Viewport Size Code:
Login | Create New Account


About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot


Bibliography Options Menu

Hide Abstracts   |   Hide Additional Links
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Energetics and Mitochondrial Evolution

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.


ESP: PubMed Auto Bibliography 17 Sep 2021 at 01:35 Created: 

Energetics and Mitochondrial Evolution

Mitochondria are the energy-producing "engines" that provide the power to drive eukaryotic cells. The energy output of hundreds, or thousands, of mitochondria allowed eukaryotic cells to increase in size 1000-fold, or more, over the size of prokaryotics cells. This increase in size allowed an escape from the constraints of low Reynolds numbers and, for the first time, life could function in a way where mechanism, and thus morphology, mattered. Evolution began to shape morphology, allowing the emergence of the multicellular eukaryotic biosphere — the visible living world.

Created with PubMed® Query: mitochondria AND evolution AND (energetics OR "energy metabolism") NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)


RevDate: 2021-08-21

Jakovlić I, Zou H, Chen JH, et al (2021)

Slow crabs - fast genomes: locomotory capacity predicts skew magnitude in crustacean mitogenomes.

Molecular ecology [Epub ahead of print].

Base composition skews (G-C/G+C) of mitochondrial genomes are believed to be primarily driven by mutational pressure, which is positively correlated with metabolic rate. In marine animals, metabolic rate is also positively correlated with locomotory capacity. Given the central role of mitochondria in energy metabolism, we hypothesised that selection for locomotory capacity should be positively correlated with the strength of purifying selection (dN/dS), and thus be negatively correlated with the skew magnitude. Therefore, these two models assume diametrically opposite associations between the metabolic rate and skew magnitude: positive correlation in the prevailing paradigm, and negative in our working hypothesis. We examined correlations between the skew magnitude, metabolic rate, locomotory capacity, and several other variables previously associated with mitochondrial evolution on 287 crustacean mitogenomes. Weakly locomotory taxa had higher skew magnitude and ω (dN/dS) values, but not the gene order rearrangement rate. Skew and ω magnitudes were correlated. Multilevel regression analyses indicated that three competing variables, body size, gene order rearrangement rate, and effective population size, had negligible impacts on the skew magnitude. In most crustacean lineages selection for locomotory capacity appears to be the primary factor determining the skew magnitude. Contrary to the prevailing paradigm, this implies that adaptive selection outweighs nonadaptive selection (mutation pressure) in crustaceans. However, we found indications that effective population size (nonadaptive factor) may outweigh the impact of locomotory capacity in sessile crustaceans (Thecostraca). In conclusion, skew magnitude is a product of the interplay between adaptive and nonadaptive factors, the balance of which varies among lineages.

RevDate: 2021-07-01

Yang M, Dong D, X Li (2021)

The complete mitogenome of Phymorhynchus sp. (Neogastropoda, Conoidea, Raphitomidae) provides insights into the deep-sea adaptive evolution of Conoidea.

Ecology and evolution, 11(12):7518-7531.

The deep-sea environment is characterized by darkness, hypoxia, and high hydrostatic pressure. Mitochondria play a vital role in energy metabolism; thus, they may endure the selection process during the adaptive evolution of deep-sea organisms. In the present study, the mitogenome of Phymorhynchus sp. from the Haima methane seep was completely assembled and characterized. This mitogenome is 16,681 bp in length and contains 13 protein-coding genes, 2 rRNAs, and 22 tRNAs. The gene order and orientation were identical to those of most sequenced conoidean gastropods. Some special elements, such as tandem repeat sequences and AT-rich sequences, which are involved in the regulation of the replication and transcription of the mitogenome, were observed in the control region. Phylogenetic analysis revealed that Conoidea is divided into two separate clades with high nodal support. Positive selection analysis revealed evidence of adaptive changes in the mitogenomes of deep-sea conoidean gastropods. Eight residues located in atp6, cox1, cytb, nad1, nad4, and nad5 were determined to have undergone positive selection. This study explores the adaptive evolution of deep-sea conoidean gastropods and provides valuable clues at the mitochondrial level regarding the exceptional adaptive ability of organisms in deep-sea environments.

RevDate: 2021-07-14

Mathur V, Wakeman KC, PJ Keeling (2021)

Parallel functional reduction in the mitochondria of apicomplexan parasites.

Current biology : CB, 31(13):2920-2928.e4.

Gregarines are an early-diverging lineage of apicomplexan parasites that hold many clues into the origin and evolution of the group, a remarkable transition from free-living phototrophic algae into obligate parasites of animals.1 Using single-cell transcriptomics targeting understudied lineages to complement available sequencing data, we characterized the mitochondrial metabolic repertoire across the tree of apicomplexans. In contrast to the large suite of proteins involved in aerobic respiration in well-studied parasites like Toxoplasma or Plasmodium,2 we find that gregarine trophozoites have significantly reduced energy metabolism: most lack respiratory complexes III and IV, and some lack the electron transport chains (ETCs) and tricarboxylic acid (TCA) cycle entirely. Phylogenomic analyses show that these reductions took place several times in parallel, resulting in a functional range from fully aerobic organelles to extremely reduced "mitosomes" restricted to Fe-S cluster biosynthesis. The mitochondrial genome has also been lost repeatedly: in species with severe functional reduction simply by gene loss but in one species with a complete ETC by relocating cox1 to the nuclear genome. Severe functional reduction of mitochondria is generally associated with structural reduction, resulting in small, nondescript mitochondrial-related organelles (MROs).3 By contrast, gregarines retain distinctive mitochondria with tubular cristae, even the most functionally reduced cases that also lack genes associated with cristae formation. Overall, the parallel, severe reduction of gregarine mitochondria expands the diversity of organisms that contain MROs and further emphasizes the role of parallel transitions in apicomplexan evolution.

RevDate: 2021-04-20

Salomaki ED, Terpis KX, Rueckert S, et al (2021)

Gregarine single-cell transcriptomics reveals differential mitochondrial remodeling and adaptation in apicomplexans.

BMC biology, 19(1):77.

BACKGROUND: Apicomplexa is a diverse phylum comprising unicellular endobiotic animal parasites and contains some of the most well-studied microbial eukaryotes including the devastating human pathogens Plasmodium falciparum and Cryptosporidium hominis. In contrast, data on the invertebrate-infecting gregarines remains sparse and their evolutionary relationship to other apicomplexans remains obscure. Most apicomplexans retain a highly modified plastid, while their mitochondria remain metabolically conserved. Cryptosporidium spp. inhabit an anaerobic host-gut environment and represent the known exception, having completely lost their plastid while retaining an extremely reduced mitochondrion that has lost its genome. Recent advances in single-cell sequencing have enabled the first broad genome-scale explorations of gregarines, providing evidence of differential plastid retention throughout the group. However, little is known about the retention and metabolic capacity of gregarine mitochondria.

RESULTS: Here, we sequenced transcriptomes from five species of gregarines isolated from cockroaches. We combined these data with those from other apicomplexans, performed detailed phylogenomic analyses, and characterized their mitochondrial metabolism. Our results support the placement of Cryptosporidium as the earliest diverging lineage of apicomplexans, which impacts our interpretation of evolutionary events within the phylum. By mapping in silico predictions of core mitochondrial pathways onto our phylogeny, we identified convergently reduced mitochondria. These data show that the electron transport chain has been independently lost three times across the phylum, twice within gregarines.

CONCLUSIONS: Apicomplexan lineages show variable functional restructuring of mitochondrial metabolism that appears to have been driven by adaptations to parasitism and anaerobiosis. Our findings indicate that apicomplexans are rife with convergent adaptations, with shared features including morphology, energy metabolism, and intracellularity.

RevDate: 2021-04-13

Ramzan R, Kadenbach B, S Vogt (2021)

Multiple Mechanisms Regulate Eukaryotic Cytochrome C Oxidase.

Cells, 10(3):.

Cytochrome c oxidase (COX), the rate-limiting enzyme of mitochondrial respiration, is regulated by various mechanisms. Its regulation by ATP (adenosine triphosphate) appears of particular importance, since it evolved early during evolution and is still found in cyanobacteria, but not in other bacteria. Therefore the "allosteric ATP inhibition of COX" is described here in more detail. Most regulatory properties of COX are related to "supernumerary" subunits, which are largely absent in bacterial COX. The "allosteric ATP inhibition of COX" was also recently described in intact isolated rat heart mitochondria.

RevDate: 2021-03-05
CmpDate: 2021-02-23

Uwizeye C, Decelle J, Jouneau PH, et al (2021)

Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging.

Nature communications, 12(1):1049.

Eukaryotic phytoplankton have a small global biomass but play major roles in primary production and climate. Despite improved understanding of phytoplankton diversity and evolution, we largely ignore the cellular bases of their environmental plasticity. By comparative 3D morphometric analysis across seven distant phytoplankton taxa, we observe constant volume occupancy by the main organelles and preserved volumetric ratios between plastids and mitochondria. We hypothesise that phytoplankton subcellular topology is modulated by energy-management constraints. Consistent with this, shifting the diatom Phaeodactylum from low to high light enhances photosynthesis and respiration, increases cell-volume occupancy by mitochondria and the plastid CO2-fixing pyrenoid, and boosts plastid-mitochondria contacts. Changes in organelle architectures and interactions also accompany Nannochloropsis acclimation to different trophic lifestyles, along with respiratory and photosynthetic responses. By revealing evolutionarily-conserved topologies of energy-managing organelles, and their role in phytoplankton acclimation, this work deciphers phytoplankton responses at subcellular scales.

RevDate: 2021-04-21
CmpDate: 2021-04-21

Koch RE, Buchanan KL, Casagrande S, et al (2021)

Integrating Mitochondrial Aerobic Metabolism into Ecology and Evolution.

Trends in ecology & evolution, 36(4):321-332.

Biologists have long appreciated the critical role that energy turnover plays in understanding variation in performance and fitness among individuals. Whole-organism metabolic studies have provided key insights into fundamental ecological and evolutionary processes. However, constraints operating at subcellular levels, such as those operating within the mitochondria, can also play important roles in optimizing metabolism over different energetic demands and time scales. Herein, we explore how mitochondrial aerobic metabolism influences different aspects of organismal performance, such as through changing adenosine triphosphate (ATP) and reactive oxygen species (ROS) production. We consider how such insights have advanced our understanding of the mechanisms underpinning key ecological and evolutionary processes, from variation in life-history traits to adaptation to changing thermal conditions, and we highlight key areas for future research.

RevDate: 2021-06-29
CmpDate: 2021-05-14

Chen C, Mahar R, Merritt ME, et al (2021)

ROS and hypoxia signaling regulate periodic metabolic arousal during insect dormancy to coordinate glucose, amino acid, and lipid metabolism.

Proceedings of the National Academy of Sciences of the United States of America, 118(1):.

Metabolic suppression is a hallmark of animal dormancy that promotes overall energy savings. Some diapausing insects and some mammalian hibernators have regular cyclic patterns of substantial metabolic depression alternating with periodic arousal where metabolic rates increase dramatically. Previous studies, largely in mammalian hibernators, have shown that periodic arousal is driven by an increase in aerobic mitochondrial metabolism and that many molecules related to energy metabolism fluctuate predictably across periodic arousal cycles. However, it is still not clear how these rapid metabolic shifts are regulated. We first found that diapausing flesh fly pupae primarily use anaerobic glycolysis during metabolic depression but engage in aerobic respiration through the tricarboxylic acid cycle during periodic arousal. Diapausing pupae also clear anaerobic by-products and regenerate many metabolic intermediates depleted in metabolic depression during arousal, consistent with patterns in mammalian hibernators. We found that decreased levels of reactive oxygen species (ROS) induced metabolic arousal and elevated ROS extended the duration of metabolic depression. Our data suggest ROS regulates the timing of metabolic arousal by changing the activity of two critical metabolic enzymes, pyruvate dehydrogenase and carnitine palmitoyltransferase I by modulating the levels of hypoxia inducible transcription factor (HIF) and phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). Our study shows that ROS signaling regulates periodic arousal in our insect diapasue system, suggesting the possible importance ROS for regulating other types of of metabolic cycles in dormancy as well.

RevDate: 2020-12-31

Yang RS, YT Chen (2020)

The complete mitochondrial genome of the freshwater fairy shrimp Branchinella kugenumaensis Ishikawa 1894 (Crustacea: Anostraca: Thamnocephalidae).

Mitochondrial DNA. Part B, Resources, 5(1):1048-1049.

In this study, we determined and analyzed the complete mitochondrial genome of the freshwater fairy shrimp Branchinella kugenumaensis Ishikawa 1894 (Crustacea: Anostraca: Thamnocephalidae). The mitogenome is 15,127 bp in length, consisted of 37 genes that participate in protein production and energy metabolism of mitochondria. The gene order of the B. kugenumaensis mtDNA exhibits major rearrangements compared with the pancrustacean ancestral pattern or other known anostracan mitogenomes, representing a novel mitochondrial genomic organization within the Crustacea. A maximum-likelihood phylogenetic analysis based on concatenated nucleotide sequences of protein-coding genes places B. kugenumaensis next to Streptocephalus sirindhornae, inside the Anostraca clade. Our study will provide new evidence to the less sampled anostracan evolution and take a further step to the completion of the Branchiopoda tree of life.

RevDate: 2021-06-28
CmpDate: 2021-06-28

Else PL (2021)

Mammals to membranes: A reductionist story.

Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 253:110552.

This is the story of a series of reductionist studies that started with an attempt to explain what underpins the high-level of aerobic metabolism in mammals (i.e. associated with the evolution of endothermy) and almost forty years later had led to investigations into the role of membrane lipids in determining metabolism. Initial studies showed that the increase in aerobic metabolism in mammals was driven by a combination of increases in mitochondrial volume and membrane densities, organ size and changes in the molecular activity of enzymes. The increase in the capacity to produce energy was matched by an increase in energy use, notably driven by increases in H+, Na+ and K+ fluxes. In the case of increased Na+ flux, it was found this was matched by increases in Na+-dependent metabolism at the tissue level and increases in enzyme activity at a cellular level but not by an increase in the number of sodium pumps. To maintain Na+ gradient across cell membranes, increased Na+ flux is not controlled by an increase in sodium pump number but rather by an increase in sodium pump molecular activity (i.e. an increase the substrate turnover rate of each sodium pump) in tissues of endotherms. This increase in molecular activity is coupled to an increase in the level of highly unsaturated polyunsaturated fatty acids (PUFA) in membranes, a mechanism similar to that used by ectotherms to ameliorate decreasing activities of metabolic processes in the cold. Determination of how changes in membrane fatty acid composition can change the activities of proteins in membranes will be the next step in this story.

RevDate: 2021-01-04
CmpDate: 2021-01-04

Harshkova D, Majewska M, Pokora W, et al (2021)

Diclofenac and atrazine restrict the growth of a synchronous Chlamydomonas reinhardtii population via various mechanisms.

Aquatic toxicology (Amsterdam, Netherlands), 230:105698.

Non-steroidal anti-inflammatory drug diclofenac (DCF) is commonly found in freshwater bodies and can have adverse effects on non-target organisms. Among the studies on DCF toxicity, several ones have reported its harmful effects on plants and algae. To gain a better understanding of the mechanisms of DCF toxicity towards green algae, we used a synchronous Chlamydomonas reinhardtii cc-1690 culture and compared DCF (135 mg/L) effects with effects caused by atrazine (ATR; 77.6 μg/L), an herbicide with a well-known mechanism of toxic action. To achieve our goal, cell number and size, photosynthetic oxygen consumption/evolution, chlorophyll a fluorescence in vivo, H2O2 production by the cells, antioxidative enzymes encoding genes expression were analyzed during light phase of the cell cycle. We have found, that DCF and ATR affect C. reinhardtii through different mechanisms. ATR inhibited the photosynthetic electron transport chain and induced oxidative stress in chloroplast. Such chloroplastic energetics disruption indirectly influenced respiration, the intensification of which could partially mitigate low efficiency of photosynthetic energy production. As a result, ATR inhibited the growth of single cell leading to limitation in C. reinhardtii population development. In contrast to ATR-treated algae, in DCF-treated cells the fraction of active PSII reaction centers was diminished without drastic changes in electron transport or oxidative stress symptoms in chloroplast. However, significant increase in transcript level of gene encoding for mitochondria-located catalase indicates respiratory processes as a source of H2O2 overproduced in the DCF-treated cells. Because the single cell growth was not strongly affected by DCF, its adverse effect on progeny cell number seemed to be related rather to arresting of cell divisions. Concluding, although the DCF phytotoxic action appeared to be different from the action of the typical herbicide ATR, it can act as algal growth-inhibiting factor in the environment.

RevDate: 2021-04-27
CmpDate: 2021-04-27

Xu H, Zhou W, Zhan L, et al (2020)

The ZiBuPiYin recipe regulates proteomic alterations in brain mitochondria-associated ER membranes caused by chronic psychological stress exposure: Implications for cognitive decline in Zucker diabetic fatty rats.

Aging, 12(23):23698-23726.

Chronic psychological stress (PS) cumulatively affects memory performance through the deleterious effects on hypothalamic-pituitary-adrenal axis regulation. Several functions damaged in cognitive impairment-related diseases are regulated by mitochondria-associated ER membranes (MAMs). To elucidate the role of ZiBuPiYin recipe (ZBPYR) in regulating the MAM proteome to improve PS-induced diabetes-associated cognitive decline (PSD), differentially expressed MAM proteins were identified among Zucker diabetic fatty rats, PSD rats, and PS combined with ZBPYR administration rats via iTRAQ with LC-MS/MS. Proteomic analysis revealed that the expressions of 85 and 33 proteins were altered by PS and ZBPYR treatment, respectively. Among these, 21 proteins were differentially expressed under both PS and ZBPYR treatments, whose functional categories included energy metabolism, lipid and protein metabolism, and synaptic dysfunction. Furthermore, calcium signaling and autophagy-related proteins may play roles in the pathogenesis of PSD and the mechanism of ZBPYR, respectively. Notably, KEGG pathway analysis suggested that 'Alzheimer's disease' and 'oxidative phosphorylation' pathways may be impaired in PSD pathogenesis, while ZBPYR could play a neuroprotective role through regulating the above pathways. Overall, exposure to chronic PS contributes to the evolution of diabetes-associated cognitive decline and ZBPYR might prevent and treat PSD by regulating the MAM proteome.

RevDate: 2021-03-01
CmpDate: 2021-03-01

Zhu Y, Berkowitz O, Selinski J, et al (2020)

Conserved and Opposite Transcriptome Patterns during Germination in Hordeum vulgare and Arabidopsis thaliana.

International journal of molecular sciences, 21(19):.

Seed germination is a critical process for completion of the plant life cycle and for global food production. Comparing the germination transcriptomes of barley (Hordeum vulgare) to Arabidopsis thaliana revealed the overall pattern was conserved in terms of functional gene ontology; however, many oppositely responsive orthologous genes were identified. Conserved processes included a set of approximately 6000 genes that peaked early in germination and were enriched in processes associated with RNA metabolism, e.g., pentatricopeptide repeat (PPR)-containing proteins. Comparison of orthologous genes revealed more than 3000 orthogroups containing almost 4000 genes that displayed similar expression patterns including functions associated with mitochondrial tricarboxylic acid (TCA) cycle, carbohydrate and RNA/DNA metabolism, autophagy, protein modifications, and organellar function. Biochemical and proteomic analyses indicated mitochondrial biogenesis occurred early in germination, but detailed analyses revealed the timing involved in mitochondrial biogenesis may vary between species. More than 1800 orthogroups representing 2000 genes displayed opposite patterns in transcript abundance, representing functions of energy (carbohydrate) metabolism, photosynthesis, protein synthesis and degradation, and gene regulation. Differences in expression of basic-leucine zippers (bZIPs) and Apetala 2 (AP2)/ethylene-responsive element binding proteins (EREBPs) point to differences in regulatory processes at a high level, which provide opportunities to modify processes in order to enhance grain quality, germination, and storage as needed for different uses.

RevDate: 2020-12-18
CmpDate: 2020-10-22

Tan DX, R Hardeland (2020)

Targeting Host Defense System and Rescuing Compromised Mitochondria to Increase Tolerance against Pathogens by Melatonin May Impact Outcome of Deadly Virus Infection Pertinent to COVID-19.

Molecules (Basel, Switzerland), 25(19):.

Fighting infectious diseases, particularly viral infections, is a demanding task for human health. Targeting the pathogens or targeting the host are different strategies, but with an identical purpose, i.e., to curb the pathogen's spreading and cure the illness. It appears that targeting a host to increase tolerance against pathogens can be of substantial advantage and is a strategy used in evolution. Practically, it has a broader protective spectrum than that of only targeting the specific pathogens, which differ in terms of susceptibility. Methods for host targeting applied in one pandemic can even be effective for upcoming pandemics with different pathogens. This is even more urgent if we consider the possible concomitance of two respiratory diseases with potential multi-organ afflictions such as Coronavirus disease 2019 (COVID-19) and seasonal flu. Melatonin is a molecule that can enhance the host's tolerance against pathogen invasions. Due to its antioxidant, anti-inflammatory, and immunoregulatory activities, melatonin has the capacity to reduce the severity and mortality of deadly virus infections including COVID-19. Melatonin is synthesized and functions in mitochondria, which play a critical role in viral infections. Not surprisingly, melatonin synthesis can become a target of viral strategies that manipulate the mitochondrial status. For example, a viral infection can switch energy metabolism from respiration to widely anaerobic glycolysis even if plenty of oxygen is available (the Warburg effect) when the host cell cannot generate acetyl-coenzyme A, a metabolite required for melatonin biosynthesis. Under some conditions, including aging, gender, predisposed health conditions, already compromised mitochondria, when exposed to further viral challenges, lose their capacity for producing sufficient amounts of melatonin. This leads to a reduced support of mitochondrial functions and makes these individuals more vulnerable to infectious diseases. Thus, the maintenance of mitochondrial function by melatonin supplementation can be expected to generate beneficial effects on the outcome of viral infectious diseases, particularly COVID-19.

RevDate: 2021-03-17
CmpDate: 2021-03-09

Srivastava SR, R Mahalakshmi (2020)

Evolutionary selection of a 19-stranded mitochondrial β-barrel scaffold bears structural and functional significance.

The Journal of biological chemistry, 295(43):14653-14665.

Transmembrane β-barrels of eukaryotic outer mitochondrial membranes (OMMs) are major channels of communication between the cytosol and mitochondria and are indispensable for cellular homeostasis. A structurally intriguing exception to all known transmembrane β-barrels is the unique odd-stranded, i.e. 19-stranded, structures found solely in the OMM. The molecular origins of this 19-stranded structure and its associated functional significance are unclear. In humans, the most abundant OMM transporter is the voltage-dependent anion channel. Here, using the human voltage-dependent anion channel as our template scaffold, we designed and engineered odd- and even-stranded structures of smaller (V216, V217, V218) and larger (V220, V221) barrel diameters. Determination of the structure, dynamics, and energetics of these engineered structures in bilayer membranes reveals that the 19-stranded barrel surprisingly holds modest to low stability in a lipid-dependent manner. However, we demonstrate that this structurally metastable protein possesses superior voltage-gated channel regulation, efficient mitochondrial targeting, and in vivo cell survival, with lipid-modulated stability, all of which supersede the occurrence of a metastable 19-stranded scaffold. We propose that the unique structural adaptation of these transmembrane transporters exclusively in mitochondria bears strong evolutionary basis and is functionally significant for homeostasis.

RevDate: 2021-07-13
CmpDate: 2020-11-02

Cunnane SC, Trushina E, Morland C, et al (2020)

Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing.

Nature reviews. Drug discovery, 19(9):609-633.

The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner - a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.

RevDate: 2021-03-29
CmpDate: 2021-03-29

Vertika S, Singh KK, S Rajender (2020)

Mitochondria, spermatogenesis, and male infertility - An update.

Mitochondrion, 54:26-40.

The incorporation of mitochondria in the eukaryotic cell is one of the most enigmatic events in the course of evolution. This important organelle was thought to be only the powerhouse of the cell, but was later learnt to perform many other indispensable functions in the cell. Two major contributions of mitochondria in spermatogenesis concern energy production and apoptosis. Apart from this, mitochondria also participate in a number of other processes affecting spermatogenesis and fertility. Mitochondria in sperm are arranged in the periphery of the tail microtubules to serve to energy demand for motility. Apart from this, the role of mitochondria in germ cell proliferation, mitotic regulation, and the elimination of germ cells by apoptosis are now well recognized. Eventually, mutations in the mitochondrial genome have been reported in male infertility, particularly in sluggish sperm (asthenozoospermia); however, heteroplasmy in the mtDNA and a complex interplay between the nucleus and mitochondria affect their penetrance. In this article, we have provided an update on the role of mitochondria in various events of spermatogenesis and male fertility and on the correlation of mitochondrial DNA mutations with male infertility.

RevDate: 2020-10-19
CmpDate: 2020-10-19

Seebacher F (2020)

Is Endothermy an Evolutionary By-Product?.

Trends in ecology & evolution, 35(6):503-511.

Endothermy alters the energetic relationships between organisms and their environment and thereby influences fundamental niches. Endothermy is closely tied to energy metabolism. Regulation of energy balance is indispensable for all life and regulatory pathways increase in complexity from bacteria to vertebrates. Increasing complexity of metabolic networks also increase the probability for endothermic phenotypes to appear. Adaptive arguments are problematic epistemologically because the regulatory mechanisms enabling endothermy have not evolved for the 'purpose' of endothermy and the utility of current traits is likely to have changed over evolutionary time. It is most parsimonious to view endothermy as the evolutionary by-product of energy balance regulation rather than as an adaptation and interpret its evolution in the context of metabolic networks.

RevDate: 2021-03-29
CmpDate: 2021-03-29

Meduri GU, GP Chrousos (2020)

General Adaptation in Critical Illness: Glucocorticoid Receptor-alpha Master Regulator of Homeostatic Corrections.

Frontiers in endocrinology, 11:161.

In critical illness, homeostatic corrections representing the culmination of hundreds of millions of years of evolution, are modulated by the activated glucocorticoid receptor alpha (GRα) and are associated with an enormous bioenergetic and metabolic cost. Appreciation of how homeostatic corrections work and how they evolved provides a conceptual framework to understand the complex pathobiology of critical illness. Emerging literature place the activated GRα at the center of all phases of disease development and resolution, including activation and re-enforcement of innate immunity, downregulation of pro-inflammatory transcription factors, and restoration of anatomy and function. By the time critically ill patients necessitate vital organ support for survival, they have reached near exhaustion or exhaustion of neuroendocrine homeostatic compensation, cell bio-energetic and adaptation functions, and reserves of vital micronutrients. We review how critical illness-related corticosteroid insufficiency, mitochondrial dysfunction/damage, and hypovitaminosis collectively interact to accelerate an anti-homeostatic active process of natural selection. Importantly, the allostatic overload imposed by these homeostatic corrections impacts negatively on both acute and long-term morbidity and mortality. Since the bioenergetic and metabolic reserves to support homeostatic corrections are time-limited, early interventions should be directed at increasing GRα and mitochondria number and function. Present understanding of the activated GC-GRα's role in immunomodulation and disease resolution should be taken into account when re-evaluating how to administer glucocorticoid treatment and co-interventions to improve cellular responsiveness. The activated GRα interdependence with functional mitochondria and three vitamin reserves (B1, C, and D) provides a rationale for co-interventions that include prolonged glucocorticoid treatment in association with rapid correction of hypovitaminosis.

RevDate: 2021-04-27
CmpDate: 2021-04-27

Gangloff EJ, Schwartz TS, Klabacka R, et al (2020)

Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes.

Experimental gerontology, 137:110967.

As a pacesetter for physiological processes, variation in metabolic rate can determine the shape of energetic trade-offs and thereby drive variation in life-history traits. In turn, such variation in metabolic performance and life-histories can have profound consequences for lifespan and lifetime fitness. Thus, the extent to which metabolic rate variation is due to phenotypic plasticity or fixed genetic differences among individuals or populations is likely to be shaped by natural selection. Here, we first present a generalized framework describing the central role of mitochondria in processes linking environmental, genomic, physiological, and aging variation. We then present a test of these relationships in an exemplary system: populations of garter snakes (Thamnophis elegans) exhibiting contrasting life-history strategies - fast-growing, early-reproducing, and fast-aging (FA) versus slow-growing, late-reproducing, and slow-aging (SA). Previous work has characterized divergences in mitochondrial function, reactive oxygen species processing, and whole-organism metabolic rate between these contrasting life-history ecotypes. Here, we report new data on cellular respiration and mitochondrial genomics and synthesize these results with previous work. We test hypotheses about the causes and implications of mitochondrial genome variation within this generalized framework. First, we demonstrate that snakes of the FA ecotype increase cellular metabolic rate across their lifespan, while the opposite pattern holds for SA snakes, implying that reduced energetic throughput is associated with a longer life. Second, we show that variants in mitochondrial genomes are segregating across the landscape in a manner suggesting selection on the physiological consequences of this variation in habitats varying in temperature, food availability, and rates of predation. Third, we demonstrate functional variation in whole-organism metabolic rate related to these mitochondrial genome sequence variants. With this synthesis of numerous datasets, we are able to further characterize how variation across levels of biological organization interact within this generalized framework and how this has resulted in the emergence of distinct life-history ecotypes that vary in their rates of aging and lifespan.

RevDate: 2020-09-28

Scorziello A, Borzacchiello D, Sisalli MJ, et al (2020)

Mitochondrial Homeostasis and Signaling in Parkinson's Disease.

Frontiers in aging neuroscience, 12:100.

The loss of dopaminergic (DA) neurons in the substantia nigra leads to a progressive, long-term decline of movement and other non-motor deficits. The symptoms of Parkinson's disease (PD) often appear later in the course of the disease, when most of the functional dopaminergic neurons have been lost. The late onset of the disease, the severity of the illness, and its impact on the global health system demand earlier diagnosis and better targeted therapy. PD etiology and pathogenesis are largely unknown. There are mutations in genes that have been linked to PD and, from these complex phenotypes, mitochondrial dysfunction emerged as central in the pathogenesis and evolution of PD. In fact, several PD-associated genes negatively impact on mitochondria physiology, supporting the notion that dysregulation of mitochondrial signaling and homeostasis is pathogenically relevant. Derangement of mitochondrial homeostatic controls can lead to oxidative stress and neuronal cell death. Restoring deranged signaling cascades to and from mitochondria in PD neurons may then represent a viable opportunity to reset energy metabolism and delay the death of dopaminergic neurons. Here, we will highlight the relevance of dysfunctional mitochondrial homeostasis and signaling in PD, the molecular mechanisms involved, and potential therapeutic approaches to restore mitochondrial activities in damaged neurons.

RevDate: 2021-06-18
CmpDate: 2021-06-18

Aparicio-Trejo OE, Avila-Rojas SH, Tapia E, et al (2020)

Chronic impairment of mitochondrial bioenergetics and β-oxidation promotes experimental AKI-to-CKD transition induced by folic acid.

Free radical biology & medicine, 154:18-32.

Recent studies suggest that mitochondrial bioenergetics and oxidative stress alterations may be common mechanisms involved in the progression of renal damage. However, the evolution of the mitochondrial alterations over time and the possible effects that their prevention could have in the progression of renal damage are not clear. Folic acid (FA)-induced kidney damage is a widely used experimental model to induce acute kidney injury (AKI), which can evolve to chronic kidney disease (CKD). Therefore, it has been extensively applied to study the mechanisms involved in AKI-to-CKD transition. We previously demonstrated that one day after FA administration, N-acetyl-cysteine (NAC) pre-administration prevented the development of AKI induced by FA. Such therapeutic effect was related to mitochondrial preservation. In the present study, we characterized the temporal course of mitochondrial bioenergetics and redox state alterations along the progression of renal damage induced by FA. Mitochondrial function was studied at different time points and showed a sustained impairment in oxidative phosphorylation capacity and a decrease in β-oxidation, decoupling, mitochondrial membrane potential depolarization and a pro-oxidative state, attributed to the reduction in activity of complexes I and III and mitochondrial cristae effacement, thus favoring the transition from AKI to CKD. Furthermore, the mitochondrial protection by NAC administration before AKI prevented not only the long-term deterioration of mitochondrial function at the chronic stage, but also CKD development. Taken together, our results support the idea that the prevention of mitochondrial dysfunction during an AKI event can be a useful strategy to prevent the transition to CKD.

RevDate: 2021-08-06
CmpDate: 2021-08-06

de Brito Monteiro L, Davanzo GG, de Aguiar CF, et al (2020)

M-CSF- and L929-derived macrophages present distinct metabolic profiles with similar inflammatory outcomes.

Immunobiology, 225(3):151935.

Macrophages are essential components of the immune system. Macrophages can be derived from the bone marrow of mice with either recombinant M-CSF or L929 supernatant. Recent literature considers recombinant M-CSF- and L929-derived macrophages as equals, even though L929-derived macrophages are exposed to other substances secreted in the L929 supernatant, and not only M-CSF. Thus, we decided to perform a comparative analysis of both inflammatory and metabolic profiles of macrophages differentiated under the aforementioned conditions, which is relevant for standardization and interpretation of in vitro studies. We observed that, when treated with LPS, L929macs secrete lower levels of proinflammatory cytokines (TNF-α, IL-6, IL12) and present higher glycolysis and oxygen consumption when compared with M-CSFmacs. L929macs also have increased mitochondrial mass, with higher percentage of dysfunctional mitochondria. This sort of information can help direct further studies towards a more specific approach for macrophage generation.

RevDate: 2020-11-19
CmpDate: 2020-11-19

Lang SA, McIlroy P, DH Shain (2020)

Structural Evolution of the Glacier Ice Worm Fo ATP Synthase Complex.

The protein journal, 39(2):152-159.

The segmented annelid worm, Mesenchytraeus solifugus, is a permanent resident of temperate, maritime glaciers in the Pacific northwestern region of North America, displaying atypically high intracellular ATP levels which have been linked to its unusual ability to thrive in hydrated glacier ice. We have shown previously that ice worms contain a highly basic, carboxy terminal extension on their ATP6 regulatory subunit, likely acquired by horizontal gene transfer from a microbial dietary source. Here we examine the full complement of F1F0 ATP synthase structural subunits with attention to non-conservative, ice worm-specific structural modifications. Our genomics analyses and molecular models identify putative proton shuttling domains on either side of the F0 hemichannel, which predictably function to enhance proton flow across the mitochondrial membrane. Other components of the ice worm ATP synthase complex have remained largely unchanged in the context of Metazoan evolution.

RevDate: 2021-02-23
CmpDate: 2021-02-23

Muthye V, Kandoi G, DV Lavrov (2020)

MMPdb and MitoPredictor: Tools for facilitating comparative analysis of animal mitochondrial proteomes.

Mitochondrion, 51:118-125.

Data on experimentally-characterized animal mitochondrial proteomes (mt-proteomes) are limited to a few model organisms and are scattered across multiple databases, impeding a comparative analysis. We developed two resources to address these problems. First, we re-analyzed proteomic data from six species with experimentally characterized mt-proteomes: animals (Homo sapiens, Mus musculus, Caenorhabditis elegans, and Drosophila melanogaster), and outgroups (Acanthamoeba castellanii and Saccharomyces cerevisiae) and created the Metazoan Mitochondrial Proteome Database (MMPdb) to host the results. Second, we developed a novel pipeline, "MitoPredictor" that uses a Random Forest classifier to infer mitochondrial localization of proteins based on orthology, mitochondrial targeting signal prediction, and protein domain analyses. Both tools generate an R Shiny applet that can be used to visualize and interact with the results and can be used on a personal computer. MMPdb is also available online at

RevDate: 2020-09-08
CmpDate: 2020-09-08

Chevigny N, Schatz-Daas D, Lotfi F, et al (2020)

DNA Repair and the Stability of the Plant Mitochondrial Genome.

International journal of molecular sciences, 21(1):.

The mitochondrion stands at the center of cell energy metabolism. It contains its own genome, the mtDNA, that is a relic of its prokaryotic symbiotic ancestor. In plants, the mitochondrial genetic information influences important agronomic traits including fertility, plant vigor, chloroplast function, and cross-compatibility. Plant mtDNA has remarkable characteristics: It is much larger than the mtDNA of other eukaryotes and evolves very rapidly in structure. This is because of recombination activities that generate alternative mtDNA configurations, an important reservoir of genetic diversity that promotes rapid mtDNA evolution. On the other hand, the high incidence of ectopic recombination leads to mtDNA instability and the expression of gene chimeras, with potential deleterious effects. In contrast to the structural plasticity of the genome, in most plant species the mtDNA coding sequences evolve very slowly, even if the organization of the genome is highly variable. Repair mechanisms are probably responsible for such low mutation rates, in particular repair by homologous recombination. Herein we review some of the characteristics of plant organellar genomes and of the repair pathways found in plant mitochondria. We further discuss how homologous recombination is involved in the evolution of the plant mtDNA.

RevDate: 2020-03-12
CmpDate: 2020-03-12

Liu Y, Qu J, Zhang L, et al (2019)

Identification and characterization of the TCA cycle genes in maize.

BMC plant biology, 19(1):592.

BACKGROUND: The tricarboxylic acid (TCA) cycle is crucial for cellular energy metabolism and carbon skeleton supply. However, the detailed functions of the maize TCA cycle genes remain unclear.

RESULTS: In this study, 91 TCA genes were identified in maize by a homology search, and they were distributed on 10 chromosomes and 1 contig. Phylogenetic results showed that almost all maize TCA genes could be classified into eight major clades according to their enzyme families. Sequence alignment revealed that several genes in the same subunit shared high protein sequence similarity. The results of cis-acting element analysis suggested that several TCA genes might be involved in signal transduction and plant growth. Expression profile analysis showed that many maize TCA cycle genes were expressed in specific tissues, and replicate genes always shared similar expression patterns. Moreover, qPCR analysis revealed that some TCA genes were highly expressed in the anthers at the microspore meiosis phase. In addition, we predicted the potential interaction networks among the maize TCA genes. Next, we cloned five TCA genes located on different TCA enzyme complexes, Zm00001d008244 (isocitrate dehydrogenase, IDH), Zm00001d017258 (succinyl-CoA synthetase, SCoAL), Zm00001d025258 (α-ketoglutarate dehydrogenase, αKGDH), Zm00001d027558 (aconitase, ACO) and Zm00001d044042 (malate dehydrogenase, MDH). Confocal observation showed that their protein products were mainly localized to the mitochondria; however, Zm00001d025258 and Zm00001d027558 were also distributed in the nucleus, and Zm00001d017258 and Zm00001d044042 were also located in other unknown positions in the cytoplasm. Through the bimolecular fluorescent complimentary (BiFC) method, it was determined that Zm00001d027558 and Zm00001d044042 could form homologous dimers, and both homologous dimers were mainly distributed in the mitochondria. However, no heterodimers were detected between these five genes. Finally, Arabidopsis lines overexpressing the above five genes were constructed, and those transgenic lines exhibited altered primary root length, salt tolerance, and fertility.

CONCLUSION: Sequence compositions, duplication patterns, phylogenetic relationships, cis-elements, expression patterns, and interaction networks were investigated for all maize TCA cycle genes. Five maize TCA genes were overexpressed in Arabidopsis, and they could alter primary root length, salt tolerance, and fertility. In conclusion, our findings may help to reveal the molecular function of the TCA genes in maize.

RevDate: 2021-01-10
CmpDate: 2020-11-09

Terrien J, Seugnet I, Seffou B, et al (2019)

Reduced central and peripheral inflammatory responses and increased mitochondrial activity contribute to diet-induced obesity resistance in WSB/EiJ mice.

Scientific reports, 9(1):19696.

Energy imbalance due to excess of calories is considered to be a major player in the current worldwide obesity pandemic and could be accompanied by systemic and central inflammation and mitochondrial dysfunctions. This hypothesis was tested by comparing the wild-derived diet-induced obesity- (DIO-) resistant mouse strain WSB/EiJ to the obesity-prone C57BL/6J strain. We analysed circulating and hypothalamic markers of inflammatory status and hypothalamic mitochondrial activity in both strains exposed to high-fat diet (HFD). We further analysed the regulations of hypothalamic genes involved in inflammation and mitochondrial pathways by high throughput microfluidic qPCR on RNA extracted from laser micro-dissected arcuate (ARC) and paraventricular (PVN) hypothalamic nuclei. HFD induced increased body weight gain, circulating levels of leptin, cholesterol, HDL and LDL in C57BL/6J whereas WSB/EiJ mice displayed a lower inflammatory status, both peripherally (lower levels of circulating cytokines) and centrally (less activated microglia in the hypothalamus) as well as more reactive mitochondria in the hypothalamus. The gene expression data analysis allowed identifying strain-specific hypothalamic metabolic pathways involved in the respective responses to HFD. Our results point to the involvement of hypothalamic inflammatory and mitochondrial pathways as key factors in the control of energy homeostasis and the resistance to DIO.

RevDate: 2020-04-20
CmpDate: 2020-04-20

Arnedo M, Latorre-Pellicer A, Lucia-Campos C, et al (2019)

More Than One HMG-CoA Lyase: The Classical Mitochondrial Enzyme Plus the Peroxisomal and the Cytosolic Ones.

International journal of molecular sciences, 20(24):.

There are three human enzymes with HMG-CoA lyase activity that are able to synthesize ketone bodies in different subcellular compartments. The mitochondrial HMG-CoA lyase was the first to be described, and catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetate and acetyl-CoA, the common final step in ketogenesis and leucine catabolism. This protein is mainly expressed in the liver and its function is metabolic, since it produces ketone bodies as energetic fuels when glucose levels are low. Another isoform is encoded by the same gene for the mitochondrial HMG-CoA lyase (HMGCL), but it is located in peroxisomes. The last HMG-CoA lyase to be described is encoded by a different gene, HMGCLL1, and is located in the cytosolic side of the endoplasmic reticulum membrane. Some activity assays and tissue distribution of this enzyme have shown the brain and lung as key tissues for studying its function. Although the roles of the peroxisomal and cytosolic HMG-CoA lyases remain unknown, recent studies highlight the role of ketone bodies in metabolic remodeling, homeostasis, and signaling, providing new insights into the molecular and cellular function of these enzymes.

RevDate: 2021-01-20
CmpDate: 2020-11-17

Camus MF, O'Leary M, Reuter M, et al (2020)

Impact of mitonuclear interactions on life-history responses to diet.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 375(1790):20190416.

Mitochondria are central to both energy metabolism and biosynthesis. Mitochondrial function could therefore influence resource allocation. Critically, mitochondrial function depends on interactions between proteins encoded by the mitochondrial and nuclear genomes. Severe incompatibilities between these genomes can have pervasive effects on both fitness and longevity. How milder deficits in mitochondrial function affect life-history trade-offs is less well understood. Here, we analyse how mitonuclear interactions affect the trade-off between fecundity and longevity in Drosophila melanogaster. We consider a panel of 10 different mitochondrial DNA haplotypes against two contrasting nuclear backgrounds (w1118 (WE) and Zim53 (ZIM)) in response to high-protein versus standard diet. We report strikingly different responses between the two nuclear backgrounds. WE females have higher fecundity and decreased longevity on high protein. ZIM females have much greater fecundity and shorter lifespan than WE flies on standard diet. High protein doubled their fecundity with no effect on longevity. Mitochondrial haplotype reflected nuclear life-history trade-offs, with a negative correlation between longevity and fecundity in WE flies and no correlation in ZIM flies. Mitonuclear interactions had substantial effects but did not reflect genetic distance between mitochondrial haplotypes. We conclude that mitonuclear interactions can have significant impact on life-history trade-offs, but their effects are not predictable by relatedness. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.

RevDate: 2020-12-14
CmpDate: 2020-12-10

Shen Y, Wang X, Guo S, et al (2020)

Evolutionary genomics analysis of human nucleus-encoded mitochondrial genes: implications for the roles of energy production and metabolic pathways in the pathogenesis and pathophysiology of demyelinating diseases.

Neuroscience letters, 715:134600.

The myelin sheath is a plasma membrane extension that lines nerve fibers to protect, support and insulate neurons. The myelination of axons in vertebrates enables fast, saltatory impulse propagation, and this process relies on organelles, especially on mitochondria to supply energy. Approximately 99% of mitochondrial proteins are encoded in the nucleus. Since mitochondria play a central role in the energy production and metabolic pathways, which are essential for myelinogenesis, studying these nucleus-encoded genes (nMGs) may provide new insights into the roles of energy metabolism in demyelinating diseases. In this work, a multiomics-based approach was employed to 1) construct a 1,740 human nMG subset with mitochondrial localization evidence obtained from the Integrated Mitochondrial Protein Index (IMPI) and MitoCarta databases, 2) conduct an evolutionary genomics analysis across mouse, rat, monkey, chimp, and human models, 3) examine dysmyelination phenotype-related genes (nMG subset genes with oligodendrocyte- ​and myelin-related ​phenotypes, OMP-nMGs) in MGI mouse lines and human patients, 4) determine the expression discrepancy of OMP-nMGs in brain tissues of cuprizone-treated mice, multiple sclerosis patients, and normal controls, and 5) conduct literature data mining to explore OMP-nMG-associated disease impacts. By contrasting OMP-nMGs with other genes, OMP-nMGs were found to be more ubiquitously expressed (59.1% vs. 16.1%), disease-associated (67.3% vs. 20.2%), and evolutionarily conserved within the human populations. Our multiomics-based analysis identified 110 OMP-nMGs implicated in energy production and lipid and glycan biosynthesis in the pathogenesis and pathophysiology of demyelinating disorders. Future targeted characterization of OMP-nMGs in abnormal myelination conditions may allow the discovery of novel nMG mediated mechanisms underlying myelinogenesis and related diseases.

RevDate: 2020-03-26
CmpDate: 2020-03-26

Poljsak B, Kovac V, Dahmane R, et al (2019)

Cancer Etiology: A Metabolic Disease Originating from Life's Major Evolutionary Transition?.

Oxidative medicine and cellular longevity, 2019:7831952.

A clear understanding of the origins of cancer is the basis of successful strategies for effective cancer prevention and management. The origin of cancer at the molecular and cellular levels is not well understood. Is the primary cause of the origin of cancer the genomic instability or impaired energy metabolism? An attempt was made to present cancer etiology originating from life's major evolutionary transition. The first evolutionary transition went from simple to complex cells when eukaryotic cells with glycolytic energy production merged with the oxidative mitochondrion (The Endosymbiosis Theory first proposed by Lynn Margulis in the 1960s). The second transition went from single-celled to multicellular organisms once the cells obtained mitochondria, which enabled them to obtain a higher amount of energy. Evidence will be presented that these two transitions, as well as the decline of NAD+ and ATP levels, are the root of cancer diseases. Restoring redox homeostasis and reactivation of mitochondrial oxidative metabolism are important factors in cancer prevention.

RevDate: 2021-02-12
CmpDate: 2020-09-28

Johnson RJ, Stenvinkel P, Andrews P, et al (2020)

Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts.

Journal of internal medicine, 287(3):252-262.

Mass extinctions occur frequently in natural history. While studies of animals that became extinct can be informative, it is the survivors that provide clues for mechanisms of adaptation when conditions are adverse. Here, we describe a survival pathway used by many species as a means for providing adequate fuel and water, while also providing protection from a decrease in oxygen availability. Fructose, whether supplied in the diet (primarily fruits and honey), or endogenously (via activation of the polyol pathway), preferentially shifts the organism towards the storing of fuel (fat, glycogen) that can be used to provide energy and water at a later date. Fructose causes sodium retention and raises blood pressure and likely helped survival in the setting of dehydration or salt deprivation. By shifting energy production from the mitochondria to glycolysis, fructose reduced oxygen demands to aid survival in situations where oxygen availability is low. The actions of fructose are driven in part by vasopressin and the generation of uric acid. Twice in history, mutations occurred during periods of mass extinction that enhanced the activity of fructose to generate fat, with the first being a mutation in vitamin C metabolism during the Cretaceous-Paleogene extinction (65 million years ago) and the second being a mutation in uricase that occurred during the Middle Miocene disruption (12-14 million years ago). Today, the excessive intake of fructose due to the availability of refined sugar and high-fructose corn syrup is driving 'burden of life style' diseases, including obesity, diabetes and high blood pressure.

RevDate: 2021-04-21
CmpDate: 2020-05-25

Guièze R, Liu VM, Rosebrock D, et al (2019)

Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies.

Cancer cell, 36(4):369-384.e13.

Mitochondrial apoptosis can be effectively targeted in lymphoid malignancies with the FDA-approved B cell lymphoma 2 (BCL-2) inhibitor venetoclax, but resistance to this agent is emerging. We show that venetoclax resistance in chronic lymphocytic leukemia is associated with complex clonal shifts. To identify determinants of resistance, we conducted parallel genome-scale screens of the BCL-2-driven OCI-Ly1 lymphoma cell line after venetoclax exposure along with integrated expression profiling and functional characterization of drug-resistant and engineered cell lines. We identified regulators of lymphoid transcription and cellular energy metabolism as drivers of venetoclax resistance in addition to the known involvement by BCL-2 family members, which were confirmed in patient samples. Our data support the implementation of combinatorial therapy with metabolic modulators to address venetoclax resistance.

RevDate: 2020-03-11
CmpDate: 2020-03-11

Yang M, Gong L, Sui J, et al (2019)

The complete mitochondrial genome of Calyptogena marissinica (Heterodonta: Veneroida: Vesicomyidae): Insight into the deep-sea adaptive evolution of vesicomyids.

PloS one, 14(9):e0217952.

The deep-sea chemosynthetic environment is one of the most extreme environments on the Earth, with low oxygen, high hydrostatic pressure and high levels of toxic substances. Species of the family Vesicomyidae are among the dominant chemosymbiotic bivalves found in this harsh habitat. Mitochondria play a vital role in oxygen usage and energy metabolism; thus, they may be under selection during the adaptive evolution of deep-sea vesicomyids. In this study, the mitochondrial genome (mitogenome) of the vesicomyid bivalve Calyptogena marissinica was sequenced with Illumina sequencing. The mitogenome of C. marissinica is 17,374 bp in length and contains 13 protein-coding genes, 2 ribosomal RNA genes (rrnS and rrnL) and 22 transfer RNA genes. All of these genes are encoded on the heavy strand. Some special elements, such as tandem repeat sequences, "G(A)nT" motifs and AT-rich sequences, were observed in the control region of the C. marissinica mitogenome, which is involved in the regulation of replication and transcription of the mitogenome and may be helpful in adjusting the mitochondrial energy metabolism of organisms to adapt to the deep-sea chemosynthetic environment. The gene arrangement of protein-coding genes was identical to that of other sequenced vesicomyids. Phylogenetic analyses clustered C. marissinica with previously reported vesicomyid bivalves with high support values. Positive selection analysis revealed evidence of adaptive change in the mitogenome of Vesicomyidae. Ten potentially important adaptive residues were identified, which were located in cox1, cox3, cob, nad2, nad4 and nad5. Overall, this study sheds light on the mitogenomic adaptation of vesicomyid bivalves that inhabit the deep-sea chemosynthetic environment.

RevDate: 2019-09-17
CmpDate: 2019-09-17

Soggiu A, Roncada P, Bonizzi L, et al (2019)

Role of Mitochondria in Host-Pathogen Interaction.

Advances in experimental medicine and biology, 1158:45-57.

The centrality of the mitochondrion in the evolution and control of the cellare now supported by many experimental studies. Not only with regard to the energy metabolism but also and especially with regard to the other functions indispensable for the cell such as apoptosis and the control of innate immunity through different complex cell signaling pathways. All this makes them one of the main targets during infections supported by pathogenic microorganisms. The interaction and control of these organelles by pathogens results, from the latest experimental evidence, of fundamental importance in the fate of the host cell and in the progression of infectious diseases.

RevDate: 2020-06-02
CmpDate: 2020-06-02

Gould SB, Garg SG, Handrich M, et al (2019)

Adaptation to life on land at high O2 via transition from ferredoxin-to NADH-dependent redox balance.

Proceedings. Biological sciences, 286(1909):20191491.

Pyruvate : ferredoxin oxidoreductase (PFO) and iron only hydrogenase ([Fe]-HYD) are common enzymes among eukaryotic microbes that inhabit anaerobic niches. Their function is to maintain redox balance by donating electrons from food oxidation via ferredoxin (Fd) to protons, generating H2 as a waste product. Operating in series, they constitute a soluble electron transport chain of one-electron transfers between FeS clusters. They fulfil the same function-redox balance-served by two electron-transfers in the NADH- and O2-dependent respiratory chains of mitochondria. Although they possess O2-sensitive FeS clusters, PFO, Fd and [Fe]-HYD are also present among numerous algae that produce O2. The evolutionary persistence of these enzymes among eukaryotic aerobes is traditionally explained as adaptation to facultative anaerobic growth. Here, we show that algae express enzymes of anaerobic energy metabolism at ambient O2 levels (21% v/v), Chlamydomonas reinhardtii expresses them with diurnal regulation. High O2 environments arose on Earth only approximately 450 million years ago. Gene presence/absence and gene expression data indicate that during the transition to high O2 environments and terrestrialization, diverse algal lineages retained enzymes of Fd-dependent one-electron-based redox balance, while the land plant and land animal lineages underwent irreversible specialization to redox balance involving the O2-insensitive two-electron carrier NADH.

RevDate: 2020-10-01

Ngatia JN, Lan TM, Dinh TD, et al (2019)

Signals of positive selection in mitochondrial protein-coding genes of woolly mammoth: Adaptation to extreme environments?.

Ecology and evolution, 9(12):6821-6832.

The mammoths originated in warm and equatorial Africa and later colonized cold and high-latitude environments. Studies on nuclear genes suggest that woolly mammoth had evolved genetic variations involved in processes relevant to cold tolerance, including lipid metabolism and thermogenesis, and adaptation to extremely varied light and darkness cycles. The mitochondria is a major regulator of cellular energy metabolism, thus the mitogenome of mammoths may also exhibit adaptive evolution. However, little is yet known in this regard. In this study, we analyzed mitochondrial protein-coding genes (MPCGs) sequences of 75 broadly distributed woolly mammoths (Mammuthus primigenius) to test for signatures of positive selection. Results showed that a total of eleven amino acid sites in six genes, namely ND1, ND4, ND5, ND6, CYTB, and ATP6, displayed strong evidence of positive selection. Two sites were located in close proximity to proton-translocation channels in mitochondrial complex I. Biochemical and homology protein structure modeling analyses demonstrated that five amino acid substitutions in ND1, ND5, and ND6 might have influenced the performance of protein-protein interaction among subunits of complex I, and three substitutions in CYTB and ATP6 might have influenced the performance of metabolic regulatory chain. These findings suggest metabolic adaptations in the mitogenome of woolly mammoths in relation to extreme environments and provide a basis for further tests on the significance of the variations on other systems.

RevDate: 2019-12-18
CmpDate: 2019-10-08

Gerlitz M, Knopp M, Kapust N, et al (2018)

Elusive data underlying debate at the prokaryote-eukaryote divide.

Biology direct, 13(1):21.

BACKGROUND: The origin of eukaryotic cells was an important transition in evolution. The factors underlying the origin and evolutionary success of the eukaryote lineage are still discussed. One camp argues that mitochondria were essential for eukaryote origin because of the unique configuration of internalized bioenergetic membranes that they conferred to the common ancestor of all known eukaryotic lineages. A recent paper by Lynch and Marinov concluded that mitochondria were energetically irrelevant to eukaryote origin, a conclusion based on analyses of previously published numbers of various molecules and ribosomes per cell and cell volumes as a presumed proxy for the role of mitochondria in evolution. Their numbers were purportedly extracted from the literature.

RESULTS: We have examined the numbers upon which the recent study was based. We report that for a sample of 80 numbers that were purportedly extracted from the literature and that underlie key inferences of the recent study, more than 50% of the values do not exist in the cited papers to which the numbers are attributed. The published result cannot be independently reproduced. Other numbers that the recent study reports differ inexplicably from those in the literature to which they are ascribed. We list the discrepancies between the recently published numbers and the purported literature sources of those numbers in a head to head manner so that the discrepancies are readily evident, although the source of error underlying the discrepancies remains obscure.

CONCLUSION: The data purportedly supporting the view that mitochondria had no impact upon eukaryotic evolution data exhibits notable irregularities. The paper in question evokes the impression that the published numbers are of up to seven significant digit accuracy, when in fact more than half the numbers are nowhere to be found in the literature to which they are attributed. Though the reasons for the discrepancies are unknown, it is important to air these issues, lest the prominent paper in question become a point source of a snowballing error through the literature or become interpreted as a form of evidence that mitochondria were irrelevant to eukaryote evolution.

REVIEWERS: This article was reviewed by Eric Bapteste, Jianzhi Zhang and Martin Lercher.

RevDate: 2020-09-30
CmpDate: 2020-02-10

Montooth KL, Dhawanjewar AS, CD Meiklejohn (2019)

Temperature-Sensitive Reproduction and the Physiological and Evolutionary Potential for Mother's Curse.

Integrative and comparative biology, 59(4):890-899.

Strict maternal transmission of mitochondrial DNA (mtDNA) is hypothesized to permit the accumulation of mitochondrial variants that are deleterious to males but not females, a phenomenon called mother's curse. However, direct evidence that mtDNA mutations exhibit such sexually antagonistic fitness effects is sparse. Male-specific mutational effects can occur when the physiological requirements of the mitochondria differ between the sexes. Such male-specific effects could potentially occur if sex-specific cell types or tissues have energy requirements that are differentially impacted by mutations affecting energy metabolism. Here we summarize findings from a model mitochondrial-nuclear incompatibility in the fruit fly Drosophila that demonstrates sex-biased effects, but with deleterious effects that are generally larger in females. We present new results showing that the mitochondrial-nuclear incompatibility does negatively affect male fertility, but only when males are developed at high temperatures. The temperature-dependent male sterility can be partially rescued by diet, suggesting an energetic basis. Finally, we discuss fruitful paths forward in understanding the physiological scope for sex-specific effects of mitochondrial mutations in the context of the recent discovery that many aspects of metabolism are sexually dimorphic and downstream of sex-determination pathways in Drosophila. A key parameter of these models that remains to be quantified is the fraction of mitochondrial mutations with truly male-limited fitness effects across extrinsic and intrinsic environments. Given the energy demands of reproduction in females, only a small fraction of the mitochondrial mutational spectrum may have the potential to contribute to mother's curse in natural populations.

RevDate: 2021-05-03
CmpDate: 2020-02-25

Reis LMD, Adamoski D, Ornitz Oliveira Souza R, et al (2019)

Dual inhibition of glutaminase and carnitine palmitoyltransferase decreases growth and migration of glutaminase inhibition-resistant triple-negative breast cancer cells.

The Journal of biological chemistry, 294(24):9342-9357.

Triple-negative breast cancers (TNBCs) lack progesterone and estrogen receptors and do not have amplified human epidermal growth factor receptor 2, the main therapeutic targets for managing breast cancer. TNBCs have an altered metabolism, including an increased Warburg effect and glutamine dependence, making the glutaminase inhibitor CB-839 therapeutically promising for this tumor type. Accordingly, CB-839 is currently in phase I/II clinical trials. However, not all TNBCs respond to CB-839 treatment, and the tumor resistance mechanism is not yet fully understood. Here we classified cell lines as CB-839-sensitive or -resistant according to their growth responses to CB-839. Compared with sensitive cells, resistant cells were less glutaminolytic and, upon CB-839 treatment, exhibited a smaller decrease in ATP content and less mitochondrial fragmentation, an indicator of poor mitochondrial health. Transcriptional analyses revealed that the expression levels of genes linked to lipid metabolism were altered between sensitive and resistant cells and between breast cancer tissues (available from The Cancer Genome Atlas project) with low versus high glutaminase (GLS) gene expression. Of note, CB-839-resistant TNBC cells had increased carnitine palmitoyltransferase 2 (CPT2) protein and CPT1 activity levels. In agreement, CB-839-resistant TNBC cells mobilized more fatty acids into mitochondria for oxidation, which responded to AMP-activated protein kinase and acetyl-CoA carboxylase signaling. Moreover, chemical inhibition of both glutaminase and CPT1 decreased cell proliferation and migration of CB-839-resistant cells compared with single inhibition of each enzyme. We propose that dual targeting of glutaminase and CPT1 activities may have therapeutic relevance for managing CB-839-resistant tumors.

RevDate: 2020-06-10
CmpDate: 2020-06-10

Zimorski V, Mentel M, Tielens AGM, et al (2019)

Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation.

Free radical biology & medicine, 140:279-294.

Eukaryotes arose about 1.6 billion years ago, at a time when oxygen levels were still very low on Earth, both in the atmosphere and in the ocean. According to newer geochemical data, oxygen rose to approximately its present atmospheric levels very late in evolution, perhaps as late as the origin of land plants (only about 450 million years ago). It is therefore natural that many lineages of eukaryotes harbor, and use, enzymes for oxygen-independent energy metabolism. This paper provides a concise overview of anaerobic energy metabolism in eukaryotes with a focus on anaerobic energy metabolism in mitochondria. We also address the widespread assumption that oxygen improves the overall energetic state of a cell. While it is true that ATP yield from glucose or amino acids is increased in the presence of oxygen, it is also true that the synthesis of biomass costs thirteen times more energy per cell in the presence of oxygen than in anoxic conditions. This is because in the reaction of cellular biomass with O2, the equilibrium lies very far on the side of CO2. The absence of oxygen offers energetic benefits of the same magnitude as the presence of oxygen. Anaerobic and low oxygen environments are ancient. During evolution, some eukaryotes have specialized to life in permanently oxic environments (life on land), other eukaryotes have remained specialized to low oxygen habitats. We suggest that the Km of mitochondrial cytochrome c oxidase of 0.1-10 μM for O2, which corresponds to about 0.04%-4% (avg. 0.4%) of present atmospheric O2 levels, reflects environmental O2 concentrations that existed at the time that the eukaryotes arose.

RevDate: 2019-04-23
CmpDate: 2019-04-23

Vays VB, Vangeli IM, Eldarov CM, et al (2019)

Mitochondria in Obliquely Striated Muscles of the Horsehair Worm Gordionus alpestris (Nematomorpha, Gordioidea) with Structural Organization Typical of Cells with Energy-Intensive Processes.

Biochemistry. Biokhimiia, 84(1):56-61.

The ultrastructure of mitochondria in the flattened circomyarian fibers of the horsehair worm Gordionus alpestris (Nemathelminthes) was examined. In contrast to the previously published data, we showed these mitochondria to be giant elongated organelles that densely fill the central cytoplasmic space of the ribbon-like muscle fibers. No fundamental differences were found in the ultrastructure of the muscle tissue mitochondria in actively moving free-living and parasitic G. alpestris worms. The functional significance of the observed ultrastructural organization of mitochondria is discussed in connection with the necessity for an extended mitochondrial membrane system for a uniform supply of active muscle tissue with energy.

RevDate: 2020-02-25
CmpDate: 2019-06-13

Shin MK, JH Cheong (2019)

Mitochondria-centric bioenergetic characteristics in cancer stem-like cells.

Archives of pharmacal research, 42(2):113-127.

Metabolic and genotoxic stresses that arise during tumor progression and anti-cancer treatment, respectively, can impose a selective pressure to promote cancer evolution in the tumor microenvironment. This process ultimately selects for the most "fit" clones, which generally have a cancer stem cell like phenotype with features of drug resistance, epithelial-mesenchymal transition, invasiveness, and high metastatic potential. From a bioenergetics perspective, these cancer stem-like cells (CSCs) exhibit mitochondria-centric energy metabolism and are capable of opportunistically utilizing available nutrients such as fatty acids to generate ATP and other metabolic substances, providing a selective advantage for their survival in an impermissible environment and metabolic context. Thus, diverse therapeutic strategies are needed to efficiently tackle these CSCs and eliminate their advantage. Here, we review the metabolic and bioenergetic characteristics and vulnerabilities specific to CSCs, which can provide an unprecedented opportunity to curb CSC-driven cancer mortality rates. We particularly focus on the potential of a CSC bioenergetics-targeted strategy as a versatile therapeutic component of treatment modalities applicable to most cancer types. A cancer bioenergetics-targeted strategy can expand the inventory of combinatorial regimens in the current anti-cancer armamentarium.

RevDate: 2020-09-30
CmpDate: 2020-02-27

Broddrick JT, Du N, Smith SR, et al (2019)

Cross-compartment metabolic coupling enables flexible photoprotective mechanisms in the diatom Phaeodactylum tricornutum.

The New phytologist, 222(3):1364-1379.

Photoacclimation consists of short- and long-term strategies used by photosynthetic organisms to adapt to dynamic light environments. Observable photophysiology changes resulting from these strategies have been used in coarse-grained models to predict light-dependent growth and photosynthetic rates. However, the contribution of the broader metabolic network, relevant to species-specific strategies and fitness, is not accounted for in these simple models. We incorporated photophysiology experimental data with genome-scale modeling to characterize organism-level, light-dependent metabolic changes in the model diatom Phaeodactylum tricornutum. Oxygen evolution and photon absorption rates were combined with condition-specific biomass compositions to predict metabolic pathway usage for cells acclimated to four different light intensities. Photorespiration, an ornithine-glutamine shunt, and branched-chain amino acid metabolism were hypothesized as the primary intercompartment reductant shuttles for mediating excess light energy dissipation. Additionally, simulations suggested that carbon shunted through photorespiration is recycled back to the chloroplast as pyruvate, a mechanism distinct from known strategies in photosynthetic organisms. Our results suggest a flexible metabolic network in P. tricornutum that tunes intercompartment metabolism to optimize energy transport between the organelles, consuming excess energy as needed. Characterization of these intercompartment reductant shuttles broadens our understanding of energy partitioning strategies in this clade of ecologically important primary producers.

RevDate: 2019-11-08
CmpDate: 2019-07-17

Lynch M, GK Marinov (2018)

Response to Martin and colleagues: mitochondria do not boost the bioenergetic capacity of eukaryotic cells.

Biology direct, 13(1):26.

A recent paper by (Gerlitz et al., Biol Direct 13:21, 2018) questions the validity of the data underlying prior analyses on the bioenergetics capacities of cells, and continues to promote the idea that the mitochondrion endowed eukaryotic cells with energetic superiority over prokaryotes. The former point has been addressed previously, with no resultant changes in the conclusions, and the latter point remains inconsistent with multiple lines of empirical data.

RevDate: 2021-01-09
CmpDate: 2020-03-30

Tsakiri EN, Gumeni S, Iliaki KK, et al (2019)

Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation.

Aging cell, 18(1):e12845.

Metazoans viability depends on their ability to regulate metabolic processes and also to respond to harmful challenges by mounting anti-stress responses; these adaptations were fundamental forces during evolution. Central to anti-stress responses are a number of short-lived transcription factors that by functioning as stress sensors mobilize genomic responses aiming to eliminate stressors. We show here that increased expression of nuclear factor erythroid 2-related factor (Nrf2) in Drosophila activated cytoprotective modules and enhanced stress tolerance. However, while mild Nrf2 activation extended lifespan, high Nrf2 expression levels resulted in developmental lethality or, after inducible activation in adult flies, in altered mitochondrial bioenergetics, the appearance of Diabetes Type 1 hallmarks and aging acceleration. Genetic or dietary suppression of Insulin/IGF-like signaling (IIS) titrated Nrf2 activity to lower levels, largely normalized metabolic pathways signaling, and extended flies' lifespan. Thus, prolonged stress signaling by otherwise cytoprotective short-lived stress sensors perturbs IIS resulting in re-allocation of resources from growth and longevity to somatic preservation and stress tolerance. These findings provide a reasonable explanation of why most (if not all) cytoprotective stress sensors are short-lived proteins, and it also explains the build-in negative feedback loops (shown here for Nrf2); the low basal levels of these proteins, and why their suppressors were favored by evolution.

RevDate: 2020-03-09
CmpDate: 2019-11-08

Xie B, Wang S, Jiang N, et al (2019)

Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance.

Cancer letters, 443:56-66.

A mammalian cell houses two genomes located separately in the nucleus and mitochondria. During evolution, communications and adaptations between these two genomes occur extensively to achieve and sustain homeostasis for cellular functions and regeneration. Mitochondria provide the major cellular energy and contribute to gene regulation in the nucleus, whereas more than 98% of mitochondrial proteins are encoded by the nuclear genome. Such two-way signaling traffic presents an orchestrated dynamic between energy metabolism and consumption in cells. Recent reports have elucidated the way how mitochondrial bioenergetics synchronizes with the energy consumption for cell cycle progression mediated by cyclin B1/CDK1 as the communicator. This review is to recapitulate cyclin B1/CDK1 mediated mitochondrial activities in cell cycle progression and stress response as well as its potential link to reprogram energy metabolism in tumor adaptive resistance. Cyclin B1/CDK1-mediated mitochondrial bioenergetics is applied as an example to show how mitochondria could timely sense the cellular fuel demand and then coordinate ATP output. Such nucleus-mitochondria oscillation may play key roles in the flexible bioenergetics required for tumor cell survival and compromising the efficacy of anti-cancer therapy. Further deciphering the cyclin B1/CDK1-controlled mitochondrial metabolism may invent effect targets to treat resistant cancers.

RevDate: 2020-06-16
CmpDate: 2020-06-16

Aw WC, Garvin MR, JWO Ballard (2019)

Exogenous Factors May Differentially Influence the Selective Costs of mtDNA Mutations.

Advances in anatomy, embryology, and cell biology, 231:51-74.

In this review, we provide evidence to suggest that the cost of specific mtDNA mutations can be influenced by exogenous factors. We focus on macronutrient-mitochondrial DNA interactions as factors that may differentially influence the consequences of a change as mitochondria must be flexible in its utilization of dietary proteins, carbohydrates, and fats. To understand this fundamental dynamic, we briefly discuss the energy processing pathways in mitochondria. Next, we explore the mitochondrial functions that are initiated during energy deficiency or when cells encounter cellular stress. We consider the anterograde response (nuclear control of mitochondrial function) and the retrograde response (nuclear changes in response to mitochondrial signaling) and how this mito-nuclear crosstalk may be influenced by exogenous factors such as temperature and diet. Finally, we employ Complex I of the mitochondrial electron transport system as a case study and discuss the potential role of the dietary macronutrient ratio as a strong selective force that may shape the frequencies of mitotypes in populations and species. We conclude that this underexplored field likely has implications in the fundamental disciplines of evolutionary biology and quantitative genetics and the more biomedical fields of nutrigenomics and pharmacogenomics.

RevDate: 2019-12-17
CmpDate: 2019-12-16

Hampl V, Čepička I, M Eliáš (2019)

Was the Mitochondrion Necessary to Start Eukaryogenesis?.

Trends in microbiology, 27(2):96-104.

Arguments based on cell energetics favour the view that a mitochondrion capable of oxidative phosphorylation was a prerequisite for the evolution of other features of the eukaryotic cell, including increased volume, genome size and, eventually, phagotrophy. Contrary to this we argue that: (i) extant amitochondriate eukaryotes possess voluminous phagotrophic cells with large genomes; (ii) picoeukaryotes demonstrate that phagotrophy is feasible at prokaryotic cell sizes; and (iii) the assumption that evolution of complex features requires extra ATP, often mentioned in this context, is unfounded and should not be used in such considerations. We claim that the diversity of cell organisations and functions observed today in eukaryotes gives no reason to postulate that a mitochondrion must have preceded phagocytosis in eukaryogenesis.

RevDate: 2020-09-30
CmpDate: 2019-03-11

Hood WR, Austad SN, Bize P, et al (2018)

The Mitochondrial Contribution to Animal Performance, Adaptation, and Life-History Variation.

Integrative and comparative biology, 58(3):480-485.

Animals display tremendous variation in their rates of growth, reproductive output, and longevity. While the physiological and molecular mechanisms that underlie this variation remain poorly understood, the performance of the mitochondrion has emerged as a key player. Mitochondria not only impact the performance of eukaryotes via their capacity to produce ATP, but they also play a role in producing heat and reactive oxygen species and function as a major signaling hub for the cell. The papers included in this special issue emerged from a symposium titled "Inside the Black Box: The Mitochondrial Basis of Life-history Variation and Animal Performance." Based on studies of diverse animal taxa, three distinct themes emerged from these papers. (1) When linking mitochondrial function to components of fitness, it is crucial that mitochondrial assays are performed in conditions as close as the intracellular conditions experienced by the mitochondria in vivo. (2) Functional plasticity allows mitochondria to retain their performance, as well as that of their host, over a range of exogenous conditions, and selection on mitochondrial and nuclear-derived proteins can optimize the match between the environment and the bioenergetic capacity of the mitochondrion. Finally, (3) studies of wild and wild-derived animals suggest that mitochondria play a central role in animal performance and life history strategy. Taken as a whole, we hope that these papers will foster discussion and inspire new hypotheses and innovations that will further our understanding of the mitochondrial processes that underlie variation in life history traits and animal performance.

RevDate: 2020-05-16
CmpDate: 2019-02-25

Pustylnikov S, Costabile F, Beghi S, et al (2018)

Targeting mitochondria in cancer: current concepts and immunotherapy approaches.

Translational research : the journal of laboratory and clinical medicine, 202:35-51.

An essential advantage during eukaryotic cell evolution was the acquisition of a network of mitochondria as a source of energy for cell metabolism and contrary to conventional wisdom, functional mitochondria are essential for the cancer cell. Multiple aspects of mitochondrial biology beyond bioenergetics support transformation including mitochondrial biogenesis, fission and fusion dynamics, cell death susceptibility, oxidative stress regulation, metabolism, and signaling. In cancer, the metabolism of cells is reprogrammed for energy generation from oxidative phosphorylation to aerobic glycolysis and impacts cancer mitochondrial function. Furthermore cancer cells can also modulate energy metabolism within the cancer microenvironment including immune cells and induce "metabolic anergy" of antitumor immune response. Classical approaches targeting the mitochondria of cancer cells usually aim at inducing changing energy metabolism or directly affecting functions of mitochondrial antiapoptotic proteins but most of such approaches miss the required specificity of action and carry important side effects. Several types of cancers harbor somatic mitochondrial DNA mutations and specific immune response to mutated mitochondrial proteins has been observed. An attractive alternative way to target the mitochondria in cancer cells is the induction of an adaptive immune response against mutated mitochondrial proteins. Here, we review the cancer cell-intrinsic and cell-extrinsic mechanisms through which mitochondria influence all steps of oncogenesis, with a focus on the therapeutic potential of targeting mitochondrial DNA mutations or Tumor Associated Mitochondria Antigens using the immune system.

RevDate: 2019-02-15
CmpDate: 2019-02-04

Río Bártulos C, Rogers MB, Williams TA, et al (2018)

Mitochondrial Glycolysis in a Major Lineage of Eukaryotes.

Genome biology and evolution, 10(9):2310-2325.

The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.

RevDate: 2019-05-06
CmpDate: 2019-05-06

Salunke R, Mourier T, Banerjee M, et al (2018)

Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii.

PLoS biology, 16(7):e2006128.

The mitochondrial F-type ATP synthase, a multisubunit nanomotor, is critical for maintaining cellular ATP levels. In T. gondii and other apicomplexan parasites, many subunit components necessary for proper assembly and functioning of this enzyme appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomeric (approximately 600 kDa) and dimeric (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits a, b, and d can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid, and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex could facilitate the development of novel antiparasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.

RevDate: 2019-05-13
CmpDate: 2019-05-13

Kasperski A, R Kasperska (2018)

Bioenergetics of life, disease and death phenomena.

Theory in biosciences = Theorie in den Biowissenschaften, 137(2):155-168.

In this article, some new aspects of unified cell bioenergetics are presented. From the perspective of unified cell bioenergetics certain subsequent stages of cancer development, from initiation stage, through transformation to metastasis, are analyzed. Here we show that after transformation, cancer cells are permanently exposed to reactive oxygen species, that causes continual random DNA mutations and as a result genome and chromosomal destabilizations. The modern cancer attractor hypothesis has been extended in explaining cancer development. Discussion is conducted in light of current cancerogenesis research, including bioenergetic cancer initiation, the somatic mutation theory and the tissue organization field theory. In the article reasons complicating the discovery of patterns of cancer genome changes and cancer evolution are presented. In addition certain cancer therapeutic aspects are given attention to.

RevDate: 2019-04-01
CmpDate: 2019-04-01

Rolland N, Bouchnak I, Moyet L, et al (2018)

The Main Functions of Plastids.

Methods in molecular biology (Clifton, N.J.), 1829:73-85.

Plastids are semiautonomous organelles like mitochondria, and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.

RevDate: 2019-02-16
CmpDate: 2018-08-24

Bilz NC, Jahn K, Lorenz M, et al (2018)

Rubella Viruses Shift Cellular Bioenergetics to a More Oxidative and Glycolytic Phenotype with a Strain-Specific Requirement for Glutamine.

Journal of virology, 92(17):.

The flexible regulation of cellular metabolic pathways enables cellular adaptation to changes in energy demand under conditions of stress such as posed by a virus infection. To analyze such an impact on cellular metabolism, rubella virus (RV) was used in this study. RV replication under selected substrate supplementation with glucose, pyruvate, and glutamine as essential nutrients for mammalian cells revealed its requirement for glutamine. The assessment of the mitochondrial respiratory (based on the oxygen consumption rate) and glycolytic (based on the extracellular acidification rate) rate and capacity by respective stress tests through Seahorse technology enabled determination of the bioenergetic phenotype of RV-infected cells. Irrespective of the cellular metabolic background, RV infection induced a shift of the bioenergetic state of epithelial cells (Vero and A549) and human umbilical vein endothelial cells to a higher oxidative and glycolytic level. Interestingly there was a RV strain-specific, but genotype-independent demand for glutamine to induce a significant increase in metabolic activity. While glutaminolysis appeared to be rather negligible for RV replication, glutamine could serve as donor of its amide nitrogen in biosynthesis pathways for important metabolites. This study suggests that the capacity of RVs to induce metabolic alterations could evolve differently during natural infection. Thus, changes in cellular bioenergetics represent an important component of virus-host interactions and could complement our understanding of the viral preference for a distinct host cell population.IMPORTANCE RV pathologies, especially during embryonal development, could be connected with its impact on mitochondrial metabolism. With bioenergetic phenotyping we pursued a rather novel approach in virology. For the first time it was shown that a virus infection could shift the bioenergetics of its infected host cell to a higher energetic state. Notably, the capacity to induce such alterations varied among different RV isolates. Thus, our data add viral adaptation of cellular metabolic activity to its specific needs as a novel aspect to virus-host evolution. In addition, this study emphasizes the implementation of different viral strains in the study of virus-host interactions and the use of bioenergetic phenotyping of infected cells as a biomarker for virus-induced pathological alterations.

RevDate: 2020-09-30
CmpDate: 2019-03-11

Buchanan JL, Meiklejohn CD, KL Montooth (2018)

Mitochondrial Dysfunction and Infection Generate Immunity-Fecundity Tradeoffs in Drosophila.

Integrative and comparative biology, 58(3):591-603.

Physiological responses to short-term environmental stressors, such as infection, can have long-term consequences for fitness, particularly if the responses are inappropriate or nutrient resources are limited. Genetic variation affecting energy acquisition, storage, and usage can limit cellular energy availability and may influence resource-allocation tradeoffs even when environmental nutrients are plentiful. Here, we utilized Drosophila mitochondrial-nuclear genotypes to test whether disrupted mitochondrial function interferes with nutrient-sensing pathways, and whether this disruption has consequences for tradeoffs between immunity and fecundity. We found that an energetically-compromised genotype was relatively resistant to rapamycin-a drug that targets nutrient-sensing pathways and mimics resource limitation. Dietary resource limitation decreased survival of energetically-compromised flies. Furthermore, survival of infection with a natural pathogen was decreased in this genotype, and females of this genotype experienced immunity-fecundity tradeoffs that were not evident in genotypic controls with normal energy metabolism. Together, these results suggest that this genotype may have little excess energetic capacity and fewer cellular nutrients, even when environmental nutrients are not limiting. Genetic variation in energy metabolism may therefore act to limit the resources available for allocation to life-history traits in ways that generate tradeoffs even when environmental resources are not limiting.

RevDate: 2018-11-14
CmpDate: 2018-10-30

Liu W, Hu C, Xie W, et al (2018)

The mitochondrial genome of red-necked phalarope Phalaropus lobatus (Charadriiformes: Scolopacidae) and phylogeny analysis among Scolopacidae.

Genes & genomics, 40(5):455-463.

The red-necked phalarope is a wonderful species with specific morphological characters and lifestyles. Mitochondrial genomes, encoding necessary proteins involved in the system of energy metabolism, are important for the evolution and adaption of species. In this study, we determined the complete mitogenome sequence of Phalaropus lobatus (Charadriiformes: Scolopacidae). The circular genome is 16714 bp in size, containing 13 PCGs, two ribosomal RNAs and 22 tRNAs and a high AT-rich control region. The AT skew and GC skew of major strand is positive and negative respectively. Most of PCGs are biased towards A-rich except ND1. A codon usage analysis shows that 3 start codons (ATG, GTG and ATA), 4 stop codons (TAA, TAG, AGG, AGA) and two incomplete terminate codons (T-). Twenty two transfer RNAs have the typical cloverleaf structure, and a total of ten base pairs are mismatched throughout the nine tRNA genes. The phylogenetic tree based on 13 PCGs and 2 rRNA genes indicates that monophyly of the family and genus Phalaropus is close to genus Xenus plus Tringa. The analysis of selective pressure shows 13 protein-coding genes are evolving under the purifying selection and P. lobatus is different from other Scolopacidae species on the selective pressure of gene ND4. This study helps us know the inherent mechanism of mitochondrial structure and natural selection.

RevDate: 2020-09-30
CmpDate: 2019-03-11

Scott GR, Guo KH, NJ Dawson (2018)

The Mitochondrial Basis for Adaptive Variation in Aerobic Performance in High-Altitude Deer Mice.

Integrative and comparative biology, 58(3):506-518.

Mitochondria play a central role in aerobic performance. Studies aimed at elucidating how evolved variation in mitochondrial physiology contributes to adaptive variation in aerobic performance can therefore provide a unique and powerful lens to understanding the evolution of complex physiological traits. Here, we review our ongoing work on the importance of changes in mitochondrial quantity and quality to adaptive variation in aerobic performance in high-altitude deer mice. Whole-organism aerobic capacity in hypoxia (VO2max) increases in response to hypoxia acclimation in this species, but high-altitude populations have evolved consistently greater VO2max than populations from low altitude. The evolved increase in VO2max in highlanders is associated with an evolved increase in the respiratory capacity of the gastrocnemius muscle. This appears to result from highlanders having more mitochondria in this tissue, attributed to a higher proportional abundance of oxidative fiber-types and a greater mitochondrial volume density within oxidative fibers. The latter is primarily caused by an over-abundance of subsarcolemmal mitochondria in high-altitude mice, which is likely advantageous for mitochondrial O2 supply because more mitochondria are situated adjacent to the cell membrane and close to capillaries. Evolved changes in gastrocnemius phenotype appear to be underpinned by population differences in the expression of genes involved in energy metabolism, muscle development, and vascular development. Hypoxia acclimation has relatively little effect on respiratory capacity of the gastrocnemius, but it increases respiratory capacity of the diaphragm. However, the mechanisms responsible for this increase differ between populations: lowlanders appear to adjust mitochondrial quantity and quality (i.e., increases in citrate synthase [CS] activity, and mitochondrial respiration relative to CS activity) and they exhibit higher rates of mitochondrial release of reactive oxygen species, whereas highlanders only increase mitochondrial quantity in response to hypoxia acclimation. In contrast to the variation in skeletal muscles, the respiratory capacity of cardiac muscle does not appear to be affected by hypoxia acclimation and varies little between populations. Therefore, evolved changes in mitochondrial quantity and quality make important tissue-specific contributions to adaptive variation in aerobic performance in high-altitude deer mice.

RevDate: 2021-01-09
CmpDate: 2018-12-18

Darbani B, Kell DB, I Borodina (2018)

Energetic evolution of cellular Transportomes.

BMC genomics, 19(1):418.

BACKGROUND: Transporter proteins mediate the translocation of substances across the membranes of living cells. Many transport processes are energetically expensive and the cells use 20 to 60% of their energy to power the transportomes. We hypothesized that there may be an evolutionary selection pressure for lower energy transporters.

RESULTS: We performed a genome-wide analysis of the compositional reshaping of the transportomes across the kingdoms of bacteria, archaea, and eukarya. We found that the share of ABC transporters is much higher in bacteria and archaea (ca. 27% of the transportome) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5-6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants with (ca. 13%), when compared to bacteria and archaea with only 6-7%. Therefore, our results show a move to a preference for the low-energy-demanding transporters (ion channels and carriers) over the more energy-costly transporter classes (ATP-dependent families, and ABCs in particular) as part of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues of modern mitochondrial solute carriers.

CONCLUSIONS: The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important in the development of tissues performing energetically costly cellular functions.

RevDate: 2018-12-11
CmpDate: 2018-12-11

van der Hoek MD, Madsen O, Keijer J, et al (2018)

Evolutionary analysis of the carnitine- and choline acyltransferases suggests distinct evolution of CPT2 versus CPT1 and related variants.

Biochimica et biophysica acta. Molecular and cell biology of lipids, 1863(8):909-918.

Carnitine/choline acyltransferases play diverse roles in energy metabolism and neuronal signalling. Our knowledge of their evolutionary relationships, important for functional understanding, is incomplete. Therefore, we aimed to determine the evolutionary relationships of these eukaryotic transferases. We performed extensive phylogenetic and intron position analyses. We found that mammalian intramitochondrial CPT2 is most closely related to cytosolic yeast carnitine transferases (Sc-YAT1 and 2), whereas the other members of the family are related to intraorganellar yeast Sc-CAT2. Therefore, the cytosolically active CPT1 more closely resembles intramitochondrial ancestors than CPT2. The choline acetyltransferase is closely related to carnitine acetyltransferase and shows lower evolutionary rates than long chain acyltransferases. In the CPT1 family several duplications occurred during animal radiation, leading to the isoforms CPT1A, CPT1B and CPT1C. In addition, we found five CPT1-like genes in Caenorhabditis elegans that strongly group to the CPT1 family. The long branch leading to mammalian brain isoform CPT1C suggests that either strong positive or relaxed evolution has taken place on this node. The presented evolutionary delineation of carnitine/choline acyltransferases adds to current knowledge on their functions and provides tangible leads for further experimental research.

RevDate: 2019-01-24
CmpDate: 2018-08-27

Mansilla N, Racca S, Gras DE, et al (2018)

The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants.

International journal of molecular sciences, 19(3):.

Mitochondrial respiration is an energy producing process that involves the coordinated action of several protein complexes embedded in the inner membrane to finally produce ATP. Complex IV or Cytochrome c Oxidase (COX) is the last electron acceptor of the respiratory chain, involved in the reduction of O₂ to H₂O. COX is a multimeric complex formed by multiple structural subunits encoded in two different genomes, prosthetic groups (heme a and heme a₃), and metallic centers (CuA and CuB). Tens of accessory proteins are required for mitochondrial RNA processing, synthesis and delivery of prosthetic groups and metallic centers, and for the final assembly of subunits to build a functional complex. In this review, we perform a comparative analysis of COX composition and biogenesis factors in yeast, mammals and plants. We also describe possible external and internal factors controlling the expression of structural proteins and assembly factors at the transcriptional and post-translational levels, and the effect of deficiencies in different steps of COX biogenesis to infer the role of COX in different aspects of plant development. We conclude that COX assembly in plants has conserved and specific features, probably due to the incorporation of a different set of subunits during evolution.

RevDate: 2019-06-26
CmpDate: 2019-06-26

Yu H, Wang D, Zou L, et al (2018)

Proteomic alterations of brain subcellular organelles caused by low-dose copper exposure: implication for Alzheimer's disease.

Archives of toxicology, 92(4):1363-1382.

Excessive copper intake can lead to neurotoxicity, but there is a lack of comprehensive understanding on the potential impact of copper exposure especially at a low-dose on brain. We used 3xTg-AD mice to explore the potential neurotoxicity of chronic, low-dose copper treatment (0.13 ppm copper chloride in drinking water) on behavior and the brain hippocampal mitochondrial and nuclear proteome. Low-dose copper increased the spatial memory impairment of these animals, increased accumulation of intracellular amyloid 1-42 (Aβ1-42), decreased ATP content, increased the positive staining of 8-hydroxyguanosine (8-OHdG), a marker of DNA oxidative damage, and caused apoptosis and a decrease in synaptic proteins. Mitochondrial proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) revealed modulation of 24 hippocampal mitochondrial proteins (14 increased and 10 decreased) in copper-treated vs. untreated 3xTg-AD mice. Nuclear proteomic analysis revealed 43 modulated hippocampal nuclear proteins (25 increased and 18 decreased) in copper-treated 3xTg-AD vs. untreated mice. Classification of modulated mitochondrial and nuclear proteins included functional categories such as energy metabolism, synaptic-related proteins, DNA damage and apoptosis-related proteins, and oxidative stress-related proteins. Among these differentially expressed mitochondrial and nuclear proteins, nine proteins were abnormally expressed in both hippocampus mitochondria and nuclei, including electron transport chain-related proteins NADH dehydrogenase 1 alpha subcomplex subunit 10 (NDUAA), cytochrome b-c1 complex subunit Rieske (UCRI), cytochrome c oxidase subunit 5B (COX5B), and ATP synthase subunit d (ATP5H), glycolytic-related pyruvate kinase PKM (KPYM) and pyruvate dehydrogenase E1 component subunit alpha (ODPA). Furthermore, we found coenzyme Q10 (CoQ10), an endogenous mitochondrial protective factor/antioxidant, modulated the expression of 12 differentially expressed hippocampal proteins (4 increased and 8 decreased), which could be classified in functional categories such as glycolysis and synaptic-related proteins, oxidative stress-related proteins, implying that CoQ10 improved synaptic function, suppress oxidative stress, and regulate glycolysis. For the proteomics study, we validated the expression of several proteins related to synapses, DNA and apoptosis. The data confirmed that synapsin-2, a synaptic-related protein, was significantly decreased in both mitochondria and nuclei of copper-exposed 3xTg-AD mice. In mitochondria, dynamin-1 (DYN1), an apoptosis-related proteins, was significantly decreased. In the cellular nuclei, paraspeckle protein 1 (PSPC1) and purin-rich element-binding protein alpha (Purα), two DNA damage-related proteins, were significantly decreased and increased, respectively. We conclude that low-dose copper exposure exacerbates the spatial memory impairment of 3xTg-AD mice and perturbs multiple biological/pathogenic processes by dysregulating the mitochondrial and nuclear proteome. Exposure to copper might therefore contribute to the evolution of AD.

RevDate: 2019-02-15
CmpDate: 2019-02-15

Lane N (2018)

Hot mitochondria?.

PLoS biology, 16(1):e2005113.

Mitochondria generate most of the heat in endotherms. Given some impedance of heat transfer across protein-rich bioenergetic membranes, mitochondria must operate at a higher temperature than body temperature in mammals and birds. But exactly how much hotter has been controversial, with physical calculations suggesting that maximal heat gradients across cells could not be greater than 10(-5) K. Using the thermosensitive mitochondrial-targeted fluorescent dye Mito Thermo Yellow (MTY), Chrétien and colleagues suggest that mitochondria are optimised to nearly 50 °C, 10 °C hotter than body temperature. This extreme value questions what temperature really means in confined far-from-equilibrium systems but encourages a reconsideration of thermal biology.

RevDate: 2018-03-08
CmpDate: 2017-12-25

Dickerson T, Jauregui CE, Y Teng (2017)

Friend or foe? Mitochondria as a pharmacological target in cancer treatment.

Future medicinal chemistry, 9(18):2197-2210.

Mitochondria have acquired numerous functions over the course of evolution, such as those involved in controlling energy production, cellular metabolism, cell survival, apoptosis and autophagy within host cells. Tumor cells can develop defects in mitochondrial function, presenting a potential strategy for designing selective anticancer therapies. Therefore, cancer has been the main focus of recent research to uncover possible mitochondrial targets for therapeutic benefit. This comprehensive review covers not only the recent discoveries of the roles of mitochondria in cancer development, progression and therapeutic implications but also the findings regarding emerging mitochondrial therapeutic targets and mitochondria-targeted agents. Current challenges and future directions for developments and applications of mitochondrial-targeted therapeutics are also discussed.

RevDate: 2018-08-15
CmpDate: 2018-08-15

McDonald AE, Pichaud N, CA Darveau (2018)

"Alternative" fuels contributing to mitochondrial electron transport: Importance of non-classical pathways in the diversity of animal metabolism.

Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology, 224:185-194.

The study of glycolysis, the TCA cycle, and oxidative phosphorylation in animals has yielded a wealth of information about bioenergetics. Less is known about how animals use fuels other than glucose and less characterized enzymes that are also used to provide electrons to the electron transport system. It has become clear that bioenergetic flexibility is employed by a wide variety of animals in order to successfully grow, maintain cells, and reproduce, and has contributed to the exploitation of new environments and ecological niches through evolution. In most cases, the discovery of these "alternative" fuels and non-classical pathways is relatively recent, but is starting to call into question long believed paradigms about the diversity of animal bioenergetics. We present several specific examples of these "alternatives" and the animals that use them and present some implications for animal mitochondrial physiology research.

RevDate: 2019-12-10
CmpDate: 2019-01-24

Sun S, Hui M, Wang M, et al (2018)

The complete mitochondrial genome of the alvinocaridid shrimp Shinkaicaris leurokolos (Decapoda, Caridea): Insight into the mitochondrial genetic basis of deep-sea hydrothermal vent adaptation in the shrimp.

Comparative biochemistry and physiology. Part D, Genomics & proteomics, 25:42-52.

Deep-sea hydrothermal vent is one of the most extreme environments on Earth with low oxygen and high levels of toxins. Decapod species from the family Alvinocarididae have colonized and successfully adapted to this extremely harsh environment. Mitochondria plays a vital role in oxygen usage and energy metabolism, thus it may be under selection in the adaptive evolution of the hydrothermal vent shrimps. In this study, the mitochondrial genome (mitogenome) of alvinocaridid shrimp Shinkaicaris leurokolos (Kikuchi & Hashimoto, 2000) was determined through Illumina sequencing. The mitogenome of S. leurokolos was 15,903bp in length, containing 13 protein-coding genes, 2 rRNAs, and 22 tRNAs. The gene order and orientation were identical to those of sequenced alvinocaridids. It has the longest concatenated sequences of protein-coding genes, tRNAs and shortest pooled rRNAs among the alvinocaridids. The control regions (CRs) of alvinocaridid were significantly longer (p<0.01) than those of the other caridaen. The alignment of the alvinocaridid CRs revealed two conserved sequence blocks (CSBs), and each of the CSBs included a noncanonical open reading frame (ORF), which may be involved in adjusting mitochondrial energy metabolism to adapt to the hydrothermal environment. Phylogenetic analysis supported that the deep-sea hydrothermal vent shrimps may have originated from those living in shallow area. Positive selection analysis reveals the evidence of adaptive change in the mitogenome of Alvinocarididae. Thirty potentially important adaptive residues were identified, which were located in atp6, cox1, cox3, cytb and nad1-5. This study explores the mitochondrial genetic basis of hydrothermal vent adaptation in alvinocaridid for the first time, and provides valuable clues regarding the adaptation.

RevDate: 2020-09-30

Dobson GP, Arsyad A, HL Letson (2017)

The Adenosine Hypothesis Revisited: Modulation of Coupling between Myocardial Perfusion and Arterial Compliance.

Frontiers in physiology, 8:824.

For over four decades the thoracic aortic ring model has become one of the most widely used methods to study vascular reactivity and electromechanical coupling. A question that is rarely asked, however, is what function does a drug-mediated relaxation (or contraction) in this model serve in the intact system? The physiological significance of adenosine relaxation in rings isolated from large elastic conduit arteries from a wide range of species remains largely unknown. We propose that adenosine relaxation increases aortic compliance in acute stress states and facilitates ventricular-arterial (VA) coupling, and thereby links compliance and coronary artery perfusion to myocardial energy metabolism. In 1963 Berne argued that adenosine acts as a local negative feedback regulator between oxygen supply and demand in the heart during hypoxic/ischemic stress. The adenosine VA coupling hypothesis extends and enhances Berne's "adenosine hypothesis" from a local regulatory scheme in the heart to include conduit arterial function. In multicellular organisms, evolution may have selected adenosine, nitric oxide, and other vascular mediators, to modulate VA coupling for optimal transfer of oxygen (and nutrients) from the lung, heart, large conduit arteries, arterioles and capillaries to respiring mitochondria. Finally, a discussion of the potential clinical significance of adenosine modulation of VA coupling is extended to vascular aging and disease, including hypertension, diabetes, obesity, coronary artery disease and heart failure.

RevDate: 2018-10-10
CmpDate: 2018-07-05

Bombaça ACS, Dias FA, Ennes-Vidal V, et al (2017)

Hydrogen peroxide resistance in Strigomonas culicis: Effects on mitochondrial functionality and Aedes aegypti interaction.

Free radical biology & medicine, 113:255-266.

Reactive oxygen species (ROS) are toxic molecules involved in several biological processes such as cellular signaling, proliferation, differentiation and cell death. Adaptations to oxidative environments are crucial for the success of the colonization of insects by protozoa. Strigomonas culicis is a monoxenic trypanosomatid found in the midgut of mosquitoes and presenting a life cycle restricted to the epimastigote form. Among S. culicis peculiarities, there is an endosymbiotic bacterium in the cytoplasm, which completes essential biosynthetic routes of the host cell and may represent an intermediary evolutive step in organelle origin, thus constituting an interesting model for evolutive researches. In this work, we induced ROS resistance in wild type S. culicis epimastigotes by the incubation with increasing concentrations of hydrogen peroxide (H2O2), and compared the oxidative and energetic metabolisms among wild type, wild type-H2O2 resistant and aposymbiotic strains. Resistant protozoa were less sensitive to the oxidative challenge and more dependent on oxidative phosphorylation, which was demonstrated by higher oxygen consumption and mitochondrial membrane potential, increased activity of complexes II-III and IV, increased complex II gene expression and higher ATP production. Furthermore, the wild type-H2O2 resistant strain produced reduced ROS levels and showed lower lipid peroxidation, as well as an increase in gene expression of antioxidant enzymes and thiol-dependent peroxidase activity. On the other hand, the aposymbiotic strain showed impaired mitochondrial function, higher H2O2 production and deficient antioxidant response. The induction of H2O2 resistance also led to a remarkable increase in Aedes aegypti midgut binding in vitro and colonization in vivo, indicating that both the pro-oxidant environment in the mosquito gut and the oxidative stress susceptibility regulate S. culicis population in invertebrates.

RevDate: 2020-09-30

Wiens L, Banh S, Sotiri E, et al (2017)

Comparison of Mitochondrial Reactive Oxygen Species Production of Ectothermic and Endothermic Fish Muscle.

Frontiers in physiology, 8:704.

Recently we demonstrated that the capacity of isolated muscle mitochondria to produce reactive oxygen species, measured as H2O2 efflux, is temperature-sensitive in isolated muscle mitochondria of ectothermic fish and the rat, a representative endothermic mammal. However, at physiological temperatures (15° and 37°C for the fish and rat, respectively), the fraction of total mitochondrial electron flux that generated H2O2, the fractional electron leak (FEL), was far lower in the rat than in fish. Those results suggested that the elevated body temperatures associated with endothermy may lead to a compensatory decrease in mitochondrial ROS production relative to respiratory capacity. To test this hypothesis we compare slow twitch (red) muscle mitochondria from the endothermic Pacific bluefin tuna (Thunnus orientalis) with mitochondria from three ectothermic fishes [rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio), and the lake sturgeon (Acipenser fulvescens)] and the rat. At a common assay temperature (25°C) rates of mitochondrial respiration and H2O2 efflux were similar in tuna and the other fishes. The thermal sensitivity of fish mitochondria was similar irrespective of ectothermy or endothermy. Comparing tuna to the rat at a common temperature, respiration rates were similar, or lower depending on mitochondrial substrates. FEL was not different across fish species at a common assay temperature (25°C) but was markedly higher in fishes than in rat. Overall, endothermy and warming of Pacific Bluefin tuna red muscle may increase the potential for ROS production by muscle mitochondria but the evolution of endothermy in this species is not necessarily associated with a compensatory reduction of ROS production relative to the respiratory capacity of mitochondria.

RevDate: 2021-01-09
CmpDate: 2018-02-08

Chaturvedi D, R Mahalakshmi (2017)

Transmembrane β-barrels: Evolution, folding and energetics.

Biochimica et biophysica acta. Biomembranes, 1859(12):2467-2482.

The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.

RevDate: 2019-01-18
CmpDate: 2017-12-22

Dunn CD (2017)

Some Liked It Hot: A Hypothesis Regarding Establishment of the Proto-Mitochondrial Endosymbiont During Eukaryogenesis.

Journal of molecular evolution, 85(3-4):99-106.

Eukaryotic cells are characterized by a considerable increase in subcellular compartmentalization when compared to prokaryotes. Most evidence suggests that the earliest eukaryotes consisted of mitochondria derived from an α-proteobacterial ancestor enclosed within an archaeal host cell. However, what benefits the archaeal host and the proto-mitochondrial endosymbiont might have obtained at the beginning of this endosymbiotic relationship remains unclear. In this work, I argue that heat generated by the proto-mitochondrion initially permitted an archaeon living at high temperatures to colonize a cooler environment, thereby removing apparent limitations on cellular complexity. Furthermore, heat generation by the endosymbiont would have provided phenotypic flexibility not available through fixed alleles selected for fitness at specific temperatures. Finally, a role for heat production by the proto-mitochondrion bridges a conceptual gap between initial endosymbiont entry to the archaeal host and a later role for mitochondrial ATP production in permitting increased cellular complexity.

RevDate: 2020-03-06
CmpDate: 2017-12-21

Rauch C, Christa G, de Vries J, et al (2017)

Mitochondrial Genome Assemblies of Elysia timida and Elysia cornigera and the Response of Mitochondrion-Associated Metabolism during Starvation.

Genome biology and evolution, 9(7):1873-1879.

Some sacoglossan sea slugs sequester functional plastids (kleptoplasts) from their food, which continue to fix CO2 in a light dependent manner inside the animals. In plants and algae, plastid and mitochondrial metabolism are linked in ways that reach beyond the provision of energy-rich carbon compounds through photosynthesis, but how slug mitochondria respond to starvation or alterations in plastid biochemistry has not been explored. We assembled the mitochondrial genomes of the plastid-sequestering sea slugs Elysia timida and Elysia cornigera from RNA-Seq data that was complemented with standard sequencing of mitochondrial DNA through primer walking. Our data confirm the sister species relationship of the two Sacoglossa and from the analysis of changes in mitochondrial-associated metabolism during starvation we speculate that kleptoplasts might aid in the rerouting or recycling of reducing power independent of, yet maybe improved by, photosynthesis.

RevDate: 2018-11-13
CmpDate: 2018-05-03

Hikmat O, Eichele T, Tzoulis C, et al (2017)

Understanding the Epilepsy in POLG Related Disease.

International journal of molecular sciences, 18(9):.

Epilepsy is common in polymerase gamma (POLG) related disease and is associated with high morbidity and mortality. Epileptiform discharges typically affect the occipital regions initially and focal seizures, commonly evolving to bilateral convulsive seizures which are the most common seizure types in both adults and children. Our work has shown that mtDNA depletion-i.e., the quantitative loss of mtDNA-in neurones is the earliest and most important factor of the subsequent development of cellular dysfunction. Loss of mtDNA leads to loss of mitochondrial respiratory chain (MRC) components that, in turn, progressively disables energy metabolism. This critically balanced neuronal energy metabolism leads to both a chronic and continuous attrition (i.e., neurodegeneration) and it leaves the neurone unable to cope with increased demand that can trigger a potentially catastrophic cycle that results in acute focal necrosis. We believe that it is the onset of epilepsy that triggers the cascade of damage. These events can be identified in the stepwise evolution that characterizes the clinical, Electroencephalography (EEG), neuro-imaging, and neuropathology findings. Early recognition with prompt and aggressive seizure management is vital and may play a role in modifying the epileptogenic process and improving survival.

RevDate: 2018-11-13
CmpDate: 2018-01-31

Zachar I, E Szathmáry (2017)

Breath-giving cooperation: critical review of origin of mitochondria hypotheses : Major unanswered questions point to the importance of early ecology.

Biology direct, 12(1):19.

The origin of mitochondria is a unique and hard evolutionary problem, embedded within the origin of eukaryotes. The puzzle is challenging due to the egalitarian nature of the transition where lower-level units took over energy metabolism. Contending theories widely disagree on ancestral partners, initial conditions and unfolding of events. There are many open questions but there is no comparative examination of hypotheses. We have specified twelve questions about the observable facts and hidden processes leading to the establishment of the endosymbiont that a valid hypothesis must address. We have objectively compared contending hypotheses under these questions to find the most plausible course of events and to draw insight on missing pieces of the puzzle. Since endosymbiosis borders evolution and ecology, and since a realistic theory has to comply with both domains' constraints, the conclusion is that the most important aspect to clarify is the initial ecological relationship of partners. Metabolic benefits are largely irrelevant at this initial phase, where ecological costs could be more disruptive. There is no single theory capable of answering all questions indicating a severe lack of ecological considerations. A new theory, compliant with recent phylogenomic results, should adhere to these criteria.

REVIEWERS: This article was reviewed by Michael W. Gray, William F. Martin and Purificación López-García.

RevDate: 2018-11-13
CmpDate: 2018-04-17

Lai YC, Baker JS, Donti T, et al (2017)

Mitochondrial Dysfunction Mediated by Poly(ADP-Ribose) Polymerase-1 Activation Contributes to Hippocampal Neuronal Damage Following Status Epilepticus.

International journal of molecular sciences, 18(7):.

Mitochondrial dysfunction plays a central role in the neuropathology associated with status epilepticus (SE) and is implicated in the development of epilepsy. While excitotoxic mechanisms are well-known mediators affecting mitochondrial health following SE, whether hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) also contributes to SE-induced mitochondrial dysfunction remains to be examined. Here we first evaluated the temporal evolution of poly-ADP-ribosylated protein levels in hippocampus following kainic acid-induced SE as a marker for PARP-1 activity, and found that PARP-1 was hyperactive at 24 h following SE. We evaluated oxidative metabolism and found decreased NAD⁺ levels by enzymatic cycling, and impaired NAD⁺-dependent mitochondrial respiration as measured by polarography at 24 h following SE. Stereological estimation showed significant cell loss in the hippocampal CA₁ and CA₃ subregions 72 h following SE. PARP-1 inhibition using N-(6-Oxo-5,6-dihydro-phenanthridin-2-yl)- N,N-dimethylacetamide (PJ-34) in vivo administration was associated with preserved NAD⁺ levels and NAD⁺-dependent mitochondrial respiration, and improved CA₁ neuronal survival. These findings suggest that PARP-1 hyperactivation contributes to SE-associated mitochondrial dysfunction and CA₁ hippocampal damage. The deleterious effects of PARP-1 hyperactivation on mitochondrial respiration are in part mediated through intracellular NAD⁺ depletion. Therefore, modulating PARP-1 activity may represent a potential therapeutic target to preserve intracellular energetics and mitochondrial function following SE.

RevDate: 2018-11-13
CmpDate: 2018-05-07

Brandt T, Mourier A, Tain LS, et al (2017)

Changes of mitochondrial ultrastructure and function during ageing in mice and Drosophila.

eLife, 6:.

Ageing is a progressive decline of intrinsic physiological functions. We examined the impact of ageing on the ultrastructure and function of mitochondria in mouse and fruit flies (Drosophila melanogaster) by electron cryo-tomography and respirometry. We discovered distinct age-related changes in both model organisms. Mitochondrial function and ultrastructure are maintained in mouse heart, whereas subpopulations of mitochondria from mouse liver show age-related changes in membrane morphology. Subpopulations of mitochondria from young and old mouse kidney resemble those described for apoptosis. In aged flies, respiratory activity is compromised and the production of peroxide radicals is increased. In about 50% of mitochondria from old flies, the inner membrane organization breaks down. This establishes a clear link between inner membrane architecture and functional decline. Mitochondria were affected by ageing to very different extents, depending on the organism and possibly on the degree to which tissues within the same organism are protected against mitochondrial damage.

RevDate: 2021-01-09

Zhang B, Zhang YH, Wang X, et al (2017)

The mitochondrial genome of a sea anemone Bolocera sp. exhibits novel genetic structures potentially involved in adaptation to the deep-sea environment.

Ecology and evolution, 7(13):4951-4962.

The deep sea is one of the most extensive ecosystems on earth. Organisms living there survive in an extremely harsh environment, and their mitochondrial energy metabolism might be a result of evolution. As one of the most important organelles, mitochondria generate energy through energy metabolism and play an important role in almost all biological activities. In this study, the mitogenome of a deep-sea sea anemone (Bolocera sp.) was sequenced and characterized. Like other metazoans, it contained 13 energy pathway protein-coding genes and two ribosomal RNAs. However, it also exhibited some unique features: just two transfer RNA genes, two group I introns, two transposon-like noncanonical open reading frames (ORFs), and a control region-like (CR-like) element. All of the mitochondrial genes were coded by the same strand (the H-strand). The genetic order and orientation were identical to those of most sequenced actiniarians. Phylogenetic analyses showed that this species was closely related to Bolocera tuediae. Positive selection analysis showed that three residues (31 L and 42 N in ATP6, 570 S in ND5) of Bolocera sp. were positively selected sites. By comparing these features with those of shallow sea anemone species, we deduced that these novel gene features may influence the activity of mitochondrial genes. This study may provide some clues regarding the adaptation of Bolocera sp. to the deep-sea environment.

RevDate: 2019-01-18
CmpDate: 2019-01-18

Wang J, Xiang H, Liu L, et al (2017)

Mitochondrial haplotypes influence metabolic traits across bovine inter- and intra-species cybrids.

Scientific reports, 7(1):4179.

In bovine species, mitochondrial DNA polymorphisms and their correlation to productive or reproductive performances have been widely reported across breeds and individuals. However, experimental evidence of this correlation has never been provided. In order to identify differences among bovine mtDNA haplotypes, transmitochondrial cybrids were generated, with the nucleus from MAC-T cell line, derived from a Holstein dairy cow (Bos taurus) and mitochondria from either primary cell line derived from a domestic Chinese native beef Luxi cattle breed or central Asian domestic yak (Bos grunniens). Yak primary cells illustrated a stronger metabolic capacity than that of Luxi. However, all yak cybrid parameters illustrated a drop in relative yak mtDNA compared to Luxi mtDNA, in line with a mitonuclear imbalance in yak interspecies cybrid. Luxi has 250 divergent variations relative to the mitogenome of Holsteins. In cybrids there were generally higher rates of oxygen consumption (OCR) and extracellular acidification (ECAR), and lower mRNA expression levels of nuclear-encoded mitochondrial genes, potentially reflecting active energy metabolism and cellular stress resistance. The results demonstrate that functional differences exist between bovine cybrid cells. While cybrid viability was similar between Holstein and Luxi breeds, the mitonuclear mismatch caused a marked metabolic dysfunction in cattle:yak cybrid species.

RevDate: 2019-01-16
CmpDate: 2018-04-05

Martin WF, Tielens AGM, Mentel M, et al (2017)

The Physiology of Phagocytosis in the Context of Mitochondrial Origin.

Microbiology and molecular biology reviews : MMBR, 81(3):.

How mitochondria came to reside within the cytosol of their host has been debated for 50 years. Though current data indicate that the last eukaryote common ancestor possessed mitochondria and was a complex cell, whether mitochondria or complexity came first in eukaryotic evolution is still discussed. In autogenous models (complexity first), the origin of phagocytosis poses the limiting step at eukaryote origin, with mitochondria coming late as an undigested growth substrate. In symbiosis-based models (mitochondria first), the host was an archaeon, and the origin of mitochondria was the limiting step at eukaryote origin, with mitochondria providing bacterial genes, ATP synthesis on internalized bioenergetic membranes, and mitochondrion-derived vesicles as the seed of the eukaryote endomembrane system. Metagenomic studies are uncovering new host-related archaeal lineages that are reported as complex or phagocytosing, although images of such cells are lacking. Here we review the physiology and components of phagocytosis in eukaryotes, critically inspecting the concept of a phagotrophic host. From ATP supply and demand, a mitochondrion-lacking phagotrophic archaeal fermenter would have to ingest about 34 times its body weight in prokaryotic prey to obtain enough ATP to support one cell division. It would lack chemiosmotic ATP synthesis at the plasma membrane, because phagocytosis and chemiosmosis in the same membrane are incompatible. It would have lived from amino acid fermentations, because prokaryotes are mainly protein. Its ATP yield would have been impaired relative to typical archaeal amino acid fermentations, which involve chemiosmosis. In contrast, phagocytosis would have had great physiological benefit for a mitochondrion-bearing cell.

RevDate: 2017-09-12
CmpDate: 2017-09-12

Sharma K (2017)

Mitochondrial Dysfunction in the Diabetic Kidney.

Advances in experimental medicine and biology, 982:553-562.

The role of mitochondria in diabetic complications has been viewed as a source of excess superoxide production leading to cell dysfunction. However, with the lack of benefit of non-specific anti-oxidant approaches this view needs to be re-evaluated. With recent studies using real-time imaging of superoxide, metabolomics, flux studies, transcriptomics and proteomics a new appreciation for the role of mitochondria in the evolution of diabetic kidney disease has emerged. Ongoing studies to further unravel the time course and mechanisms that reduce mitochondrial function will be relevant to novel therapies that could have a major impact on diabetic kidney disease and other diabetic complications.

RevDate: 2021-01-09
CmpDate: 2018-05-14

Horscroft JA, Kotwica AO, Laner V, et al (2017)

Metabolic basis to Sherpa altitude adaptation.

Proceedings of the National Academy of Sciences of the United States of America, 114(24):6382-6387.

The Himalayan Sherpas, a human population of Tibetan descent, are highly adapted to life in the hypobaric hypoxia of high altitude. Mechanisms involving enhanced tissue oxygen delivery in comparison to Lowlander populations have been postulated to play a role in such adaptation. Whether differences in tissue oxygen utilization (i.e., metabolic adaptation) underpin this adaptation is not known, however. We sought to address this issue, applying parallel molecular, biochemical, physiological, and genetic approaches to the study of Sherpas and native Lowlanders, studied before and during exposure to hypobaric hypoxia on a gradual ascent to Mount Everest Base Camp (5,300 m). Compared with Lowlanders, Sherpas demonstrated a lower capacity for fatty acid oxidation in skeletal muscle biopsies, along with enhanced efficiency of oxygen utilization, improved muscle energetics, and protection against oxidative stress. This adaptation appeared to be related, in part, to a putatively advantageous allele for the peroxisome proliferator-activated receptor A (PPARA) gene, which was enriched in the Sherpas compared with the Lowlanders. Our findings suggest that metabolic adaptations underpin human evolution to life at high altitude, and could have an impact upon our understanding of human diseases in which hypoxia is a feature.

RevDate: 2019-01-02
CmpDate: 2018-06-13

Lane N (2017)

Serial endosymbiosis or singular event at the origin of eukaryotes?.

Journal of theoretical biology, 434:58-67.

'On the Origin of Mitosing Cells' heralded a new way of seeing cellular evolution, with symbiosis at its heart. Lynn Margulis (then Sagan) marshalled an impressive array of evidence for endosymbiosis, from cell biology to atmospheric chemistry and Earth history. Despite her emphasis on symbiosis, she saw plenty of evidence for gradualism in eukaryotic evolution, with multiple origins of mitosis and sex, repeated acquisitions of plastids, and putative evolutionary intermediates throughout the microbial world. Later on, Margulis maintained her view of multiple endosymbioses giving rise to other organelles such as hydrogenosomes, in keeping with the polyphyletic assumptions of the serial endosymbiosis theory. She stood at the threshold of the phylogenetic era, and anticipated its potential. Yet while predicting that the nucleotide sequences of genes would enable a detailed reconstruction of eukaryotic evolution, Margulis did not, and could not, imagine the radically different story that would eventually emerge from comparative genomics. The last eukaryotic common ancestor now seems to have been essentially a modern eukaryotic cell that had already evolved mitosis, meiotic sex, organelles and endomembrane systems. The long search for missing evolutionary intermediates has failed to turn up a single example, and those discussed by Margulis turn out to have evolved reductively from more complex ancestors. Strikingly, Margulis argued that all eukaryotes had mitochondria in her 1967 paper (a conclusion that she later disavowed). But she developed her ideas in the context of atmospheric oxygen and aerobic respiration, neither of which is consistent with more recent geological and phylogenetic findings. Instead, a modern synthesis of genomics and bioenergetics points to the endosymbiotic restructuring of eukaryotic genomes in relation to bioenergetic membranes as the singular event that permitted the evolution of morphological complexity.

RevDate: 2018-09-17
CmpDate: 2017-09-26

Yin Q, Zhang Y, Dong D, et al (2017)

Maintenance of neural activities in torpid Rhinolophus ferrumequinum bats revealed by 2D gel-based proteome analysis.

Biochimica et biophysica acta. Proteins and proteomics, 1865(8):1004-1019.

Bats are the only mammals capable of self-powered flying. Many bat species hibernate in winter. A reversible control of cerebral activities is critical for bats to accommodate a repeated torpor-arousal cycle during hibernation. Little is known about the molecular mechanisms that regulate neuronal activities in torpid bats. In this study, Rhinolophus ferrumequinum bat brain proteins were fractionated, and their abundance in active and torpid states was compared. Results of 2D gel-based proteomics showed that 38% of identified proteins with a significant change in abundance are involved in synaptic vesicle recycling and cytoskeletal integrity. Changes in the abundance of proteins related to RNA splicing, proteostasis, redox homeostasis, mitochondrial function, and energy metabolism were also detected. In addition, the levels of GNAO1 (guanine nucleotide-binding protein Gαo subunit), an important modulator of neuronal transmembrane signaling, were significantly increased in the insoluble protein fraction of torpid bats; this may be due to GNAO1 palmitoylation making it insoluble. Our data provide molecular evidence for the maintenance of neuronal activities in torpid bats and suggest that a reversible palmitoylation of the G protein plays a role in the regulation of neuronal activities during bat hibernation.

RevDate: 2018-12-02
CmpDate: 2017-12-29

Du SNN, Khajali F, Dawson NJ, et al (2017)

Hybridization increases mitochondrial production of reactive oxygen species in sunfish.

Evolution; international journal of organic evolution, 71(6):1643-1652.

Mitochondrial dysfunction and oxidative stress have been suggested to be possible mechanisms underlying hybrid breakdown, as a result of mito-nuclear incompatibilities in respiratory complexes of the electron transport system. However, it remains unclear whether hybridization increases the production of reactive oxygen species (ROS) by mitochondria. We used high-resolution respirometry and fluorometry on isolated liver mitochondria to examine mitochondrial physiology and ROS emission in naturally occurring hybrids of pumpkinseed (Lepomis gibbosus) and bluegill (L. macrochirus). ROS emission was greater in hybrids than in both parent species when respiration was supported by complex I (but not complex II) substrates, and was associated with increases in lipid peroxidation. However, respiratory capacities for oxidative phosphorylation, phosphorylation efficiency, and O2 kinetics in hybrids were intermediate between those in parental species. Flux control ratios of capacities for electron transport (measured in uncoupled mitochondria) relative to oxidative phosphorylation suggested that the limiting influence of the phosphorylation system is reduced in hybrids. This likely helped offset impairments in electron transport capacity and complex III activity, but contributed to augmenting ROS production. Therefore, hybridization can increase mitochondrial ROS production, in support of previous suggestions that mitochondrial dysfunction can induce oxidative stress and thus contribute to hybrid breakdown.

RevDate: 2017-10-24
CmpDate: 2017-10-24

Zimorski V, Rauch C, van Hellemond JJ, et al (2017)

The Mitochondrion of Euglena gracilis.

Advances in experimental medicine and biology, 979:19-37.

In the presence of oxygen, Euglena gracilis mitochondria function much like mammalian mitochondria. Under anaerobiosis, E. gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. Some components (enzymes and cofactors) of Euglena's anaerobic energy metabolism are found among the anaerobic mitochondria of invertebrates, others are found among hydrogenosomes, the H2-producing anaerobic mitochondria of protists.

RevDate: 2018-11-13
CmpDate: 2017-06-29

Devarshi PP, McNabney SM, TM Henagan (2017)

Skeletal Muscle Nucleo-Mitochondrial Crosstalk in Obesity and Type 2 Diabetes.

International journal of molecular sciences, 18(4):.

Skeletal muscle mitochondrial dysfunction, evidenced by incomplete beta oxidation and accumulation of fatty acid intermediates in the form of long and medium chain acylcarnitines, may contribute to ectopic lipid deposition and insulin resistance during high fat diet (HFD)-induced obesity. The present review discusses the roles of anterograde and retrograde communication in nucleo-mitochondrial crosstalk that determines skeletal muscle mitochondrial adaptations, specifically alterations in mitochondrial number and function in relation to obesity and insulin resistance. Special emphasis is placed on the effects of high fat diet (HFD) feeding on expression of nuclear-encoded mitochondrial genes (NEMGs) nuclear receptor factor 1 (NRF-1) and 2 (NRF-2) and peroxisome proliferator receptor gamma coactivator 1 alpha (PGC-1α) in the onset and progression of insulin resistance during obesity and how HFD-induced alterations in NEMG expression affect skeletal muscle mitochondrial adaptations in relation to beta oxidation of fatty acids. Finally, the potential ability of acylcarnitines or fatty acid intermediates resulting from mitochondrial beta oxidation to act as retrograde signals in nucleo-mitochondrial crosstalk is reviewed and discussed.

RevDate: 2018-06-13
CmpDate: 2018-06-13

Schönfeld P, G Reiser (2017)

Brain energy metabolism spurns fatty acids as fuel due to their inherent mitotoxicity and potential capacity to unleash neurodegeneration.

Neurochemistry international, 109:68-77.

The brain uses long-chain fatty acids (LCFAs) to a negligible extent as fuel for the mitochondrial energy generation, in contrast to other tissues that also demand high energy. Besides this generally accepted view, some studies using cultured neural cells or whole brain indicate a moderately active mitochondrial β-oxidation. Here, we corroborate the conclusion that brain mitochondria are unable to oxidize fatty acids. In contrast, the combustion of liver-derived ketone bodies by neural cells is long-known. Furthermore, new insights indicate the use of odd-numbered medium-chain fatty acids as valuable source for maintaining the level of intermediates of the citric acid cycle in brain mitochondria. Non-esterified LCFAs or their activated forms exert a large variety of harmful side-effects on mitochondria, such as enhancing the mitochondrial ROS generation in distinct steps of the β-oxidation and therefore potentially increasing oxidative stress. Hence, the question arises: Why do in brain energy metabolism mitochondria selectively spurn LCFAs as energy source? The most likely answer are the relatively higher content of peroxidation-sensitive polyunsaturated fatty acids and the low antioxidative defense in brain tissue. There are two remarkable peroxisomal defects, one relating to α-oxidation of phytanic acid and the other to uptake of very long-chain fatty acids (VLCFAs) which lead to pathologically high tissue levels of such fatty acids. Both, the accumulation of phytanic acid and that of VLCFAs give an enlightening insight into harmful activities of fatty acids on neural cells, which possibly explain why evolution has prevented brain mitochondria from the equipment with significant β-oxidation enzymatic capacity.

RevDate: 2018-11-13
CmpDate: 2018-09-21

Roberts RG (2017)

Mitochondria-A billion years of cohabitation.

PLoS biology, 15(3):e2002338.

RevDate: 2020-10-01

Karnkowska A, V Hampl (2016)

The curious case of vanishing mitochondria.

Microbial cell (Graz, Austria), 3(10):491-494.

Due to their involvement in the energy metabolism, mitochondria are essential for most eukaryotic cells. Microbial eukaryotes living in low oxygen environments possess reduced forms of mitochondria, namely mitochondrion-related organelles (MROs). These do not produce ATP by oxidative phosphorylation on their membranes and some do not produce ATP at all. Still, they are indispensable because of other essential functions such as iron-sulphur (Fe-S) cluster assembly. Recently, the first microbial eukaryote with neither mitochondrion nor MRO was characterized - Monocercomonoides sp. Genome and transcriptome sequencing of Monocercomonoides revealed that it lacks all hallmark mitochondrial proteins. Crucially, the essential mitochondrial pathway for the Fe-S cluster assembly (ISC) was replaced by a bacterial sulphur mobilization (SUF) system. The discovery of such bona fide amitochondriate eukaryote broadens our knowledge about the diversity and plasticity of eukaryotic cells and provides a substantial contribution to our understanding of eukaryotic cell evolution.

RevDate: 2018-11-13
CmpDate: 2018-01-08

Lynch M, GK Marinov (2017)

Membranes, energetics, and evolution across the prokaryote-eukaryote divide.

eLife, 6:.

The evolution of the eukaryotic cell marked a profound moment in Earth's history, with most of the visible biota coming to rely on intracellular membrane-bound organelles. It has been suggested that this evolutionary transition was critically dependent on the movement of ATP synthesis from the cell surface to mitochondrial membranes and the resultant boost to the energetic capacity of eukaryotic cells. However, contrary to this hypothesis, numerous lines of evidence suggest that eukaryotes are no more bioenergetically efficient than prokaryotes. Thus, although the origin of the mitochondrion was a key event in evolutionary history, there is no reason to think membrane bioenergetics played a direct, causal role in the transition from prokaryotes to eukaryotes and the subsequent explosive diversification of cellular and organismal complexity.

RevDate: 2021-05-11
CmpDate: 2017-08-11

Krishnan A, Abdullah TS, Mounajjed T, et al (2017)

A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition.

American journal of physiology. Gastrointestinal and liver physiology, 312(6):G666-G680.

The sequence of events that lead to inflammation and fibrosing nonalcoholic steatohepatitis (NASH) is incompletely understood. Hence, we investigated the chronology of whole body, tissue, and cellular events that occur during the evolution of diet-induced NASH. Male C57Bl/6 mice were assigned to a fast-food (FF; high calorie, high cholesterol, high fructose) or standard-chow (SC) diet over a period of 36 wk. Liver histology, body composition, mitochondrial respiration, metabolic rate, gene expression, and hepatic lipid content were analyzed. Insulin resistance [homeostasis model assessment-insulin resistance (HOMA-IR)] increased 10-fold after 4 wk. Fibrosing NASH was fully established by 16 wk. Total hepatic lipids increased by 4 wk and remained two- to threefold increased throughout. Hepatic triglycerides declined from sixfold increase at 8 wk to threefold increase by 36 wk. In contrast, hepatic cholesterol levels steadily increased from baseline at 8 wk to twofold by 36 wk. The hepatic immune cell population altered over time with macrophages persisting beyond 16 wk. Mitochondrial oxygen flux rates of FF mice diet were uniformly lower with all the tested substrates (13-276 pmol·s-1·ml-1 per unit citrate synthase) than SC mice (17-394 pmol·s-1·ml-1 per unit citrate synthase) and was accompanied by decreased mitochondrial:nuclear gene copy number ratios after 4 wk. Metabolic rate was lower in FF mice. Mitochondrial glutathione was significantly decreased at 24 wk in FF mice. Expression of dismutases and catalase was also decreased in FF mice. The evolution of NASH in the FF diet-induced model is multiphasic, particularly in terms of hepatic lipid composition. Insulin resistance precedes hepatic inflammation and fibrosis. Mitochondrial dysfunction and depletion occur after the histological features of NASH are apparent. Collectively, these observations provide a unique overview of the sequence of changes that coevolve with the histological evolution of NASH.NEW & NOTEWORTHY This study demonstrates in a first of kind longitudinal analysis, the evolution of nonalcoholic steatohepatitis (NASH) on a fast-food diet-induced model. Key findings include 1) hepatic lipid composition changes in a multiphasic fashion as NASH evolves; 2) insulin resistance precedes hepatic inflammation and fibrosis, answering a longstanding chicken-and-egg question regarding the relationship of insulin resistance to liver histology in NASH; and 3) mitochondrial dysfunction and depletion occur after the histological features of NASH are apparent.

RevDate: 2017-03-16
CmpDate: 2017-03-16

Ling SS, Zhu Y, Lan D, et al (2017)

Analysis of the cytochrome c oxidase subunit II (COX2) gene in giant panda, Ailuropoda melanoleuca.

Genetics and molecular research : GMR, 16(1): pii:gmr-16-01-gmr.16019158.

The giant panda, Ailuropoda melanoleuca (Ursidae), has a unique bamboo-based diet; however, this low-energy intake has been sufficient to maintain the metabolic processes of this species since the fourth ice age. As mitochondria are the main sites for energy metabolism in animals, the protein-coding genes involved in mitochondrial respiratory chains, particularly cytochrome c oxidase subunit II (COX2), which is the rate-limiting enzyme in electron transfer, could play an important role in giant panda metabolism. Therefore, the present study aimed to isolate, sequence, and analyze the COX2 DNA from individuals kept at the Giant Panda Protection and Research Center, China, and compare these sequences with those of the other Ursidae family members. Multiple sequence alignment showed that the COX2 gene had three point mutations that defined three haplotypes, with 60% of the sequences corresponding to haplotype I. The neutrality tests revealed that the COX2 gene was conserved throughout evolution, and the maximum likelihood phylogenetic analysis, using homologous sequences from other Ursidae species, showed clustering of the COX2 sequences of giant pandas, suggesting that this gene evolved differently in them.

RevDate: 2018-09-17
CmpDate: 2017-10-24

Baffy G (2017)

Mitochondrial uncoupling in cancer cells: Liabilities and opportunities.

Biochimica et biophysica acta. Bioenergetics, 1858(8):655-664.

Acquisition of the endosymbiotic ancestor of mitochondria was a critical event in eukaryote evolution. Mitochondria offered an unparalleled source of metabolic energy through oxidative phosphorylation and allowed the development of multicellular life. However, as molecular oxygen had become the terminal electron acceptor in most eukaryotic cells, the electron transport chain proved to be the largest intracellular source of superoxide, contributing to macromolecular injury, aging, and cancer. Hence, the 'contract of endosymbiosis' represents a compromise between the possibilities and perils of multicellular life. Uncoupling proteins (UCPs), a group of the solute carrier family of transporters, may remove some of the physiologic constraints that link mitochondrial respiration and ATP synthesis by mediating inducible proton leak and limiting oxidative cell injury. This important property makes UCPs an ancient partner in the metabolic adaptation of cancer cells. Efforts are underway to explore the therapeutic opportunities stemming from the intriguing relationship of UCPs and cancer. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.

RevDate: 2018-03-09
CmpDate: 2017-11-22

Speijer D (2017)

Alternating terminal electron-acceptors at the basis of symbiogenesis: How oxygen ignited eukaryotic evolution.

BioEssays : news and reviews in molecular, cellular and developmental biology, 39(2):.

What kind of symbiosis between archaeon and bacterium gave rise to their eventual merger at the origin of the eukaryotes? I hypothesize that conditions favouring bacterial uptake were based on exchange of intermediate carbohydrate metabolites required by recurring changes in availability and use of the two different terminal electron chain acceptors, the bacterial one being oxygen. Oxygen won, and definitive loss of the archaeal membrane potential allowed permanent establishment of the bacterial partner as the proto-mitochondrion, further metabolic integration and highly efficient ATP production. This represents initial symbiogenesis, when crucial eukaryotic traits arose in response to the archaeon-bacterium merger. The attendant generation of internal reactive oxygen species (ROS) gave rise to a myriad of further eukaryotic adaptations, such as extreme mitochondrial genome reduction, nuclei, peroxisomes and meiotic sex. Eukaryotic origins could have started with shuffling intermediate metabolites as is still essential today.

RevDate: 2019-11-20

Faktorová D, Dobáková E, Peña-Diaz P, et al (2016)

From simple to supercomplex: mitochondrial genomes of euglenozoan protists.

F1000Research, 5:.

Mitochondria are double membrane organelles of endosymbiotic origin, best known for constituting the centre of energetics of a eukaryotic cell. They contain their own mitochondrial genome, which as a consequence of gradual reduction during evolution typically contains less than two dozens of genes. In this review, we highlight the extremely diverse architecture of mitochondrial genomes and mechanisms of gene expression between the three sister groups constituting the phylum Euglenozoa - Euglenida, Diplonemea and Kinetoplastea. The earliest diverging euglenids possess a simplified mitochondrial genome and a conventional gene expression, whereas both are highly complex in the two other groups. The expression of their mitochondrial-encoded proteins requires extensive post-transcriptional modifications guided by complex protein machineries and multiple small RNA molecules. Moreover, the least studied diplonemids, which have been recently discovered as a highly abundant component of the world ocean plankton, possess one of the most complicated mitochondrial genome organisations known to date.

RevDate: 2018-11-13
CmpDate: 2017-06-14

Liu S, Roellig DM, Guo Y, et al (2016)

Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium.

BMC genomics, 17(1):1006.

BACKGROUND: The switch from photosynthetic or predatory to parasitic life strategies by apicomplexans is accompanied with a reductive evolution of genomes and losses of metabolic capabilities. Cryptosporidium is an extreme example of reductive evolution among apicomplexans, with losses of both the mitosome genome and many metabolic pathways. Previous observations on reductive evolution were largely based on comparative studies of various groups of apicomplexans. In this study, we sequenced two divergent Cryptosporidium species and conducted a comparative genomic analysis to infer the reductive evolution of metabolic pathways and differential evolution of invasion-related proteins within the Cryptosporidium lineage.

RESULTS: In energy metabolism, Cryptosporidium species differ from each other mostly in mitosome metabolic pathways. Compared with C. parvum and C. hominis, C. andersoni possesses more aerobic metabolism and a conventional electron transport chain, whereas C. ubiquitum has further reductions in ubiquinone and polyisprenoid biosynthesis and has lost both the conventional and alternative electron transport systems. For invasion-associated proteins, similar to C. hominis, a reduction in the number of genes encoding secreted MEDLE and insulinase-like proteins in the subtelomeric regions of chromosomes 5 and 6 was also observed in C. ubiquitum and C. andersoni, whereas mucin-type glycoproteins are highly divergent between the gastric C. andersoni and intestinal Cryptosporidium species.

CONCLUSIONS: Results of the study suggest that rapidly evolving mitosome metabolism and secreted invasion-related proteins could be involved in tissue tropism and host specificity in Cryptosporidium spp. The finding of progressive reduction in mitosome metabolism among Cryptosporidium species improves our knowledge of organelle evolution within apicomplexans.

RevDate: 2021-01-09

Malecki M, J Bähler (2016)

Identifying genes required for respiratory growth of fission yeast.

Wellcome open research, 1:12.

We have used both auxotroph and prototroph versions of the latest deletion-mutant library to identify genes required for respiratory growth on solid glycerol medium in fission yeast. This data set complements and enhances our recent study on functional and regulatory aspects of energy metabolism by providing additional proteins that are involved in respiration. Most proteins identified in this mutant screen have not been implicated in respiration in budding yeast. We also provide a protocol to generate a prototrophic mutant library, and data on technical and biological reproducibility of colony-based high-throughput screens.

RevDate: 2019-10-08
CmpDate: 2017-12-13

Raefsky SM, MP Mattson (2017)

Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance.

Free radical biology & medicine, 102:203-216.

An important concept in neurobiology is "neurons that fire together, wire together" which means that the formation and maintenance of synapses is promoted by activation of those synapses. Very similar to the effects of the stress of exercise on muscle cells, emerging findings suggest that neurons respond to activity by activating signaling pathways (e.g., Ca2+, CREB, PGC-1α, NF-κB) that stimulate mitochondrial biogenesis and cellular stress resistance. These pathways are also activated by aerobic exercise and food deprivation, two bioenergetic challenges of fundamental importance in the evolution of the brains of all mammals, including humans. The metabolic 'switch' in fuel source from liver glycogen store-derived glucose to adipose cell-derived fatty acids and their ketone metabolites during fasting and sustained exercise, appears to be a pivotal trigger of both brain-intrinsic and peripheral organ-derived signals that enhance learning and memory and underlying synaptic plasticity and neurogenesis. Brain-intrinsic extracellular signals include the excitatory neurotransmitter glutamate and the neurotrophic factor BDNF, and peripheral signals may include the liver-derived ketone 3-hydroxybutyrate and the muscle cell-derived protein irisin. Emerging findings suggest that fasting, exercise and an intellectually challenging lifestyle can protect neurons against the dysfunction and degeneration that they would otherwise suffer in acute brain injuries (stroke and head trauma) and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease. Among the prominent intracellular responses of neurons to these bioenergetic challenges are up-regulation of antioxidant defenses, autophagy/mitophagy and DNA repair. A better understanding of such fundamental hormesis-based adaptive neuronal response mechanisms is expected to result in the development and implementation of novel interventions to promote optimal brain function and healthy brain aging.


ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).


ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.


Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )