049%) to 1,652 (0.26%) and those of INDELs ranging from 7 (21 bp; 0.0033%) to 104 (285 bp; 0.0045%). 250 unique SSRs, 28 different common SSR groups, and one different SSR group in two genomes were identified and used as a potential molecular marker to distinguish intraspecific population. Phylogenetic analysis further showed congruence between the endosymbiont bacterial genomes and the host species phylogeny, except Aphis nasturtii, Aphis helianth, and Aphis auranti, which require additional endosymbiont genomes for clarification. This comparative analysis result could serve as a cornerstone for understanding the relationship between host and endosymbiont species from a genomic perspective.

RevDate: 2025-01-23

Hussain MD, Farooq T, Kamran A, et al (2025)

Endosymbionts as hidden players in tripartite pathosystem of interactions and potential candidates for sustainable viral disease management.

Critical reviews in biotechnology [Epub ahead of print].

The convoluted relationships between plants, viruses, and arthropod vectors housing bacterial endosymbionts are pivotal in the spread of harmful plant viral diseases. Endosymbionts play key roles in: manipulating host responses, influencing insect resistance to pesticides, shaping insect evolution, and bolstering virus acquisition, retention, and transmission. This interplay presents an innovative approach for developing sustainable strategies to manage plant diseases. Recent progress in targeting specific endosymbionts through genetic modifications, biotechnological advancements, and RNA interference shows potential for curbing viral spread and disease progression. Additionally, employing synthetic biology techniques like CRISPR/Cas9 to engineer endosymbionts and disrupt crucial interactions necessary for viral transmission in arthropod vectors holds promise for effective control measures. In this review, these obligate and facultative bacterial cruxes have been discussed to elaborate on their mechanistic involvement in the regulation and/or inhibition of tripartite pathways of interactions. Furthermore, we provide an in-depth understanding of endosymbionts' synergistic and antagonistic effects on: insect biology, plant immunity, and virus acquisition and transmission. Finally, we point out open questions for future research and provide research directions concerning the deployment of genetically engineered symbionts to affect plant-virus-vector interactions for sustainable disease management. By addressing existing knowledge gaps and charting future research paths, a deeper comprehension of the role of endosymbionts in plant-virus-vector interactions can pave the way for innovative and successful disease management strategies. The exploration of antiviral therapies, paratransgenesis, and pathogen-blocking tactics using engineered endosymbionts introduces pioneering solutions for lessening the impact of plant viral diseases and green pest management.

RevDate: 2025-01-21
CmpDate: 2025-01-21

Motta MCM, Camelo TM, Cerdeira CMC, et al (2025)

Phylogenetic and structural characterization of Kentomonas inusitatus n. sp.: Unique insect trypanosomatid of the Strigomonadinae subfamily naturally lacking bacterial endosymbiont.

The Journal of eukaryotic microbiology, 72(1):e13083.

All insect trypanosomatids of the subfamily Strigomonadinae harbor a proteobacterial symbiont in their cytoplasm and unique ultrastructural cell organization. Here, we report an unexpected finding within the Strigomonadinae subfamily: the identification of a new species lacking bacterial symbiont, represented by two isolates obtained from Calliphoridae flies in Brazil and Uganda. This species is hereby designated as Kentomonas inusitatus n. sp. Molecular investigations targeting symbiont DNA, cell proliferation, and ultrastructural analyses agreed with the absence of bacterial symbionts in cultured flagellates. PCR-screening specifically targeting symbiont DNA corroborated the absence of symbionts in K. inusitatus present in the intestine of the respective host flies. K. inusitatus exhibited forms varying in size and shape. While displaying overall ultrastructural features of the Strigomonadinae, the novel species showed mitochondrial branches juxtaposed to the plasma membrane in locations both without and notable, with subpellicular microtubules. The discovery of the first Strigomonadinae species naturally lacking a symbiont and closely related to K. sorsogonicus, suggests a unique evolutionary history for the genus Kentomonas. Our findings provide novel insights into the complex relationships between trypanosomatids and their symbionts.

RevDate: 2025-01-20
CmpDate: 2025-01-17

Köppen K, Rydzewski K, Zajac J, et al (2025)

Detection of Francisellaceae and the differentiation of main European F. tularensis ssp. holarctica strains (Clades) by new designed qPCR assays.

BMC microbiology, 25(1):28.

BACKGROUND: The zoonotic and highly infectious pathogen Francisella tularensis is the etiological agent of tularemia. Tularemia in humans is mainly caused by F. tularensis subspecies tularensis and holarctica, but Francisella species like F. novicida, F. philomiragia, F. hispaniensis and others are known to cause tularemia-like infections in immunocompromised humans. In addition to these Francisella species, further genera of the family Francisellaceae have been described, such as Allofrancisella, Parafrancisella and Pseudofrancisella, but less is known about the distribution and putative virulence of these genera. The methods currently available were not made for a fast and easy detection of all these strains and genera of Francisellaceae.

RESULTS: We developed a multiplex quantitative real-time PCR assay that can accurately detect all genera of Francisellaceae, including Francisella, Francisella-like endosymbionts, Allofrancisella, Parafrancisella and Pseudofrancisella. In addition, we developed a qPCR assay to differentiate the major clades (B.4, B.6 and B.12 [B.71 and B.72]) of F. tularensis ssp. holarctica strains. Both primer sets were shown to work on isolated DNA out of human and tick samples.

CONCLUSION: Since the developed qPCRs are able to detect all genera of Francisellaceae tested, an easy and fast identification of opportunistic Francisella strains causing tularemia-like symptoms in humans or animals is possible now. The application of these qPCR assays will thus improve the capability for clinical diagnostics and molecular typing during epidemiological investigations.

RevDate: 2025-01-17

Yu W, Yang Q, Gill A, et al (2025)

A persistent bacterial Regiella transinfection in the bird cherry-oat aphid Rhopalosiphum padi increasing host fitness and decreasing plant virus transmission.

Pest management science [Epub ahead of print].

BACKGROUND: The bird cherry-oat aphid, Rhopalosiphum padi, is a major pest of agriculture due to its ability to directly damage crops and transmit plant viruses. As industries move away from chemical pest control, there is interest in exploring new options to suppress the impact of this pest.

RESULTS: We describe the production of a transinfected line of R. padi carrying the bacterial endosymbiont, Regiella insecticola, originating from the green peach aphid, Myzus persicae. We show that Regiella increases the fitness of its novel host despite decreasing fitness in its native host. Regiella also shows a low level of horizontal transmission. Importantly the infection suppresses the ability of R. padi to transmit the barley yellow dwarf virus which damages wheat plants.

CONCLUSION: Our results suggest this Regiella transinfection could be released to suppress virus transmission by aphids with its ability to persist and spread in situations where damage from the virus exceeds that from direct feeding by the aphid. © 2025 Society of Chemical Industry.

RevDate: 2025-01-15
CmpDate: 2025-01-15

Kerlin JR, Barnas DM, NJ Silbiger (2025)

Conspecific interactions between corals mediate the effect of submarine groundwater discharge on coral physiology.

Oecologia, 207(1):21.

Land-based inputs, such as runoff, rivers, and submarine groundwater, can alter biologic processes on coral reefs. While the abiotic factors associated with land-based inputs have strong effects on corals, corals are also affected by biotic interactions, including other neighboring corals. The biologic responses of corals to changing environmental conditions and their neighbors are likely interactive; however, few studies address both biotic and abiotic interactions in concert. In a manipulative field experiment, we tested how the natural environmental gradient created by submarine groundwater discharge (SGD) affected holobiont and symbiont metabolic rates and endosymbiont physiology of Porites rus. We further tested how the effect of SGD on the coral was mediated by intra and interspecific interactions. SGD is a natural land-sea connection that delivers nutrients, inorganic carbon, and other solutes to coastal ecosystems worldwide. Our results show that a natural gradient of nutrient enrichment and pH variability as a result of acute SGD exposure generally benefited P. rus, increasing gross photosynthesis, respiration, endosymbiont densities, and chlorophyll a content. Conspecifics in direct contact with the a neighboring coral, however, altered the relationship between coral physiology and SGD, lowering the photosynthetic and respiration rates from expected values when the coral had no neighbor. We show that the response of corals to environmental change is dependent on the types of nearby neighbor corals and how neighbors alter the chemical or physical environment around the coral. Our study underscores the importance of considering biotic interactions when predicting the physiologic responses of corals to the environment.

RevDate: 2025-01-13

Schulz F, Yan Y, Weiner AKM, et al (2024)

Protists as mediators of complex microbial and viral associations.

bioRxiv : the preprint server for biology pii:2024.12.29.630703.

Microbial eukaryotes (aka protists) are known for their important roles in nutrient cycling across different ecosystems. However, the composition and function of protist-associated microbiomes remains largely elusive. Here, we employ cultivation-independent single-cell isolation and genome-resolved metagenomics to provide detailed insights into underexplored microbiomes and viromes of over 100 currently uncultivable ciliates and amoebae isolated from diverse environments. Our findings reveal unique microbiome compositions and hint at an intricate network of complex interactions and associations with bacterial symbionts and viruses. We observed stark differences between ciliates and amoebae in terms of microbiome and virome compositions, highlighting the specificity of protist-microbe interactions. Over 115 of the recovered microbial genomes were affiliated with known endosymbionts of eukaryotes, including diverse members of the Holosporales, Rickettsiales, Legionellales, Chlamydiae, Dependentiae, and more than 250 were affiliated with possible host-associated bacteria of the phylum Patescibacteria. We also identified more than 80 giant viruses belonging to diverse viral lineages, of which some were actively expressing genes in single cell transcriptomes, suggesting a possible association with the sampled protists. We also revealed a wide range of other viruses that were predicted to infect eukaryotes or host-associated bacteria. Our results provide further evidence that protists serve as mediators of complex microbial and viral associations, playing a critical role in ecological networks. The frequent co-occurrence of giant viruses and diverse microbial symbionts in our samples suggests multipartite associations, particularly among amoebae. Our study provides a preliminary assessment of the microbial diversity associated with lesser-known protist lineages and paves the way for a deeper understanding of protist ecology and their roles in environmental and human health.

RevDate: 2025-01-08

Li Y, Ye Z, Lai MC, et al (2024)

Microbial Communities in and Around the Siboglinid Tubeworms from the South Yungan East Ridge Cold Seep Offshore Southwestern Taiwan at the Northern South China Sea.

Microorganisms, 12(12):.

To date, only a few microbial community studies of cold seeps at the South China Sea (SCS) have been reported. The cold seep dominated by tubeworms was discovered at South Yungan East Ridge (SYER) offshore southwestern Taiwan by miniROV. The tubeworms were identified and proposed as Paraescarpia formosa sp. nov. through morphological and phylogenetic analyses. The endosymbionts in the trunk of P. formosa analyzed by a 16S rRNA gene clone library represented only one phylotype, which belonged to the family Sedimenticolaceae in Gammaproteobacteria. In addition, the archaeal and bacterial communities in the habitat of tubeworm P. formosa were investigated by using high-phylogenetic-resolution full-length 16S rRNA gene amplicon sequencing. The results showed that anerobic methane-oxidizing archaea (ANME)-1b was most abundant and ANME-2ab was minor in a consortia of the anerobic oxidation of methane (AOM). The known sulfate-reducing bacteria (SRB) partners in AOM consortia, such as SEEP-SRB1, -SRB2, and -SRB4, Desulfococcus and Desulfobulbus, occurred in a small population (0-5.7%) at the SYER cold seep, and it was suggested that ANME-1b and ANME-2ab might be coupled with multiple SRB in AOM consortia. Besides AOM consortia, various methanogenic archaea, including Bathyarchaeota (Subgroup-8), Methanocellales, Methanomicrobiales, Methanosarcinales, Methanofastidiosales and Methanomassiliicoccales, were identified, and sulfur-oxidizing bacteria Sulfurovum and Sulfurimonas in phylum Epsilonbacteraeota were dominant. This study revealed the first investigation of microbiota in and around tubeworm P. formosa discovered at the SYER cold seep offshore southwestern Taiwan. We could gain insights into the chemosynthetic communities in the deep sea, especially regarding the cold seep ecosystems at the SCS.

RevDate: 2025-01-08

Maldonado-Ruiz P (2024)

The Tick Microbiome: The "Other Bacterial Players" in Tick Biocontrol.

Microorganisms, 12(12): pii:microorganisms12122451.

Hard ticks (family Ixodidae) are one of the most predominant arthropod disease vectors worldwide, second only to mosquitoes. In addition to harboring animal and human pathogens, ticks are known to carry a microbial community constituted of non-pathogenic organisms, which includes maternally inherited intracellular endosymbionts and other environmentally acquired extracellular microorganisms. These microbial communities, which include bacteria, viruses, protozoans, and fungi-with often commensal, mutualistic, or parasitic associations with the tick-comprise the tick microbiome, bacteria being the most studied community. Many bacterial taxa frequently reported in ticks include soil, plant, and animal-associated microbes, suggesting many are environmentally acquired, including members with known entomopathogenic potential, such as Bacillus thuringiensis, Bacillus spp., and Pseudomonas spp. It has been reported that microbial community composition can impact pathogen persistence, dissemination, and fitness in ticks. In the United States, Ixodes scapularis (northeast) and I. pacificus (west) are the predominant vectors of Borrelia burgdorferi, the causal agent of Lyme disease. Amblyomma americanum is another important tick vector in the U.S. and is becoming an increasing concern as it is the leading cause of alpha-gal syndrome (AGS, or red meat allergy). This condition is caused by tick bites containing the galactose alpha 1,3 galactose (alpha-gal) epitope in their saliva. In this paper, we present a summary of the tick microbiome, including the endosymbiotic bacteria and the environmentally acquired (here referred to as the non-endosymbiotic community). We will focus on the non-endosymbiotic bacteria from Ixodes spp. and Amblyomma americanum and discuss their potential for novel biocontrol strategies.

RevDate: 2025-01-08

Chomicz L, Szaflik JP, Kuligowska A, et al (2024)

Concomitant Potentially Contagious Factors Detected in Poland and Regarding Acanthamoeba Strains, Etiological Agents of Keratitis in Humans.

Microorganisms, 12(12): pii:microorganisms12122445.

BACKGROUND: Diseases in humans caused by amphizoic amoebae that can result in visual impairment and even blindness, have recently been identified more frequently worldwide. Etiologically complex incidents of keratitis, including those connected with Acanthamoeba strains detected in Poland, were evaluated in this study.

METHODS: Corneal samples from cases resistant to antimicrobial therapy assessed for epidemiological, microbiological and parasitological aspects were investigated by phase-contrast microscope, slit lamp and by confocal microscopy. In vitro techniques were applied for detection of bacteria and fungi, and corneal isolates cultured under axenic condition using BSC medium-for detection of Acanthamoeba spp.; molecular techniques were applied for amoeba species identification.

RESULTS: Most etiologically complicated keratitis cases, detected in ~84% of incidents, was due to exposure of contact lenses to tap water or pool water; trophozoites and cysts of Acanthamoeba, concomitant bacteriae, e.g., Pseudomonas aeruginosa, fungi and microfilariae were identified in contact lens users.

CONCLUSIONS: In samples from contact lens wearers where microbial keratitis is identified along with some connection with the patient's exposure to contaminated water environments, a risk of Acanthamoeba spp. infections should be considered. Understanding the complicated relationship between Acanthamoeba spp., co-occurring pathogens including associated endosymbionts is needed. In vivo confocal microscopy and in vitro cultivation were necessary to identify potentially contagious concomitant factors affecting the complex course of the keratitis.

RevDate: 2025-01-08

Lan Y, Li J, Zhang S, et al (2024)

Potential Involvement of Buchnera aphidicola (Enterobacteriales, Enterobacteriaceae) in Biotype Differentiation of Sitobion avenae (Hemiptera: Aphididae).

Insects, 15(12): pii:insects15120980.

Buchnera aphidicola, an obligate endosymbiont of most aphid species, can influence aphids' host adaptability through amino acid metabolism, potentially mediating biotype differentiation. However, its role in the biotype differentiation of Sitobion avenae remains unclear. To address this issue, six S. avenae biotypes were tested in this study. Buchnera abundance varied among biotypes fed on different wheat/barley varieties (i.e., Zhong 4 wumang, 186-TM12-34; Dulihuang, Zaoshu No.3, Xiyin No.2). The reduction in Buchnera abundance through antibiotic (rifampicin) treatment altered the virulence of five S. avenae biotypes. Based on transcriptome analysis, the differential expression of three genes (i.e., LeuB, TrpE, and IlvD) related to leucine, tryptophan, isoleucine, and valine metabolism was detected between different biotypes. Principal component analysis showed that leucine and tryptophan deficiencies most significantly impacted nymph development duration and aphid fecundity. Additionally, a neighbor-joining phylogenetic tree indicated the genetic differentiation of Buchnera among different biotypes. These results suggest Buchnera-mediated amino acid metabolism is correlated with biotype differentiation in S. avenae, although the precise mechanisms by which Buchnera influences this differentiation require further investigation. This study can offer a theoretical basis for the development of resistant crops, leading to the sustainable control of this aphid and reduced reliance on chemical insecticides.

RevDate: 2025-01-05

Figueroa LL, Sadd BM, Tripodi AD, et al (2023)

Endosymbionts that threaten commercially raised and wild bumble bees (Bombus spp.).

Journal of pollination ecology, 33:14-36.

Bumble bees (Bombus spp.) are important pollinators for both wild and agriculturally managed plants. We give an overview of what is known about the diverse community of internal potentially deleterious bumble bee symbionts, including viruses, bacteria, protozoans, fungi, and nematodes, as well as methods for their detection, quantification, and control. We also provide information on assessment of risk for select bumble bee symbionts and highlight key knowledge gaps. This information is crucial for ongoing efforts to establish parasite- conscious programs for future commerce in bumble bees for crop pollination, and to mitigate the problems with pathogen spillover to wild populations.

RevDate: 2025-01-02

Sabaneyeva E, Kursacheva E, Vizichkanich G, et al (2025)

Rhodotorula mucilaginosa: a new potential human pathogen found in the ciliate Paramecium bursaria.

Protoplasma [Epub ahead of print].

Ciliates often form symbiotic associations with other microorganisms, both prokaryotic and eukaryotic. We are now starting to rediscover the symbiotic systems recorded before molecular analysis became available. Here, we provide a morphological and molecular characterization of a symbiotic association between the ciliate Paramecium tritobursaria and the yeast Rhodotorula mucilaginosa (syn. Rhodotorula rubra) isolated from a natural population. This symbiotic system demonstrates certain similarities with the symbiotic system formed by P. bursaria and its conventional endosymbionts, the zoochlorellae. Experimental infections of the endosymbiont-free P. tritobursaria and Paramecium deuterobursaria cell lines with R. mucilaginosa demonstrated that the yeast infectivity is concentration-dependent, with ciliates digesting part of the yeast cells. The endosymbiotic yeast may serve as a food reserve, providing starvation stress tolerance to the host. Since R. mucilaginosa is currently regarded as a pathogen causing opportunistic infections in immunocompromised humans, our finding gives further support to the vision that ciliates can harbor potential human pathogens and can be a vector for their dissemination.

RevDate: 2024-12-31
CmpDate: 2024-12-31

Bassini-Silva R, Calchi AC, Castro-Santiago AC, et al (2024)

Molecular evidence of Wolbachia in bat-associated mite Periglischrus Iheringi Oudemans, 1902 (Mesostigmata: Spinturnicidae) from Brazil.

Veterinary research communications, 49(1):60.

Wolbachia is an intracellular endosymbiont bacterium found in nematodes and arthopods. Regarding mites, the Wolbachia supergroup U has been described based on strains found in the genus Spinturnix. In this study, ten specimens of Periglischrus iheringi (Mesostigmata: Spinturnicidae), collected from Artibeus obscurus (Chiroptera: Phyllostomidae) in Santa Catarina State, were found to be infected with Wolbachia. Phylogenetic analysis based on the 16 S rRNA gene revealed that the detected Wolbachia strain belongs to Supergroup F, which has also been detected in other ectoparasitic arthropods, such as Columbicola columbae (slender pigeon lice) and Cimex lectularius (bed bug). This study presents the first molecular detection of Wolbachia in P. iheringi.

RevDate: 2024-12-31

Holkar SK, Bhanbhane VC, Ghotgalkar PS, et al (2024)

Characterization and bioefficacy of grapevine bacterial endophytes against Colletotrichum gloeosporioides causing anthracnose disease.

Frontiers in microbiology, 15:1502788.

INTRODUCTION: Grapevine (Vitis vinifera L.), one of the economically important fruit crops cultivated worldwide, harbours diverse endophytic bacteria (EBs) responsible for managing various fungal diseases. Anthracnose (Colletotrichum gloeosporioides) (Penz.) is one of the major constraints in quality grape production and therefore its management is a major concern among the grape growers.

MATERIALS AND METHODS: Among the 50 EBs isolated from healthy leaf segments from the eight grapevine genotypes, biologically potential 20 EBs were purified and identified based on morphological, and biological characteristics and sequence analysis of 16S rRNA region. The antagonistic activities of EBs against Colletotrichum gloeosporioides were studied in vitro conditions.

RESULTS: The colony morphologies of EBs are white and yellow-coloured colonies, circular to irregular in shape, and entire, and flat margins. Among the 20 purified EBs, 19 isolates were found to be Gram-positive except one i.e., MS2 isolate. The 12 isolates reduced nitrate and 14 isolates produced urease enzyme. The in vitro assay revealed that two isolates, SB4 and RF1, inhibited 56.1% and 55.6% mycelial growth of C. gloeosporioides, respectively. Further, the identity of EBs was confirmed through PCR amplification of the 16S rRNA region resulting in ~1400 bp size amplicons. The sequence analysis of representative 15 isolates revealed that 5 EB isolates viz., SB5, CS2, RG1, RF1, C1 were identified as Bacillus subtilis with >99% sequence identity, two EBs viz., SB3, and CS1 were identified as B. subtilis subsp. subtilis, two EBs viz., SB1, and CS4 were identified as B. licheniformis. The SB2 isolate was identified as Bacillus sp., whereas SB4 as Brevibacillus borstelensis, TH1 as B. velezensis, TH2 as B. tequilensis, CS3 as B. pumilus and MS1 as Micrococcus luteus were identified.

CONCLUSION: The phylogenetic analysis of 16S rRNA sequence revealed eight distinct clades and showed the close clustering of identified species with the reference species retrieved from NCBI GenBank. The current investigation provides the scope for further field evaluations of these endophytic microbes for managing anthracnose disease.

RevDate: 2024-12-30

Mohammadi A, Dalimi A, Ghafarifar F, et al (2024)

Molecular Diagnosis of Helicobacter pylori Endosymbiont in Acanthamoeba-Positive Samples in Laboratory Conditions and in the Hospital Environments.

Iranian journal of parasitology, 19(4):397-407.

BACKGROUND: We aimed to identity Helicobacter pylori endosymbiont in Acanthamoeba-positive samples in natural and laboratory conditions.

METHODS: Overall, 134 samples were collected from hospital environments. Microscopic and PCR test were used for detection of Acanthamoeba and H. pylori. The real-time PCR method was used to check the active presence of H. pylori within Acanthamoeba under natural conditions from hospital samples and in co-culture laboratory conditions.

RESULTS: The rate of contamination of hospital samples with Acanthamoeba was 44.7%. Out of 42 Acanthamoeba PCR-positive samples, 13 isolates (31%) were positive in terms of H. pylori endosymbiont according to sampling location. H. pylori is able to penetrate and enter the Acanthamoeba parasite.

CONCLUSION: H. pylori is able to contaminate Acanthamoeba in natural and laboratory conditions. The presence of pathogenic Acanthamoeba in various hospital environments and the hiding of Helicobacter as an endosymbiont inside it can pose a serious threat to the health of hospitalized patients.

RevDate: 2024-12-29

Angelella GM, Foutz JJ, J Galindo-Schuller (2024)

Wolbachia infection modifies phloem feeding behavior but not plant virus transmission by a hemipteran host.

Journal of insect physiology pii:S0022-1910(24)00134-3 [Epub ahead of print].

Wolbachia-infected and uninfected subpopulations of beet leafhoppers, Circulifer tenellus (Baker) (Hemiptera: Cicadellidae), co-occur in the Columbia Basin region of Washington and Oregon. While facultative endosymbionts such as Hamiltonella defensa have demonstrably altered feeding/probing behavior in hemipteran hosts, the behavioral phenotypes conferred by Wolbachia to its insect hosts, including feeding/probing, are largely understudied. We studied the feeding/probing behavior of beet leafhoppers with and without Wolbachia using electropenetrography, along with corresponding inoculation rates of beet curly top virus, a phloem-limited plant pathogen vectored by beet leafhoppers. Insects carrying the virus with and without Wolbachia were individually recorded for four hours while interacting with a potato plant, and wavelengths annotated following established conventions. Virus inoculation rates and the duration of phloem salivation events did not vary. Wolbachia-infected insects more than tripled the duration of phloem ingestion, but despite this, Wolbachia infection was linked with marginally lower, not enhanced, acquisition. Regardless, results suggest potential for Wolbachia to increase the acquisition rate of other phloem-limited plant pathogens.

RevDate: 2024-12-28
CmpDate: 2024-12-28

Romero LE, Alvarenga F, Binder LC, et al (2024)

New records of ticks (Acari: Ixodida) and Rickettsia species in El Salvador.

Experimental & applied acarology, 94(1):19.

The tick fauna of El Salvador is currently represented by 10 species of hard ticks (family Ixodidae) and 2 species of soft ticks (family Argasidae). This study aimed to report new and additional records of ticks and rickettsiae in El Salvador. During 2019-2021, a total of 216 specimens of ticks were collected from eight host species (domestic and wild animals) and in the environment among 15 geographic localities of El Salvador. Combining morphological and molecular analyses, tick specimens were identified into the following 11 tick species: Amblyomma dissimile, Amblyomma longirostre, Amblyomma mixtum, Amblyomma ovale, Amblyomma cf. parvum, Amblyomma sabanerae, Amblyomma scutatum, Dermacentor panamensis, Ixodes boliviensis, Ornithodoros puertoricensis, and Otobius megnini. In addition, one free-living nymph was morphologically and molecularly identified as Ixodes sp., although closely related to Ixodes brunneus and Ixodes silvanus. Three rickettsial agents of the spotted fever group were identified: Rickettsia rhipicephali in D. panamensis; a Rickettsia endosymbiont in Ixodes boliviensis; and Rickettsia amblyommatis in A. cf. parvum. This study reports the first records of A. longirostre, D. panamensis, I. boliviensis, O. puertoricensis and O. megnini in El Salvador. In addition, the agents R. rhipicephali and Rickettsia sp. endosymbiont of I. boliviensis are also reported for the first time in the country. With the present study, the current tick fauna of El Salvador increases to 17 species, being 13 Ixodidae and 4 Argasidae, including the addition of one genus to each of these two families (Ixodes and Otobius, respectively).

RevDate: 2024-12-27

Abdelghany S, Simancas-Giraldo SM, Zayed A, et al (2024)

How does the coral microbiome mediate its natural host fitness under climate stress conditions? Physiological, molecular, and biochemical mechanisms.

Marine environmental research, 204:106920 pii:S0141-1136(24)00581-6 [Epub ahead of print].

Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms. The dynamic behaviour of microbial associates could denote their potential role in coral adaptation to future climate change, with microbiome shifts occurring independently as a response to thermal stress or as a response to host stress response. Associated adaptations include regulation of coral-algal-microbial interactions, expression of heat shock proteins, microbial composition changes, and accumulation of secondary metabolites to aid in sustaining the coral's overall homeostasis under ocean warming scenarios.

RevDate: 2024-12-24

Santos PKF, de Souza Araujo N, Françoso E, et al (2024)

The genome of the solitary bee Tetrapedia diversipes (Hymenoptera, Apidae).

G3 (Bethesda, Md.) pii:7932024 [Epub ahead of print].

Tetrapedia diversipes is a Neotropical solitary bee commonly found in trap-nests, known for its morphological adaptations for floral oil collection and prepupal diapause during the cold and dry season. Here, we present the genome assembly of T. diversipes (332 Mbp), comprising 2,575 scaffolds, with 15,028 predicted protein-coding genes. Repetitive elements constitute 38.68% of the genome, notably Class II transposable elements. An investigation into lateral gene transfers identified a low frequency (0.037%) of nuclear copies of mitochondrial DNA and 18 candidate regions from bacterial origins. Furthermore, the annotation of 3 scaffolds reveals the presence of the Wolbachia endosymbiont genome, confirming the infection by 2 strains in T. diversipes populations. This genome contributes valuable insights into Neotropical bee genomics, offering a resource for comparative studies and enhancing our understanding of the molecular basis of solitary bee adaptations and interactions.

RevDate: 2024-12-24

Lai CT, Hsiao YT, LH Wu (2024)

Evidence of horizontal transmission of Wolbachia wCcep in rice moths parasitized by Trichogramma chilonis and its persistence across generations.

Frontiers in insect science, 4:1519986.

The horizontal transmission of endosymbionts between hosts and parasitoids plays a crucial role in biological control, yet its mechanisms remain poorly understood. This study investigates the dynamics of horizontal transfer of Wolbachia (wCcep) from the rice moth, Corcyra cephalonica, to its parasitoid, Trichogramma chilonis. Through PCR detection and phylogenetic analysis, we demonstrated the presence of identical wCcep strains in both host and parasitoid populations, providing evidence for natural horizontal transmission. To investigate thoroughly, Wolbachia-free colonies were acquired through tetracycline treatment, and the initial density of wCcep in host eggs significantly influences transmission efficiency. High-density wCcep infections led to rapid transmission, with F1 parasitoid titers increasing by as much as 100-fold, while low-density infections exhibited more gradual increases. Additionally, without continuous exposure to infected hosts, wCcep density in T. chilonis diminished over generations. These findings enhance our understanding of Wolbachia's transfer dynamics and have important implications for developing effective and sustainable biological control strategies using parasitoid wasps, particularly in managing Wolbachia-related pest populations in agricultural systems.

RevDate: 2024-12-23

Mizutani M, Koga R, Fukatsu T, et al (2024)

Complete genome of the mutualistic symbiont Buchnera aphidicola AIST from a Japanese strain of the pea aphid Acyrthosiphon pisum.

Microbiology resource announcements [Epub ahead of print].

The genome of Buchnera aphidicola National Institute of Advanced Industrial Science and Technology (AIST), an obligate bacterial endosymbiont from a Japanese strain of the pea aphid Acyrthosiphon pisum, was determined. The genome sequence provides valuable information for comparative and evolutionary aspects of the intimate insect-microbe mutualism.

RevDate: 2024-12-23

Njogu AK, Logozzo F, Conner WR, et al (2024)

Counting rare Wolbachia endosymbionts using digital droplet PCR.

bioRxiv : the preprint server for biology pii:2024.12.10.627731.

Wolbachia is the most widespread animal-associated intracellular microbe, living within the cells of over half of insect species. Since they can suppress pathogen replication and spread rapidly through insect populations, Wolbachia is at the vanguard of public health initiatives to control mosquito-borne diseases. Wolbachia's abilities to block pathogens and spread quickly are closely linked to their abundance in host tissues. The most common method for counting Wolbachia is quantitative polymerase chain reaction (qPCR), yet qPCR can be insufficient to count rare Wolbachia, necessitating tissue pooling and consequently compromising individual-level resolution of Wolbachia dynamics. Digital droplet PCR (ddPCR) offers superior sensitivity, enabling the detection of rare targets and eliminating the need for sample pooling. Here, we report three ddPCR assays to measure total Wolbachia abundance, Wolbachia abundance adjusted for DNA extraction efficiency, and Wolbachia density relative to host genome copies. Using Drosophila melanogaster with wMel Wolbachia as a model, we show these ddPCR assays can reliably detect as few as 7 to 12 Wolbachia gene copies in a 20 μL reaction. The designed oligos are homologous to sequences from at least 106 Wolbachia strains across Supergroup A and 53 host species from the Drosophila, Scaptomyza, and Zaprionus genera, suggesting broad utility. These highly sensitive ddPCR assays are expected to significantly advance Wolbachia-host interactions research by enabling the collection of molecular data from individual insect tissues. Their ability to detect rare Wolbachia will be especially valuable in applied and natural field settings where pooling samples could obscure important variation.

RevDate: 2024-12-22

Mao B, Wang YY, Li SY, et al (2024)

A potential role for the interaction of Wolbachia surface proteins with the Drosophila microtubulin in maintenance of endosymbiosis and affecting spermiogenesis.

Journal of insect physiology pii:S0022-1910(24)00131-8 [Epub ahead of print].

Wolbachia, as a widely infected intracellular symbiotic bacterium in Arthropoda, is able to manipulate the reproduction of insect hosts for facilitating their own transmission. Cytoplasmic incompatibility (CI) is the most common phenotype that Wolbachia induced in insect hosts where they resulted in the failure of uninfected egg hatch when fertilized with the sperm derived from Wolbachia-infected males, suggesting that the sperm are modified by Wolbachia during spermatogenesis. Although the molecular mechanisms of CI are beginning to be understood, the effects of Wolbachia on the symbiotic relationship and the proper dynamics of spermatogenesis have not yet been fully investigated. We report here that Wolbachia infection induced a significant upregulation of betaTub85D in the testis of Drosophila melanogaster. Knockdown of betaTub85D in fly testes resulted in significant decrease in the copy number of Wolbachia surface protein gene (wsp), indicating a notable reduction of Wolbachia density. Pull-down analyses revealed that WSP interacted with the betaTub85D of D. melanogaster. Wolbachia infection altered the interactome between betaTub85D and other proteins in the testes, and may thus change the protein synthesis and metabolic pathways. Wolbachia infection induced not only an interaction of betaTub85D with Mst77F but also increase in phosphorylated Mst77F. These results suggest that Wolbachia WSP protein might play important roles in anchoring the endosymbiont to the host's cytoskeleton and consequently interfere the interactions among key proteins involved in spermatogenesis in the insect host testes, resulting in modified sperm.

RevDate: 2024-12-20
CmpDate: 2024-12-20

Shippy TD, Hosmani PS, Flores-Gonzalez M, et al (2024)

Diaci v3.0: chromosome-level assembly, de novo transcriptome, and manual annotation of Diaphorina citri, insect vector of Huanglongbing.

GigaScience, 13:.

BACKGROUND: Diaphorina citri is an insect vector of "Candidatus Liberibacter asiaticus" (CLas), the gram-negative bacterial pathogen associated with citrus greening disease. Control measures rely on pesticides with negative impacts on the environment, natural ecosystems, and human and animal health. In contrast, gene-targeting methods have the potential to specifically target the vector species and/or reduce pathogen transmission.

RESULTS: To improve the genomic resources needed for targeted pest control, we assembled a D. citri genome based on PacBio long reads followed by proximity ligation-based scaffolding. The 474-Mb genome has 13 chromosomal-length scaffolds. In total, 1,036 genes were manually curated as part of a community annotation project, composed primarily of undergraduate students. We also computationally identified a total of 1,015 putative transcription factors (TFs) and were able to infer motifs for 337 TFs (33%). In addition, we produced a genome-independent transcriptome and genomes for D. citri endosymbionts.

CONCLUSIONS: Manual annotation provided more accurate gene models for use by researchers and provided an excellent training opportunity for students from multiple institutions. All resources are available on CitrusGreening.org and NCBI. The chromosomal-length D. citri genome assembly serves as a blueprint for the development of collaborative genomics projects for other medically and agriculturally significant insect vectors.

RevDate: 2024-12-17

Li M, Chen H, Wang M, et al (2024)

Phenotypic plasticity of symbiotic organ highlight deep-sea mussel as model species in monitoring fluid extinction of deep-sea methane hydrate.

The Science of the total environment, 958:178048 pii:S0048-9697(24)08205-6 [Epub ahead of print].

Methane hydrates stored in cold seeps are an important source of energy and carbon for both the endemic chemosynthetic community and humanity. However, the methane fluids may cease and even stop naturally or anthropogenically, calling for a thorough evaluation of its potential impact on the endemic species and local chemosynthetic ecosystems. As one dominant megafauna in cold seeps, some of the deep-sea mussels rely on methanotrophic endosymbionts for nutrition and therefore could serve as a promising model in monitoring the dynamic changes of methane hydrate. However, knowledge on the long-term responses of deep-sea mussels to environmental stresses induced by methane reduction and deprivation, is still lacking. Here, we set up a laboratory system and cultivated methanotrophic deep-sea mussel Gigantidas platifrons without methane supply to survey the phenotypic changes after methane deprivation. While the mussels managed to survive for >10 months after the methane deprivation, drastic changes in the metabolism, function, and development of gill tissue, and in the association with methanotrophic symbionts were observed. In detail, the mussel digested all methanotrophic endosymbionts shortly after methane deprivation for nutrition and remodeled the global metabolism of gill to conserve energy. As the methane deprivation continued, the mussel replaced its bacteriocytes with ciliated cells to support filter-feeding, which is an atavistic trait in non-symbiotic mussels. During the long-term methane deprivation assay, the mussel also retained the generation of new cells to support the phenotypic changes of gill and even promoted the activity after being transplanted back to deep-sea, showing the potential resilience after long-term methane deprivation. Evidences further highlighted the participation of symbiont sterol metabolism in regulating these processes. These results collectively show the phenotypic plasticity of deep-sea mussels and their dynamic responses to methane deprivation, providing essential information in assessing the long-term influence of methane hydrate extinction.

RevDate: 2024-12-16
CmpDate: 2024-12-16

Rajendran D, Vinayagam S, Sekar K, et al (2024)

Symbiotic Bacteria: Wolbachia, Midgut Microbiota in Mosquitoes and Their Importance for Vector Prevention Strategies.

Microbial ecology, 87(1):154.

Mosquito-borne illnesses pose a significant threat to eradication under existing vector management measures. Chemo-based vector control strategies (use of insecticides) raise a complication of resistance and environmental pollution. Biological control methods are an alternative approach to overcoming this complication arising from insecticides. The mosquito gut microbiome is essential to supporting the factors that involve metabolic regulation and metamorphic development (from juvenile to adult), as well as the induction of an immune response. The induced immune response includes the JAK-STAT, IMD, and Toll pathways due to the microbial interaction with the midgut cells (MG cells) that prevent disease transmission to humans. The aforementioned sequel to the review provides information about endosymbiont Wolbachia, which contaminates insect cells, including germline and somatic cytoplasm, and inhibits disease-causing pathogen development and transmission by competing for resources within the cell. Moreover, it reduces the host population via cytoplasmic incompatibility (CI), feminization, male killing, and parthenogenesis. Furthermore, the Cif factor in Wolbachia is responsible for CI induction that produces inviable cells with the translocating systems and the embryonic defect-causing protein factor, WalE1 (WD0830), which manipulates the host actin. This potential of Wolbachia can be used to design a paratransgenic system to control vectors in the field. An extracellular symbiotic bacterium such as Asaia, which is grown in the growth medium, is used to transfer lethal genes within itself. Besides, the genetically transferred symbiotic bacteria infect the wild mosquito population and are easily manifold. So, it might be suitable for vector control strategies in the future.

RevDate: 2024-12-14

Krause-Sakate R, Gomes Ruschel R, Ochoa-Corona F, et al (2024)

First detection of Bemisia tabaci (Hemiptera: Aleyrodidae) MED in Oklahoma and development of a high-resolution melting assay for MEAM1 and MED discrimination.

Journal of economic entomology pii:7915233 [Epub ahead of print].

The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is a polyphagous pest recognized as composed of several cryptic or sibling species. The Middle East-Asia Minor 1 (MEAM1) and the Mediterranean (MED) putative species are invasive and destructive worldwide. The MEAM1 is established throughout the United States, while MED is documented in 27 states. This study determines the status of MED in Oklahoma and develops and validates a high-resolution melting (HRM) assay for discrimination of MEAM1 and MED. In August-October 2022, whiteflies were collected from different host plants in Stillwater, Oklahoma, and identified as species based on analysis of a diagnostic fragment of the mitochondrial cytochrome oxidase I (mtCOI) gene. MED was found in mixed infestations with MEAM1 on both sweetpotato in a greenhouse and cucumber in the field. Other cryptic species were not detected. Sequencing followed by phylogenetic analysis indicated that the MED specimens belonged to the Q2 mitotype. Additionally, the secondary endosymbionts in captured and progeny whiteflies were identified. For rapid discrimination of MEAM1 and MED species, an HRM assay using a single set of primer pairs targeting the mtCOI gene was developed. Species discrimination was tested in 2 laboratories using MEAM1 and MED Q2 mitotype genomic DNA, and a synthetic plasmid containing the MED Q1 mitotype mtCOI fragment. The HRM assay was validated to discriminate MEAM1 from MED Q1 and Q2 mitotypes. This is the first report of B. tabaci MED in Oklahoma and reinforces the need for continued monitoring of this insect species complex.

RevDate: 2024-12-10
CmpDate: 2024-12-10

Rasool B, Younis T, Zafar S, et al (2024)

Incidence of endosymbiont bacteria Wolbachia in cowpea weevil Callosobruchus maculatus Fabricius (Coleoptera, Chrysomelidae).

PloS one, 19(12):e0313449 pii:PONE-D-24-10737.

This study focuses on the cowpea weevil, Callosobruchus maculatus, a globally distributed grain pest that affects cereals and pulses. Using chemicals to store grains can harm pest control and pose risks to consumers and the environment. The facultative intracellular symbiont bacteria Wolbachia can affect host's reproductive capacities in a variety of ways, which makes it useful in the management of pests such as C. maculatus. The main goal of the study was to identify Wolbachia diversity in the C. maculatus population. Phylogenetic analysis utilized mitochondrial COI and 12S rRNA genes to identify the host C. maculatus, while screening for Wolbachia was conducted using genes (wsp, coxA, and ftsZ) genes. Molecular phylogenetic analysis of the Wolbachia genes resulted in one new Wolbachia strain (wCmac1) in C. maculatus populations and contrasting already published data of other Callosobruchus strains. The study discussed the detection of Wolbachia and its phylogenetic comparison with other C. maculatus and Coleopteran populations. It is important to take these findings into account when considering host-pathogen interactions.

RevDate: 2024-12-11
CmpDate: 2024-12-11

Santos JFBD, Bombaça ACS, Vitório BDS, et al (2024)

Differential expression of peptidases in Strigomonas culicis wild-type and aposymbiotic strains: from proteomic data to proteolytic activity.

Memorias do Instituto Oswaldo Cruz, 119:e240110 pii:S0074-02762024000101138.

BACKGROUND: Strigomonas culicis is a monoxenic trypanosomatid parasite of insects that naturally contains an endosymbiotic bacterium. The aposymbiotic strain can be obtained, making this strain a model for evolutive research about organelle origins. In addition, S. culicis contains homologues of virulence factors of pathogenic trypanosomatids, which functions are waiting for further analysis. In this sense, the publication of S. culicis proteome makes feasible additional investigations regarding the differential expression of peptidases from the wild-type (WT) and the aposymbiotic (APO) strains.

OBJECTIVES: Here, we analysed two proteomic data from S. culicis WT and APO strains screening for peptidases differentially expressed and assessed the differential expression of cysteine and metallopeptidases.

METHODS: A comparative proteomic screening between WT and APO identified 43 modulated peptidases.

FINDINGS: Cysteine and metallopeptidases, such as calpains and GP63, were the major classes, highlighting their significance. GP63 exhibited an increased proteolysis in a specific metallopeptidase substrate, an up-modulation gene expression in RT-PCR, and a higher protein identification by flow cytometry in the aposymbiotic strain. Notwithstanding, the wild-type strain showed enhanced cysteine peptidase activity.

MAIN CONCLUSION: Our study highlighted the endosymbiont influence in S. culicis peptidase expression, with GP63 expression and activity raised in the aposymbiotic strain, whereas cysteine peptidase levels were reduced.

RevDate: 2024-12-11
CmpDate: 2024-12-11

Gasser MT, Liu A, Altamia MA, et al (2024)

Membrane Vesicles Can Contribute to Cellulose Degradation by Teredinibacter turnerae, a Cultivable Intracellular Endosymbiont of Shipworms.

Microbial biotechnology, 17(12):e70064.

Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut. However, the mechanisms by which T. turnerae secretes lignocellulolytic enzymes are incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce membrane vesicles (MVs) that include a variety of proteins identified by liquid chromatography-mass spectrometry (LC-MS/MS) as carbohydrate-active enzymes (CAZymes) with predicted activities against cellulose, hemicellulose and pectin. Reducing sugar assays and zymography confirm that these MVs exhibit cellulolytic activity, as evidenced by the hydrolysis of CMC. Additionally, these MVs were enriched with TonB-dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations indicate a potential role for MVs in lignocellulose utilisation by T. turnerae in the free-living state, suggest possible mechanisms for host-symbiont interaction and may be informative for commercial applications such as enzyme production and lignocellulosic biomass conversion.

RevDate: 2024-12-10
CmpDate: 2024-12-10

De BC, Cournoyer JE, Gao YL, et al (2024)

Photosynthetic directed endosymbiosis to investigate the role of bioenergetics in chloroplast function and evolution.

Nature communications, 15(1):10622.

Cyanobacterial photosynthesis (to produce ATP and NADPH) might have played a pivotal role in the endosymbiotic evolution to chloroplast. However, rather than meeting the ATP requirements of the host cell, the modern-day land plant chloroplasts are suggested to utilize photosynthesized ATP predominantly for carbon assimilation. This is further highlighted by the fact that the plastidic ADP/ATP carrier translocases from land plants preferentially import ATP. Here, we investigate the preferences of plastidic ADP/ATP carrier translocases from key lineages of photosynthetic eukaryotes including red algae, glaucophytes, and land plants. Particularly, we observe that the cyanobacterial endosymbionts expressing plastidic ADP/ATP carrier translocases from red algae and glaucophyte are able to export ATP and support ATP dependent endosymbiosis, whereas those expressing ADP/ATP carrier translocases from land plants preferentially import ATP and are unable to support ATP dependent endosymbiosis. These data are consistent with a scenario where the ancestral plastids may have exported ATP to support the bioenergetic functions of the host cell.

RevDate: 2024-12-10

Sørensen MES, Stiller ML, Kröninger L, et al (2024)

Protein import into bacterial endosymbionts and evolving organelles.

The FEBS journal [Epub ahead of print].

Bacterial endosymbionts are common throughout the eukaryotic tree of life and provide a range of essential functions. The intricate integration of bacterial endosymbionts into a host led to the formation of the energy-converting organelles, mitochondria and plastids, that have shaped eukaryotic evolution. Protein import from the host has been regarded as one of the distinguishing features of organelles as compared to endosymbionts. In recent years, research has delved deeper into a diverse range of endosymbioses and discovered evidence for 'exceptional' instances of protein import outside of the canonical organelles. Here we review the current evidence for protein import into bacterial endosymbionts. We cover both 'recently evolved' organelles, where there is evidence for hundreds of imported proteins, and endosymbiotic systems where currently only single protein import candidates are described. We discuss the challenges of establishing protein import machineries and the diversity of mechanisms that have independently evolved to solve them. Understanding these systems and the different independent mechanisms, they have evolved is critical to elucidate how cellular integration arises and deepens at the endosymbiont to organelle interface. We finish by suggesting approaches that could be used in the future to address the open questions. Overall, we believe that the evidence now suggests that protein import into bacterial endosymbionts is more common than generally realized, and thus that there is an increasing number of partnerships that blur the distinction between endosymbiont and organelle.

RevDate: 2024-12-10
CmpDate: 2024-12-10

Ling X, Guo H, Di J, et al (2024)

A complete DNA repair system assembled by two endosymbionts restores heat tolerance of the insect host.

Proceedings of the National Academy of Sciences of the United States of America, 121(51):e2415651121.

DNA repair systems are essential to maintain genome integrity and stability. Some obligate endosymbionts that experience long-term symbiosis with the insect hosts, however, have lost their key components for DNA repair. It is largely unexplored how the bacterial endosymbionts cope with the increased demand for mismatch repairs under heat stresses. Here, we showed that ibpA, a small heat shock protein encoded by Buchnera aphidicola, directly interacted with the cytoskeletal actin to prevent its aggregation in bacteriocytes, thus reinforcing the stability of bacteriocytes. However, the succession of 11 adenines in the promoter of ibpA is extremely prone to mismatching error, e.g., a single adenine deletion, which impairs the induction of ibpA under heat stress. Coinfection with a facultative endosymbiont Serratia symbiotica remarkably reduced the mutagenesis rate in the Buchnera genome and potentially prevented a single adenine deletion in ibpA promoter, thereby alleviating the heat vulnerability of aphid bacteriocytes. Furthermore, Serratia encoded mutH, a conserved core protein of prokaryotic DNA mismatch repair (MMR), accessed to Buchnera cells, which complemented Buchnera mutL and mutS in constituting an active MMR. Our findings imply that a full complement of a prokaryotic MMR system assembled by two bacterial endosymbionts contributes significantly to the thermostability of aphid bacteriocytes in an ibpA-dependent manner, furnishing a distinct molecular link among tripartite symbioses in shaping resilience and adaptation of their insect hosts to occupy other ecological niches.

RevDate: 2024-12-10

Gasser MT, Liu A, Flatau R, et al (2024)

Closing the genome of Teredinibacter turnerae T7902 by long-read nanopore sequencing.

Microbiology resource announcements [Epub ahead of print].

We present the complete closed circular genome sequence derived from the Oxford Nanopore sequencing of the shipworm endosymbiont, Teredinibacter turnerae T7902 (DSM 15152, ATCC 39867), originally isolated from the shipworm, Lyrodus pedicellatus (1). This sequence will aid in the comparative genomics of shipworm endosymbionts and the understanding of the host-symbiont evolution.

RevDate: 2024-12-08

Kloc A, Wójcik-Fatla A, Paprzycki P, et al (2024)

Transovarial transmission of Rickettsia spp., Francisella-like endosymbionts, and Spiroplasma spp. in Dermacentor reticulatus ticks.

Ticks and tick-borne diseases, 15(6):102421 pii:S1877-959X(24)00114-6 [Epub ahead of print].

Research on the transovarial transmission of pathogens whose reservoirs and vectors are ticks has led to an understanding of the mechanisms related to the circulation and persistence of selected microorganisms in natural foci. The primary aim of this study was to investigate the possibility of transovarial transmission of Rickettsia spp. in Dermacentor reticulatus ticks, and the influence of Francisella-like endosymbionts (FLEs) and Spiroplasma spp. on the efficiency of the egg-laying process and transmission of selected pathogens. In total, 16,600 eggs were obtained under laboratory conditions from 55 females, with an average of 346 eggs per female. Adults, eggs, and hatched larvae were tested using polymerase chain reaction (PCR) for the presence of Rickettsia and endosymbionts. DNA fragments of Rickettsia spp. were found in females (56.4 %) and in pools of eggs (72.9 %) and larvae (62.4 %). FLEs and Spiroplasma endosymbionts were confirmed in females (80 % and 14.5 %, respectively), pools of eggs (81.6 % and 26.1 %, respectively), and larvae (82.7 % and 46.2 %, respectively). Transovarial transmission was confirmed in Rickettsia raoultii, FLEs, and Spiroplasma ixodetis. No correlation was observed between the occurrence of individual endosymbionts and the efficiency of egg laying and transovarial transmission in Rickettsia spp. In conclusion, transovarial transmission of Rickettsia spp., FLEs and Spiroplasma spp. in D. reticulatus plays an important role in their persistence and circulation in the environment. However, further research is required on this topic.

RevDate: 2024-12-08
CmpDate: 2024-12-08

Terrana L, Rouzé H, Opresko DM, et al (2024)

Whip black corals (Antipatharia: Antipathidae: Stichopathes) of the Mesophotic Coral Ecosystem of Mo'orea (French Polynesia), with the description of a new species.

Zootaxa, 5486(2):182-212.

Black corals are key species of marine ecosystems. They can be found in dense aggregations worldwide, but some parts of the world remain totally unexplored. This is the case of the Mesophotic Coral Ecosystem of Mo'orea where the Under the Pole scientific expedition explored mesophotic ecosystems between 60 and 120 m depth and focused on whip black corals. A total of 64 specimens were analyzed morphologically and genetically, and all belonged to the genus Stichopathes. Among them, we describe the new species Stichopathes desaturata sp. nov. It is characterized by an unbranched corallum, irregularly sinuous, with a basal diameter not exceeding 1 mm, reaching a dozen of cm in height. The polyps measure 0.50-1.0 mm in transverse diameter, the interpolypar space is well defined and up to 0.50 mm, with 6-8 polyps per cm. The polypar spines are taller than abpolypar spines, reaching 0.13 mm, perpendicular to the corallum, and conical with a pointed tip, with round and/or elongated papillae on two thirds of the spine. The abpolypar spines are conical to triangular, inclined upwards, with the same ornamentation as the polypar spines. We also identified specimens assigned as Stichopathes cf. contorta and four other putative species. Genetic analyses showed that Mo'orea specimens grouped in three different clades. Analyses of endosymbionts showed that the association with Symbiodiniaceae was likely not involved in the process of host species delineation.

RevDate: 2024-12-07

Baede VO, Jlassi O, Lesiczka PM, et al (2024)

Similarities between Ixodes ricinus and Ixodes inopinatus genomes and horizontal gene transfer from their endosymbionts.

Current research in parasitology & vector-borne diseases, 6:100229.

The taxa Ixodes ricinus and Ixodes inopinatus are sympatric in Tunisia. The genetics underlying their morphological differences are unresolved. In this study, ticks collected in Jouza-Amdoun, Tunisia, were morphologically identified and sequenced using Oxford Nanopore Technologies. Three complete genome assemblies of I. inopinatus and three of I. ricinus with BUSCO scores of ∼98% were generated, including the reconstruction of mitochondrial genomes and separation of both alleles of the TRPA1, TROSPA and calreticulin genes. Deep sequencing allowed the first descriptions of complete bacterial genomes for "Candidatus Midichloria mitochondrii", Rickettsia helvetica and R. monacensis from North Africa, and the discovery of extensive integration of parts of the Spiroplasma ixodetis and "Ca. M. mitochondrii" into the nuclear genome of these ticks. Phylogenetic analyses of the mitochondrial genome, the nuclear genes, and symbionts showed differentiation between Tunisian and Dutch ticks, but high genetic similarities between Tunisian I. ricinus and I. inopinatus. Subtraction of the genome assemblies identified the presence of some unique sequences, which could not be confirmed when screening a larger batch of I. ricinus and I. inopinatus ticks using PCR. Our findings yield compelling evidence that I. inopinatus is genetically highly similar, if not identical, to sympatric I. ricinus. Defined morphological differences might be caused by extrinsic factors such as micro-climatic conditions or bloodmeal composition. Our findings support the existence of different lineages of I. ricinus as well of its symbionts/pathogens from geographically dispersed locations.

RevDate: 2024-12-05

Wajnberg E, FL Cônsoli (2024)

Dynamics of Insects and Their Facultative Defensive Endosymbiotic Bacteria: A Simulation Model.

Ecology and evolution, 14(12):e70676.

Most insects harbour endosymbionts that modify their physiology, reproductive mode, and ecology. One fascinating case is in aphids, which host endosymbionts that protect them against attacks from parasitoids. These symbionts are transmitted maternally with high fidelity but can also be transmitted horizontally from infected to uninfected hosts. Since symbionts can confer resistance to their host against parasitoids, levels of symbiont infection should rapidly spread to fixation. This is not the case in most aphid populations that have been studied. Furthermore, the defensive effect of symbionts has been thought to reduce the efficacy of biological control against crop pests, although this has never been properly quantified. We developed a Monte Carlo simulation model to examine changes in levels of endosymbiont infection in an insect population in the presence of parasitoids attacking them over several generations. We also used the model to quantify potential reductions in the efficacy of parasitoids in controlling host populations in biological control. Results suggest that longevity of parasitoids and the spatial aggregation of hosts likely play a major role in the dynamics of symbiont infection. This is the first evidence that these ecological parameters are potentially important for explaining levels of symbiont infection in insect populations.

RevDate: 2024-12-04
CmpDate: 2024-12-04

Kostygov AY, Skýpalová K, Kraeva N, et al (2024)

Comprehensive analysis of the Kinetoplastea intron landscape reveals a novel intron-containing gene and the first exclusively trans-splicing eukaryote.

BMC biology, 22(1):281.

BACKGROUND: In trypanosomatids, a group of unicellular eukaryotes that includes numerous important human parasites, cis-splicing has been previously reported for only two genes: a poly(A) polymerase and an RNA helicase. Conversely, trans-splicing, which involves the attachment of a spliced leader sequence, is observed for nearly every protein-coding transcript. So far, our understanding of splicing in this protistan group has stemmed from the analysis of only a few medically relevant species. In this study, we used an extensive dataset encompassing all described trypanosomatid genera to investigate the distribution of intron-containing genes and the evolution of splice sites.

RESULTS: We identified a new conserved intron-containing gene encoding an RNA-binding protein that is universally present in Kinetoplastea. We show that Perkinsela sp., a kinetoplastid endosymbiont of Amoebozoa, represents the first eukaryote completely devoid of cis-splicing, yet still preserving trans-splicing. We also provided evidence for reverse transcriptase-mediated intron loss in Kinetoplastea, extensive conservation of 5' splice sites, and the presence of non-coding RNAs within a subset of retained trypanosomatid introns.

CONCLUSIONS: All three intron-containing genes identified in Kinetoplastea encode RNA-interacting proteins, with a potential to fine-tune the expression of multiple genes, thus challenging the perception of cis-splicing in these protists as a mere evolutionary relic. We suggest that there is a selective pressure to retain cis-splicing in trypanosomatids and that this is likely associated with overall control of mRNA processing. Our study provides new insights into the evolution of introns and, consequently, the regulation of gene expression in eukaryotes.

RevDate: 2024-12-03
CmpDate: 2024-12-03

Karim S, Zenzal TJ, Beati L, et al (2024)

Ticks without borders: microbiome of immature neotropical tick species parasitizing migratory songbirds along northern Gulf of Mexico.

Frontiers in cellular and infection microbiology, 14:1472598.

INTRODUCTION: The long-distance, seasonal migrations of birds make them an effective ecological bridge for the movement of ticks. The introduction of exotic tick species to new geographical regions can cause the emergence of novel tick-borne pathogens. This study examined the prevalence of exotic tick species parasitizing migratory songbirds at stopover sites along the northern Gulf of Mexico using the mitochondrial 12S rRNA gene.

METHODS: Overall, 421 individual ticks in the genera Amblyomma, Haemaphysalis, and Ixodes were recorded from 28 songbird species, of which Amblyomma and Amblyomma longirostre were the most abundant tick genera and species, respectively. A high throughput 16S ribosomal RNA sequencing approach characterized the microbial communities and identified pathogenic microbes in all tick samples.

RESULTS AND DISCUSSION: Microbial profiles showed that Proteobacteria was the most abundant phylum. The most abundant pathogens were Rickettsia and endosymbiont Francisella, Candidatus Midichloria, and Spiroplasma. Permutation multivariate analysis of variance revealed that the relative abundance of Francisella and Rickettsia drives microbial patterns across the tick genera. We also noted a higher percentage of positive correlations in microbe-microbe interactions among members of the microbial communities. Network analysis suggested a negative correlation between a) Francisella and Rickettsia and, b) Francisella and Cutibacterium. Lastly, mapping the distributions of bird species parasitized during spring migrations highlighted geographic hotspots where migratory songbirds could disperse ticks and their pathogens at stopover sites or upon arrival to their breeding grounds, the latter showing mean dispersal distances from 421-5003 kilometers. These findings spotlight the potential role of migratory birds in the epidemiology of tick-borne pathogens.

RevDate: 2024-12-01
CmpDate: 2024-12-01

Govender R, Mabaso N, NS Abbai (2024)

Investigating links between Trichomonas vaginalis, T. vaginalis virus, Mycoplasma hominis, and metronidazole resistance.

Journal of infection in developing countries, 18(10):1590-1600.

INTRODUCTION: Trichomonas vaginalis (TV) is the etiological agent of the common non-viral sexually transmitted infection (STI), trichomoniasis. TV can inherently harbour Mycoplasma hominis and Trichomonas vaginalis virus (TVV) species. Endosymbiosis of TV with M. hominis and TVV may contribute to metronidazole resistance in this pathogen. This study determined the prevalence of TVVs across clinical isolates of TV, as well as the symbiosis between TV, TVV, and M. hominis in relation to metronidazole resistance.

METHODOLOGY: Twenty-one clinical isolates of TV were analysed in this study. The isolates were subjected to drug susceptibility assays using varying concentrations of metronidazole. Nucleic acids (RNA and DNA) were extracted from the isolates for molecular assays. The presence of intracellular M. hominis was determined by 16S rRNA polymerase chain reaction (PCR) with specific primers. The presence of the individual TVVs was determined by PCR using gene specific primers with template cDNA.

RESULTS: The prevalence of TVV and M. hominis were 76% (16/21) and 86% (18/21), respectively. No significant associations were observed between the presence of TVV and clinical symptoms. A significant association was noted between the coinfection of TVV4 and M. hominis (p = 0.014). The presence of any TVV was significantly associated with metronidazole susceptibility patterns (p = 0.012). No significant associations were noted between the coinfection of endosymbionts and metronidazole resistance.

CONCLUSIONS: The information obtained displays the ability of TV to form an endosymbiotic relationship with several microorganisms, simultaneously. Based on these findings, both endosymbionts pose no significant influence on metronidazole resistance.

RevDate: 2024-11-30

Řezáč M, Řezáčová V, P Heneberg (2024)

Differences in the abundance and diversity of endosymbiotic bacteria drive host resistance of Philodromus cespitum, a dominant spider of central European orchards, to selected insecticides.

Journal of environmental management, 373:123486 pii:S0301-4797(24)03472-8 [Epub ahead of print].

The ability of tissue endosymbionts to degrade and detoxify agrochemicals is increasingly recognized as a mechanism supporting the survival of arthropods in agroecosystems. Therefore, tissue endosymbionts have the potential to drive insecticide resistance in agrobiont spiders, i.e., in major generalist predators and pest control agents within agroecosystems. We hypothesized that the abundance and diversity of the endosymbiotic bacteria of Philodromus cespitum, a philodromid spider dominating central European apple orchards, vary with regard to differences in predation capacity and drive host insecticide resistance. We provisioned P. cespitum with diets of varying protein and lipid content and topically exposed them to field-relevant doses of commonly used insecticides, namely Mospilan (acetamiprid), Movento (spirotetramat), Gondola (sulfoxaflor), Decis (deltamethrin), Coragen (chlorantraniliprole), and Benevia (cyantraniliprole). The analyses were based on 16S rDNA profiles from lysates of the cephalothorax and legs of the tested spiders. The application of Benevia, Mospilan, and Movento was partially lethal. The spiders that were resistant to the treatments with Benevia, Mospilan, or Movento were associated with the increased relative abundance of Mycoplasmatota by more than one order of magnitude. Additionally, the abundance of other bacteria differed in Mospilan-resistant and Mospilan-sensitive individuals. In contrast, the diet regimens were not associated with any major differences in the microbiome diversity nor the diversity of endosymbionts. Philodromus cespitum hosts assemblages with unexpectedly high beta diversity of endosymbionts. The OTU identified as the alpha proteobacterium endosymbiont of Coelostomidia zealandica was an obligate endosymbiont of the analyzed P. cespitum population. Wolbachia, Rickettsia, and Spiroplasma endosymbionts were also highly prevalent and differed in their responses to the applied treatments. In conclusion, differences in the abundance and diversity of endosymbiotic bacteria drove the resistance of the spider host to selected insecticides.

RevDate: 2024-11-30

Jiménez-Florido P, Aquilino M, Buckley D, et al (2024)

Differential gene expression in Chorthippus parallelus (Zetterstedt, 1821) (Orthoptera: Acrididae: Gomphocerinae) induced by Wolbachia infection.

Insect science [Epub ahead of print].

Distinct lineages of the grasshopper Chorthippus parallelus (Orthoptera: Acrididae) form well-known hybrid zones (HZs) both in the Pyrenees and the Alps mountain ranges in South Europe. These HZs represent unique experimental systems to identify "key genes" that maintain genetic boundaries between emerging species. The Iberian endemism C. p. erythropus (Cpe) and the subspecies C. p. parallelus (Cpp), widely distributed throughout the rest of Europe, overlap and form the Pyrenean HZ. Both subspecies differ morphologically, as well as in behavioral, mitochondrial, nuclear, and chromosomal traits, and in the strains of the maternally transmitted bacterial endosymbiont Wolbachia infecting them. This results in either unidirectional and bidirectional cytoplasmic incompatibility between both grasshopper subspecies, pointing out that Wolbachia clearly affects gene expression in the infected individuals. Here we explore how Wolbachia may modify the expression of some major genes involved in relevant pathways in Cpp in the Pyrenean HZ. We have analyzed, through molecular biomarkers, the physiological responses in C. parallelus individuals infected by Wolbachia, with particular attention to the energy metabolism, the immune system response, and the reproduction. qPCR was used to evaluate the expression of selected genes in the gonads of infected and uninfected adults of both sexes, since this tissue constitutes the main target of Wolbachia infection. Transcriptional analyses also showed differential sex-dependent responses in most of the analyzed biomarkers in infected and noninfected individuals. We identified for the first time new sensitive biomarkers that might be involved in the reproductive barrier induced by Wolbachia in the hybrid zone.

RevDate: 2024-11-28
CmpDate: 2024-11-28

Abbasi AM, Nasir S, Bajwa AA, et al (2024)

A comparative study of the microbiomes of the ticks Rhipicephalus microplus and Hyalomma anatolicum.

Parasite (Paris, France), 31:74.

Hyalomma anatolicum and Rhipicephalus microplus are tick species that are important vectors of numerous pathogens affecting both humans and livestock. Endosymbionts, such as Coxiella-like endosymbionts (CLE), Francisella-like endosymbionts (FLE), and Candidatus Midichloria, play a crucial role in the physiology and vector competence of these ticks. In this study, we investigated the microbial composition of H. anatolicum and R. microplus from four geographically distinct regions of Pakistan to assess whether environmental differences influence their microbiomes. We analyzed the ticks' gut microbiome targeting the V3-V4 hypervariable region of 16S rRNA for Illumina 16S metagenome NGS sequencing and processed overall 144 ticks. Analysis of gut bacterial composition resulted in observation of 1200 R. microplus and 968 H. anatolicum unique amplicon sequencing variants (ASVs). Relative abundance, Alpha diversity (Shannon, Faith's phylogenetic distance) and beta diversity metrics (Bray-Curtis, Jaccard and UniFrac) were analyzed and revealed that H. anatolicum ticks have significantly unique and diverse microbial communities with Acinetobacter indicus and Francisella-like endosymbionts dominating as opposed to Candidatus Midichloria. Rhipicephalus microplus exhibited results consistent with the previous studies with no major changes in microbiome including Coxiella-like endosymbionts as the major contributor. These findings suggest that geographical and environmental factors play a significant role in shaping the tick microbiome, with potential consequences for disease transmission and tick survivability. Further research is needed to elucidate the functional roles of these microbial shifts and their impact on public health and livestock in affected regions.

RevDate: 2024-11-28
CmpDate: 2024-11-28

Shokoohi E, P Masoko (2024)

Microbiome of Xiphinema elongatum (Nematoda, Longidoridae), isolated from water berry.

Scientific reports, 14(1):29494.

The soil microbiome is crucial for the environment and significantly impacts the ecosystem. Understanding the microbiome and its interaction with soil microorganisms is essential for improving ecological and environmental strategies. In this study, Xiphinema elongatum nematodes were collected from water berry in Sovenga Hills, Limpopo Province, South Africa, and were analyzed their associated bacterial communities using metabarcoding analysis. The findings revealed that X. elongatum forms associations with a wide range of bacterial species. Among the most abundant species identified, we found Sphingomonas sp., a bacterial species commonly found in various habitats and primarily beneficial to plants, and Candidatus Xiphinematobacter, a bacterial species commonly found in nematode species of Xiphinema as an endosymbiont. The analysis using principal component analysis (PCA) revealed that the abundance of X. elongatum in the soil is inversely correlated with clay content (r = -0.52) and soil pH levels (r = -0.98), and directly correlated with soil sand content (r = 0.88). This study provides valuable insights into the bacterial species associated with plant-parasitic nematodes in trees in South Africa. It underscores the presence of various potentially detrimental and beneficial nematode-associated bacteria. The results could potentially influence the overall quality of the soil, leading to implications for the productivity and yield of fruit crops. Additionally, the results help us understand the interaction between bacteria and X. elongatum.

RevDate: 2024-11-27

Scharf SA, Friedrichs L, Bock R, et al (2024)

Oxford Nanopore Technology-Based Identification of an Acanthamoeba castellanii Endosymbiosis in Microbial Keratitis.

Microorganisms, 12(11):.

(1) Background: Microbial keratitis is a serious eye infection that carries a significant risk of vision loss. Acanthamoeba spp. are known to cause keratitis and their bacterial endosymbionts can increase virulence and/or treatment resistance and thus significantly worsen the course of the disease. (2) Methods and Results: In a suspected case of Acanthamoeba keratitis, in addition to Acanthamoeba spp., an endosymbiont of acanthamoebae belonging to the taxonomic order of Holosporales was detected by chance in a bacterial 16S rDNA-based pan-PCR and subsequently classified as Candidatus Paracaedibacter symbiosus through an analysis of an enlarged 16S rDNA region. We used Oxford Nanopore Technology to evaluate the usefulness of whole-genome sequencing (WGS) as a one-step diagnostics method. Here, Acanthamoeba castellanii and the endosymbiont Candidatus Paracaedibacter symbiosus could be directly detected at the species level. No other microbes were identified in the specimen. (3) Conclusions: We recommend the introduction of WGS as a diagnostic approach for keratitis to replace the need for multiple species-specific qPCRs in future routine diagnostics and to enable an all-encompassing characterisation of the polymicrobial community in one step.

RevDate: 2024-11-27

Enciso JS, Corretto E, Borruso L, et al (2024)

Limited Variation in Bacterial Communities of Scaphoideus titanus (Hemiptera: Cicadellidae) Across European Populations and Different Life Stages.

Insects, 15(11):.

The Nearctic leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae) is the primary vector of 'Candidatus Phytoplasma vitis', the causative agent of Flavescence doreé in Europe. Although microorganisms play an important role in the ecology and behavior of insects, knowledge about the interaction between S. titanus and microbes is limited. In this study, we employed an amplicon metabarcoding approach for profiling the V4 region of the 16S rRNA gene to characterize the bacterial communities of S. titanus across several populations from four European localities. Additionally, we investigated changes in bacterial communities between nymphal and adult stages. In total, we identified 7,472 amplicon sequence variants (ASVs) in adults from the European populations. At the genus level, 'Candidatus Karelsulcia' and 'Candidatus Cardinium' were the most abundant genera, with both being present in every individual. While we found significant changes in the microbial composition of S. titanus across different European populations, no significant differences were observed between nymphal and adult stages. Our study reveals new insights into the microbial composition of S. titanus and highlights the role of geography in influencing its bacterial community.

RevDate: 2024-11-25

Checchia I, Andreolli M, Lanza F, et al (2024)

Testing low-risk bioactive compounds on Halyomorpha halys: an improved pipeline of analyses to investigate their effects on the bacterial endosymbiont Candidatus Pantoea carbekii.

Pest management science [Epub ahead of print].

BACKGROUND: The brown marmorated stink bug Halyomorpha halys has become an invasive insect pest of many crops. A promising control strategy to manage the proliferation of H. halys is based on the suppression of its obligate and vertically transmitted uncultivated symbiotic bacterium Candidatus Pantoea carbekii through surface-sterilization of H. halys eggs. Indeed, the application of antimicrobial formulations on the eggs of H. halys could cause mortality of endosymbiont and consequently of newly emerged nymphs. In this study, a microbial live/dead assay was applied directly on H. halys eggs to evaluate Ca. P. carbekii loss of viability after treatments with seven commercial formulations including fungicides (copper hydroxide, sulphur, sweet orange essential oil) and plant biostimulants (flavonoids and chestnut tannin extract) compared with two disinfectants for civil and industrial use (sodium hypochlorite/hydrated sodium/tetraborate decahydrate and peracetic acid/hydrogen peroxide). Impact of mode of application was also evaluated, as surface treatment of egg masses was performed through spraying and dipping in laboratory conditions. Antimicrobial activity data were finally complemented with observations of egg hatching and vitality of the nymphs.

RESULTS: The optimization of live/dead staining is useful for evaluating Ca. P. carbekii mortality directly on eggs, providing a rapid and reliable culture-independent approach. Sodium hypochlorite, copper, sulphur, tannins and sweet orange essential oil showed an antimicrobial effect against Ca. P. carbekii and a H. halys egg hatching reduction and nymph's vitality.

CONCLUSIONS: The antimicrobial and insecticidal effects of these commercial products should be further studied to assess their in-field efficiency as well as the impact of these substances on non-target organisms. The approach followed in this study could be considered a robust pipeline of analyses to evaluate the effectiveness of antimicrobial eco-friendly compounds in symbiotic control of H. halys. © 2024 Society of Chemical Industry.

RevDate: 2024-11-23

Prakash A, Y Wang (2024)

De Novo Long-Read Genome Assembly and Annotation of the Mosquito Gut-dwelling Fungus, Smittium minutisporum.

Genome biology and evolution pii:7907575 [Epub ahead of print].

Mosquito guts host a variety of microbes, yet fungi are often overlooked. Smittium (Harpellales, Zoopagomycota) comprises numerous species that are obligate symbionts residing in the hindgut of mosquito larvae. Despite their association with pathogen-bearing vectors, these fungal symbionts remain understudied, largely due to the lack of high-quality genome resources. This limitation has impeded a deeper understanding of their genome biology and adaptive strategies in relation to their mosquito hosts, which may hold significant epidemiological implications. To address this gap, we generated the first reference-quality genome assembly for this group of fungi, using PacBio HiFi long-reads for an axenic culture of Smittium minutisporum, originally isolated from the eastern treehole mosquito, Aedes Triseriatus. The genome assembly consists of 53 contigs, spanning a total length of 32.5 Mb, and is predicted to encode 8,254 protein-coding genes, with repetitive regions constituting 25.22% of the genome. Notably, despite being highly contiguous and gap-free, the BUSCO analysis suggests a completeness score of 71.8%, implying unusual genome features, possibly shaped by adaptation and specialization within the mosquito gut. This high-quality genome resource will be invaluable for advancing our understanding of mosquito gut-dwelling fungi, their natural history, and their cryptic symbiosis with insect hosts.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 28 JUL 2024 )