Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Long Term Ecological Research

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 14 Nov 2022 at 02:04 Created: 

Long Term Ecological Research

The LTER Network: The US. long-term ecological research network consists of 28 sites with a rich history of ecological inquiry, collaboration across a wide range of research topics, and engagement with students, educators, and community members. Bringing together diverse groups of researchers with sustained data collection, ecosystem manipulation experiments, and modeling, these sites allow scientists to apply new tools and explore new questions in systems where the context is well understood, shared, and thoroughly documented.

Created with PubMed® Query: "Long Term Ecological Research" OR LTER NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2022-11-09

Barbosa FG, M Lanari (2022)

Bibliometric analysis of peer-reviewed literature on the Patos Lagoon, southern Brazil.

Anais da Academia Brasileira de Ciencias, 94(3):e20210861 pii:S0001-37652022000501008.

Coastal lagoons provide several ecological resources and services with their functioning being mainly investigated in temperate areas. The Patos Lagoon, a subtropical system in southern Brazil, is one of the largest chocked coastal lagoons in the world. It provides habitat for numerous organisms and a range of ecosystem services. We performed a bibliometric analysis to identify and analyze the characteristics of studies carried out in the Patos Lagoon based on articles published in peer-reviewed journals indexed in the Science Citation Index Expanded database of Clarivate Analytics Web of Science and Scopus database. We found 360 articles published between 1965 and 2019 in 150 journals. The number of articles has increased in the last decades mainly resulting from national collaborative efforts. Most articles were published by Brazilian research institutions. Most studies were performed in the Patos Lagoon estuary, a Long-term Ecological Research program´s study site. Our study thus highlights the importance of long-term projects to the comprehension of subtropical coastal lagoons functioning and indicates knowledge gaps that must be addressed in future studies.

RevDate: 2022-11-09

Zhang L, MacQueen A, Bonnette J, et al (2021)

QTL × environment interactions underlie ionome divergence in switchgrass.

G3 (Bethesda, Md.), 11(7):.

Ionomics measures elemental concentrations in biological organisms and provides a snapshot of physiology under different conditions. In this study, we evaluate genetic variation of the ionome in outbred, perennial switchgrass in three environments across the species' native range, and explore patterns of genotype-by-environment interactions. We grew 725 clonally replicated genotypes of a large full sib family from a four-way linkage mapping population, created from deeply diverged upland and lowland switchgrass ecotypes, at three common gardens. Concentrations of 18 mineral elements were determined in whole post-anthesis tillers using ion coupled plasma mass spectrometry (ICP-MS). These measurements were used to identify quantitative trait loci (QTL) with and without QTL-by-environment interactions (QTLxE) using a multi-environment QTL mapping approach. We found that element concentrations varied significantly both within and between switchgrass ecotypes, and GxE was present at both the trait and QTL level. Concentrations of 14 of the 18 elements were under some genetic control, and 77 QTL were detected for these elements. Seventy-four percent of QTL colocalized multiple elements, half of QTL exhibited significant QTLxE, and roughly equal numbers of QTL had significant differences in magnitude and sign of their effects across environments. The switchgrass ionome is under moderate genetic control and by loci with highly variable effects across environments.

RevDate: 2022-11-07

Speed JDM, Evankow AM, Petersen TK, et al (2022)

A regionally coherent ecological fingerprint of climate change, evidenced from natural history collections.

Ecology and evolution, 12(11):e9471 pii:ECE39471.

Climate change has dramatic impacts on ecological systems, affecting a range of ecological factors including phenology, species abundance, diversity, and distribution. The breadth of climate change impacts on ecological systems leads to the occurrence of fingerprints of climate change. However, climate fingerprints are usually identified across broad geographical scales and are potentially influenced by publication biases. In this study, we used natural history collections spanning over 250 years, to quantify a range of ecological responses to climate change, including phenology, abundance, diversity, and distributions, across a range of taxa, including vertebrates, invertebrates, plants, and fungi, within a single region, Central Norway. We tested the hypotheses that ecological responses to climate change are apparent and coherent at a regional scale, that longer time series show stronger trends over time and in relation to temperature, and that ecological responses change in trajectory at the same time as shifts in temperature. We identified a clear regional coherence in climate signal, with decreasing abundances of limnic zooplankton (on average by 7691 individuals m-3 °C-1) and boreal forest breeding birds (on average by 1.94 territories km-2 °C-1), and earlier plant flowering phenology (on average 2 days °C-1) for every degree of temperature increase. In contrast, regional-scale species distributions and species diversity were largely stable. Surprisingly, the effect size of ecological response did not increase with study duration, and shifts in responses did not occur at the same time as shifts in temperature. This may be as the long-term studies include both periods of warming and temperature stability, and that ecological responses lag behind warming. Our findings demonstrate a regional climate fingerprint across a long timescale. We contend that natural history collections provide a unique window on a broad spectrum of ecological responses at timescales beyond most ecological monitoring programs. Natural history collections are thus an essential source for long-term ecological research.

RevDate: 2022-11-04

Behera SK, Behera MD, Tuli R, et al (2022)

Atmospheric temperature and humidity demonstrated strong correlation with productivity in tropical moist deciduous forests.

Environmental monitoring and assessment, 195(1):69 pii:10.1007/s10661-022-10668-7.

Tropical forests sequester six times higher carbon than that released by humans annually into the atmosphere. These biodiversity-rich tropical forests have high net primary productivity (NPP), which differs among constituent plant communities. Tropical moist deciduous forests occupy 179,335 km2 of India's geographical area and constitute 44% of the country's total protected area (PA) forests. The productivity of these forests has neither been estimated specifically nor precisely. We measured the annual NPP of three predominant distinct community types, viz., mixed (DM), sal (SM), and teak (TP), in a tropical moist deciduous forest in northern India. The NPP was estimated from tree biomass data collected from nine long-term ecological research (LTER) plots of 1 ha each representing the above three community types. The estimated annual NPP were 10.28, 6.25, and 9.79 Mg ha-1 year-1 in DM; 8.93, 7.09, and 10.59 Mg ha-1 year-1 in SM; and 14.57, 7.14, and 13.56 Mg ha-1 year-1 in TP for the years 2010, 2011, and 2012, respectively. The NPP was correlated with tree density, height and DBH, species richness, diversity, microclimatic and edaphic variables, and leaf area index (LAI) using principal component analysis (PCA) and generalized linear modeling (GLM). Air temperature and humidity were strongly related to NPP in all the community types, while "complementarity" and "selection effects" contributed to the NPP in both the sal and mixed forest communities with equal importance, and the NPP in teak plantation ould point to "dominance effect."

RevDate: 2022-10-24

Ladouceur E, Blowes SA, Chase JM, et al (2022)

Linking changes in species composition and biomass in a globally distributed grassland experiment.

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.

RevDate: 2022-10-22
CmpDate: 2022-10-21

Brown JA, Lerman SB, Basile AJ, et al (2022)

No fry zones: How restaurant distribution and abundance influence avian communities in the Phoenix, AZ metropolitan area.

PloS one, 17(10):e0269334.

Urbanization is one of the most widespread and extreme examples of habitat alteration. As humans dominate landscapes, they introduce novel elements into environments, including artificial light, noise pollution, and anthropogenic food sources. One understudied form of anthropogenic food is refuse from restaurants, which can alter wildlife populations and, in turn, entire wildlife communities by providing a novel and stable food source. Using data from the Maricopa Association of Governments and the Central Arizona-Phoenix Long Term Ecological Research (CAP LTER) project, we investigated whether and how the distribution of restaurants influences avian communities. The research aimed to identify restaurants, and thus the associated food they may provide, as the driver of potential patterns by controlling for other influences of urbanization, including land cover and the total number of businesses. Using generalized linear mixed models, we tested whether the number of restaurants within 1 km of bird monitoring locations predict avian community richness and abundance and individual species abundance and occurrence patterns. Results indicate that restaurants may decrease avian species diversity and increase overall abundance. Additionally, restaurants may be a significant predictor of the overall abundance of urban-exploiting species, including rock pigeon (Columba livia), mourning dove (Zenaida macroura), and Inca dove (Columbina Inca). Understanding how birds utilize anthropogenic food sources can inform possible conservation or wildlife management practices. As this study highlights only correlations, we suggest further experimental work to address the physiological ramifications of consuming anthropogenic foods provided by restaurants and studies to quantify how frequently anthropogenic food sources are used compared to naturally occurring sources.

RevDate: 2022-09-28

Amoussou N, Thomas M, Pasquet A, et al (2022)

Finding the Best Match: A Ranking Procedure of Fish Species Combinations for Polyculture Development.

Life (Basel, Switzerland), 12(9):.

Polyculture is a potentially interesting rearing practice for future aquaculture developments. Nevertheless, it may result in beneficial as well as detrimental consequences for fish production. One way to maximize the benefits of polyculture is to combine species with high levels of compatibility and complementarity. This requires the development of a ranking procedure, based on a multi-trait assessment, that highlights the most suitable species combinations for polyculture. Moreover, in order to ensure the relevance of such a procedure, it is important to integrate the socio-economic expectations by assigning relative weights to each trait according to the stakeholder priorities. Here, we proposed a ranking procedure of candidate fish polycultures (i.e., species combinations that could be potentially interesting for aquaculture) based on a multi-trait assessment approach and the stakeholder priorities. This procedure aims at successively (i) weighting evaluation results obtained for each candidate polyculture according to stakeholder priorities; (ii) assessing differentiation between candidate species combinations based on these weighted results; and (iii) ranking differentiated candidate polycultures. We applied our procedure on three test cases of fish polycultures in recirculated aquaculture systems. These test cases each focused on a target species (two on Sander lucioperca and one on Carassius auratus), which were reared in two or three different alternative candidate fish polycultures. For each test case, our procedure aimed at ranking alternative combinations according to their benefits for production and/or welfare of the target species. These benefits were evaluated based on survival rate as well as morphology, behavioral, and physiological traits. Three scenarios of stakeholder priorities were considered for weighting evaluation results: placing a premium on production, welfare, or both for the target species. A comparison of our procedure results between these scenarios showed that the ranking changed for candidate polycultures in two test cases. This highlights the need to carefully consider stakeholder priorities when choosing fish polycultures.

RevDate: 2022-09-07

Hammond SW, Lodolo L, Hu SK, et al (2022)

Methodological 'lenses' influence the characterization of phytoplankton dynamics in a coastal upwelling ecosystem.

Environmental microbiology reports [Epub ahead of print].

New technologies enable the opportunity to improve our monitoring and understanding of marine phytoplankton communities. However, careful consideration for how different methodological approaches, or 'lenses', influence our interpretation of phytoplankton ecology is important, particularly when drawing conclusions about change over time or space. Using both high-throughput 18S rRNA gene sequencing and microscopy, we explored how phytoplankton community structure varied over the course of a year within a nearshore semi-enclosed coastal embayment along the Central Coast of California. The seasonal shift in the relative community dominance (i.e., diatom vs. dinoflagellate dominance) was captured in the microscopy results but not effectively captured in the molecular-based findings. However, the molecular approach explained more of the variability in composition across seasons relative to the microscopy approach. Temporal dynamics of specific bloom-forming taxa also differed between the molecular and microscopy results. Overall, the observed differences between the molecular- and microscopy-derived characterization of phytoplankton dynamics suggest that the approaches are best suited to answer different research questions. Moreover, the approaches complement each other for a more comprehensive perspective of a coastal phytoplankton ecosystem. Therefore, identifying the biases of each approach within natural communities is necessary to effectively and accurately characterize phytoplankton communities.

RevDate: 2022-11-03
CmpDate: 2022-10-04

Kim H, McComb BC, Frey SJK, et al (2022)

Forest microclimate and composition mediate long-term trends of breeding bird populations.

Global change biology, 28(21):6180-6193.

Climate change is contributing to biodiversity redistributions and species declines. However, cooler microclimate conditions provided by old-growth forest structures compared with surrounding open or younger forests have been hypothesized to provide thermal refugia for species that are sensitive to climate warming and dampen the negative effects of warming on population trends of animals (i.e., the microclimate buffering hypothesis). In addition to thermal refugia, the compositional and structural diversity of old-growth forest vegetation itself may provide resources to species that are less available in forests with simpler structure (i.e., the insurance hypothesis). We used 8 years of breeding bird abundance data from a forested watershed, accompanied with sub-canopy temperature data, and ground- and LiDAR-based vegetation data to test these hypotheses and identify factors influencing bird population changes from 2011 to 2018. After accounting for imperfect detection, we found that for 5 of 20 bird species analyzed, abundance trends tended to be less negative or neutral at sites with cooler microclimates, which supports the microclimate buffering hypothesis. Negative effects of warming on two species were also reduced in locations with greater forest compositional diversity supporting the insurance hypothesis. We provide the first empirical evidence that complex forest structure and vegetation diversity confer microclimatic advantages to some animal populations in the face of climate change. Conservation of old-growth forests, or their characteristics in managed forests, could help slow the negative effects of climate warming on some breeding bird populations via microclimate buffering and possibly insurance effects.

RevDate: 2022-10-18
CmpDate: 2022-09-23

Banchi E, Manna V, Fonti V, et al (2022)

Improving environmental monitoring of Vibrionaceae in coastal ecosystems through 16S rRNA gene amplicon sequencing.

Environmental science and pollution research international, 29(44):67466-67482.

The Vibrionaceae family groups genetically and metabolically diverse bacteria thriving in all marine environments. Despite often representing a minor fraction of bacterial assemblages, members of this family can exploit a wide variety of nutritional sources, which makes them important players in biogeochemical dynamics. Furthermore, several Vibrionaceae species are well-known pathogens, posing a threat to human and animal health. Here, we applied the phylogenetic placement coupled with a consensus-based approach using 16S rRNA gene amplicon sequencing, aiming to reach a reliable and fine-level Vibrionaceae characterization and identify the dynamics of blooming, ecologically important, and potentially pathogenic species in different sites of the northern Adriatic Sea. Water samples were collected monthly at a Long-Term Ecological Research network site from 2018 to 2021, and in spring and summer of 2019 and 2020 at two sites affected by depurated sewage discharge. The 41 identified Vibrionaceae species represented generally below 1% of the sampled communities; blooms (up to ~ 11%) mainly formed by Vibrio chagasii and Vibrio owensii occurred in summer, linked to increasing temperature and particulate matter concentration. Pathogenic species such as Vibrio anguilllarum, Vibrio tapetis, and Photobacterium damselae were found in low abundance. Depuration plant samples were characterized by a lower abundance and diversity of Vibrionaceae species compared to seawater, highlighting that Vibrionaceae dynamics at sea are unlikely to be related to wastewater inputs. Our work represents a further step to improve the molecular approach based on short reads, toward a shared, updated, and curated phylogeny of the Vibrionaceae family.

RevDate: 2022-10-28

Kolody BC, Smith SR, Zeigler Allen L, et al (2022)

Nitrogen and Iron Availability Drive Metabolic Remodeling and Natural Selection of Diverse Phytoplankton during Experimental Upwelling.

mSystems, 7(5):e0072922.

Nearly half of carbon fixation and primary production originates from marine phytoplankton, and much of it occurs in episodic blooms in upwelling regimes. Here, we simulated blooms limited by nitrogen and iron by incubating Monterey Bay surface waters with subnutricline waters and inorganic nutrients and measured the whole-community transcriptomic response during mid- and late-bloom conditions. Cell counts revealed that centric and pennate diatoms (largely Pseudo-nitzschia and Chaetoceros spp.) were the major blooming taxa, but dinoflagellates, prasinophytes, and prymnesiophytes also increased. Viral mRNA significantly increased in late bloom and likely played a role in the bloom's demise. We observed conserved shifts in the genetic similarity of phytoplankton populations to cultivated strains, indicating adaptive population-level changes in community composition. Additionally, the density of single nucleotide variants (SNVs) declined in late-bloom samples for most taxa, indicating a loss of intraspecific diversity as a result of competition and a selective sweep of adaptive alleles. We noted differences between mid- and late-bloom metabolism and differential regulation of light-harvesting complexes (LHCs) under nutrient stress. While most LHCs are diminished under nutrient stress, we showed that diverse taxa upregulated specialized, energy-dissipating LHCs in low iron. We also suggest the relative expression of NRT2 compared to the expression of GSII as a marker of cellular nitrogen status and the relative expression of iron starvation-induced protein genes (ISIP1, ISIP2, and ISIP3) compared to the expression of the thiamine biosynthesis gene (thiC) as a marker of iron status in natural diatom communities. IMPORTANCE Iron and nitrogen are the nutrients that most commonly limit phytoplankton growth in the world's oceans. The utilization of these resources by phytoplankton sets the biomass available to marine systems and is of particular interest in high-nutrient, low-chlorophyll (HNLC) coastal fisheries. Previous research has described the biogeography of phytoplankton in HNLC regions and the transcriptional responses of representative taxa to nutrient limitation. However, the differential transcriptional responses of whole phytoplankton communities to iron and nitrogen limitation has not been previously described, nor has the selective pressure that these competitive bloom environments exert on major players. In addition to describing changes in the physiology of diverse phytoplankton, we suggest practical indicators of cellular nitrogen and iron status for future monitoring.

RevDate: 2022-09-10

Hudson AR, Peters DPC, Blair JM, et al (2022)

Cross-Site Comparisons of Dryland Ecosystem Response to Climate Change in the US Long-Term Ecological Research Network.

Bioscience, 72(9):889-907.

Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.

RevDate: 2022-08-29

Jones JA, CT Driscoll (2022)

Long-Term Ecological Research on Ecosystem Responses to Climate Change.

Bioscience, 72(9):814-826 pii:biac021.

In this article marking the 40th anniversary of the US National Science Foundation's Long Term Ecological Research (LTER) Network, we describe how a long-term ecological research perspective facilitates insights into an ecosystem's response to climate change. At all 28 LTER sites, from the Arctic to Antarctica, air temperature and moisture variability have increased since 1930, with increased disturbance frequency and severity and unprecedented disturbance types. LTER research documents the responses to these changes, including altered primary production, enhanced cycling of organic and inorganic matter, and changes in populations and communities. Although some responses are shared among diverse ecosystems, most are unique, involving region-specific drivers of change, interactions among multiple climate change drivers, and interactions with other human activities. Ecosystem responses to climate change are just beginning to emerge, and as climate change accelerates, long-term ecological research is crucial to understand, mitigate, and adapt to ecosystem responses to climate change.

RevDate: 2022-09-08
CmpDate: 2022-09-08

Chaumet B, Probst JL, Payré-Suc V, et al (2022)

Pond mitigation in dissolved and particulate pesticide transfers: Influence of storm events and seasonality (Auradé agricultural catchment, SW-France).

Journal of environmental management, 320:115911.

In agricultural headwater catchments, wetlands such as ponds are numerous and well known to partly dissipate contamination. Most of the pesticides are transferred from soils to the aquatic environment during flood events. This study reports the annual/seasonal behaviour of 6 pesticides (metolachlor, boscalid, epoxiconazole, tebuconazole, aclonifen and pendimethalin) in such an environment. Because it is rarely considered, the study focussed on the high frequency of the distribution of pesticides between dissolved and particulate phases, as well as the main controlling factors of their upstream-downstream transfer. The pond removal rate was calculated to evaluate the wetland efficiency in pesticide mitigation. We conducted a one-year high frequency hydrochemical survey, with particular emphasis on flood events, in the upper Auradé catchment (SW-France), an area of long-term conventional agriculture on highly erosive carbonated soils. The inlet and outlet of the pond were instrumented for water level measurements and water sampling. The highest concentrations were observed for tebuconazole and, in general, the presence of the molecules during the year depended on the season. The pond showed satisfactory efficiency in pesticide attenuation for the six molecules considered, although the removal rate depended on the molecule and the bearing phase (from 28.4% for boscalid to 89.4% for aclonifen in the dissolved phase and from 22.1% for pendimethalin to 96.8% for metolachlor in the particulate fraction). Interestingly, the more hydrophilic the molecule (low LogKOW), the more efficient the pesticide removal rate was for its particulate fraction, and the opposite for hydrophobic molecules (high LogKOW). Flood events carried a large amount of Total Suspended Solid (TSS) bearing hydrophobic molecules from a major legacy of upper catchment soils, although 52% of the pesticides were transported by the dissolved fraction. Significant resuspension of TSS from the pond was evidenced by the annual mass balance with four tons of TSS released, while the positive rate of pesticide removal involved other effective mechanisms such as exchange and complexation. Although these constructed wetlands may be beneficial for pesticide mitigation, the results highlighted the need for improved land management in the upstream catchment during the different seasons to avoid bare soils that pose a risk of high surface water contamination, especially due to the presence of hydrophobic molecules in combination with a high erosive context.

RevDate: 2022-08-11

Hyndes GA, Berdan EL, Duarte C, et al (2022)

The role of inputs of marine wrack and carrion in sandy-beach ecosystems: a global review.

Biological reviews of the Cambridge Philosophical Society [Epub ahead of print].

Sandy beaches are iconic interfaces that functionally link the ocean with the land via the flow of organic matter from the sea. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed 'wrack', on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source ('carrion') for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy-beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examine the spatial scaling of the influence of these processes across the broader land- and seascape, and identify key gaps in our knowledge to guide future research directions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy-beach ecosystems, where microbial decomposers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy-beach ecosystems underpin a range of ecosystem functions and services, they can be at variance with aesthetic perceptions resulting in widespread activities, such as 'beach cleaning and grooming'. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects for food webs and biodiversity. Similarly, future sea-level rise and increased storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide.

RevDate: 2022-08-13

Percopo I, Ruggiero MV, Sarno D, et al (2022)

Phenological segregation suggests speciation by time in the planktonic diatom Pseudo-nitzschia allochrona sp. nov.

Ecology and evolution, 12(8):e9155.

The processes leading to the emergence of new species are poorly understood in marine plankton, where weak physical barriers and homogeneous environmental conditions limit spatial and ecological segregation. Here, we combine molecular and ecological information from a long-term time series and propose Pseudo-nitzschia allochrona, a new cryptic planktonic diatom, as a possible case of speciation by temporal segregation. The new species differs in several genetic markers (18S, 28S and ITS rDNA fragments and rbcL) from its closest relatives, which are morphologically very similar or identical, and is reproductively isolated from its sibling species P. arenysensis. Data from a long-term plankton time series show P. allochrona invariably occurring in summer-autumn in the Gulf of Naples, where its closely related species P. arenysensis, P. delicatissima, and P. dolorosa are instead found in winter-spring. Temperature and nutrients are the main factors associated with the occurrence of P. allochrona, which could have evolved in sympatry by switching its phenology and occupying a new ecological niche. This case of possible speciation by time shows the relevance of combining ecological time series with molecular information to shed light on the eco-evolutionary dynamics of marine microorganisms.

RevDate: 2022-09-23
CmpDate: 2022-09-23

Wurtzer S, Levert M, Dhenain E, et al (2022)

From Alpha to Omicron BA.2: New digital RT-PCR approach and challenges for SARS-CoV-2 VOC monitoring and normalization of variant dynamics in wastewater.

The Science of the total environment, 848:157740.

Throughout the COVID-19 pandemic, new variants have continuously emerged and spread in populations. Among these, variants of concern (VOC) have been the main culprits of successive epidemic waves, due to their transmissibility, pathogenicity or ability to escape the immune response. Quantification of the SARS-CoV-2 genomes in raw wastewater is a reliable approach well-described and widely deployed worldwide to monitor the spread of SARS-CoV-2 in human populations connected to sewage systems. Discrimination of VOCs in wastewater is also a major issue and can be achieved by genome sequencing or by detection of specific mutations suggesting the presence of VOCs. This study aimed to date the emergence of these VOCs (from Alpha to Omicron BA.2) by monitoring wastewater from the greater Paris area, France, but also to model the propagation dynamics of these VOCs and to characterize the replacement kinetics of the prevalent populations. These dynamics were compared to various individual-centered public health data, such as regional incidence and the proportions of VOCs identified by sequencing of strains isolated from patient. The viral dynamics in wastewater highlighted the impact of the vaccination strategy on the viral circulation within human populations but also suggested its potential effect on the selection of variants most likely to be propagated in immunized populations. Normalization of concentrations to capture population movements appeared statistically more reliable using variations in local drinking water consumption rather than using PMMoV concentrations because PMMoV fecal shedding was subject to variability and was not sufficiently relevant in this study. The dynamics of viral spread was observed earlier (about 13 days on the wave related to Omicron VOC) in raw wastewater than the regional incidence alerting to a possible risk of decorrelation between incidence and actual virus circulation probably resulting from a lower severity of infection in vaccinated populations.

RevDate: 2022-08-17
CmpDate: 2022-07-18

Xu H, Lian X, Slette IJ, et al (2022)

Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons.

Nature communications, 13(1):4093.

Precipitation-based assessments show a lengthening of tropical dry seasons under climate change, without considering simultaneous changes in ecosystem water demand. Here, we compare changes in tropical dry season length and timing when dry season is defined as the period when precipitation is less than: its climatological average, potential evapotranspiration, or actual evapotranspiration. While all definitions show more widespread tropical drying than wetting for 1983-2016, we find the largest fraction (48.7%) of tropical land probably experiencing longer dry seasons when dry season is defined as the period when precipitation cannot meet the need of actual evapotranspiration. Southern Amazonia (due to delayed end) and central Africa (due to earlier onset and delayed end) are hotspots of dry season lengthening, with greater certainty when accounting for water demand changes. Therefore, it is necessary to account for changing water demand when characterizing changes in tropical dry periods and ecosystem water deficits.

RevDate: 2022-08-04
CmpDate: 2022-08-04

Cesarini G, Secco S, Battisti C, et al (2022)

Temporal changes of plastic litter and associated encrusting biota: Evidence from Central Italy (Mediterranean Sea).

Marine pollution bulletin, 181:113890.

We investigated the temporal changes from spring to summer of the stranded litter and the composition of plastic encrusting biota along an Italian beach. Our findings highlight a higher quantity of litter (average value 1510.67 ± 581.27 items) in spring, particularly plastic material with a composition driven by currents, winds and waves transported from rivers to sea. During summer the source was caused by anti-social behaviours (e.g. cigarettes). Regarding the plastic size, the most is macroplastic (85.96 %), followed by mesoplastic (13.74 %) and megaplastic (0.30 %) overall, and no seasonal trend was observed. Concerning the encrusting biota, Mollusca was the most frequent phylum found on plastic beach litter, whereas Porifera the most abundant overall. During spring a greater abundance of individuals was recorded compared to summer. The trend of taxa richness was decreasing from spring to summer. Arthropoda, Porifera and Mollusca phyla were significantly more abundant in spring, while Algae in summer.

RevDate: 2022-07-27
CmpDate: 2022-07-27

Collins CG, Elmendorf SC, Smith JG, et al (2022)

Global change re-structures alpine plant communities through interacting abiotic and biotic effects.

Ecology letters, 25(8):1813-1826.

Global change is altering patterns of community assembly, with net outcomes dependent on species' responses to the abiotic environment, both directly and mediated through biotic interactions. Here, we assess alpine plant community responses in a 15-year factorial nitrogen addition, warming and snow manipulation experiment. We used a dynamic competition model to estimate the density-dependent and -independent processes underlying changes in species-group abundances over time. Density-dependent shifts in competitive interactions drove long-term changes in abundance of species-groups under global change while counteracting environmental drivers limited the growth response of the dominant species through density-independent mechanisms. Furthermore, competitive interactions shifted with the environment, primarily with nitrogen and drove non-linear abundance responses across environmental gradients. Our results highlight that global change can either reshuffle species hierarchies or further favour already-dominant species; predicting which outcome will occur requires incorporating both density-dependent and -independent mechanisms and how they interact across multiple global change factors.

RevDate: 2022-07-29
CmpDate: 2022-07-26

Hirsch SL, Ribes D, S Inman (2022)

Sedimentary legacy and the disturbing recurrence of the human in long-term ecological research.

Social studies of science, 52(4):561-580.

Even as new elements of a research infrastructure are added, older parts continue to exert persistent and consequential influence. We introduce the concept of sedimentary legacy to describe the relationship between infrastructure and research objects. Contrary to common accounts of legacy infrastructure that underscore lock-in, static, or constraining outcomes, sedimentary legacy emphasizes how researchers adapt infrastructure to support the investigation of new research objects, even while operating under constraining legacies. To illustrate the implications of sedimentary legacy, we track shifting objects of investigation across the history of the Long-Term Ecological Research (LTER) Network, focusing especially on recurrent ecological investigations of 'human disturbance' as researchers shift to study socioecological objects. We examine the relationship between scientific objects and the resources collected and preserved to render such objects tractable to scientific investigations, and show how the resources of a long-term research infrastructure support the assembly of certain objects of investigation, even while foreclosing others.

RevDate: 2022-11-03
CmpDate: 2022-11-03

Currier CM, OE Sala (2022)

Precipitation versus temperature as phenology controls in drylands.

Ecology, 103(11):e3793.

Cycles of plant growth, termed phenology, are tightly linked to environmental controls. The length of time spent growing, bounded by the start and end of season, is an important determinant of the global carbon, water, and energy balance. Much focus has been given to global warming and consequences for shifts in growing-season length in temperate regions. In conjunction with warming temperatures, altered precipitation regimes are another facet of climate change that have potentially larger consequences than temperature in dryland phenology globally. We experimentally manipulated incoming precipitation in a semiarid grassland for over a decade and recorded plant phenology at the daily scale for 7 years. We found precipitation to have a strong relationship with the timing of grass greenup and senescence but temperature had only a modest effect size on grass greenup. Pre-season drought strongly resulted in delayed grass greenup dates and shorter growing-season lengths. Spring and summer drought corresponded with earlier grass senescence, whereas higher precipitation accumulation over these seasons corresponded with delayed grass senescence. However, extremely wet conditions diluted this effect and caused a plateaued response. Deep-rooted woody shrubs showed few effects of variable precipitation or temperature on phenology and displayed consistent annual phenological timing compared with grasses. Whereas rising temperatures have already elicited phenological consequences and extended growing-season length for mid and high-latitude ecosystems, precipitation change will be the major driver of phenological change in drylands that cover 40% of the land surface with consequences for the global carbon, water, and energy balance.

RevDate: 2022-09-08

Smith RS, Cheng SL, MCN Castorani (2022)

Meta-analysis of ecosystem services associated with oyster restoration.

Conservation biology : the journal of the Society for Conservation Biology [Epub ahead of print].

Restoration of foundation species promises to reverse environmental degradation and return lost ecosystem services, but a lack of standardized evaluation across projects limits understanding of recovery, especially in marine systems. Oyster reefs are restored to reverse massive global declines and reclaim valuable ecosystem services, but the success of these projects has not been systematically and comprehensively quantified. We synthesized data on ecosystem services associated with oyster restoration from 245 pairs of restored and degraded reefs and 136 pairs of restored and reference reefs across 3500 km of U.S. Gulf of Mexico and Atlantic coastlines. On average, restoration was associated with a 21-fold increase in oyster production (mean log response ratio = 3.08 [95% confidence interval: 2.58-3.58]), 34-97% enhancement of habitat provisioning (mean community abundance = 0.51 [0.41-0.61], mean richness = 0.29 [0.19-0.39], and mean biomass = 0.69 [0.39-0.99]), 54% more nitrogen removal (mean = 0.43 [0.13-0.73]), and 89-95% greater sediment nutrients (mean = 0.67 [0.27-1.07]) and organic matter (mean = 0.64 [0.44-0.84]) relative to degraded habitats. Moreover, restored reefs matched reference reefs for these ecosystem services. Our results support the continued and expanded use of oyster restoration to enhance ecosystem services of degraded coastal systems and match many functions provided by reference reefs.

RevDate: 2022-07-16

Aoki LR, Brisbin MM, Hounshell AG, et al (2022)

Preparing Aquatic Research for an Extreme Future: Call for Improved Definitions and Responsive, Multidisciplinary Approaches.

Bioscience, 72(6):508-520.

Extreme events have increased in frequency globally, with a simultaneous surge in scientific interest about their ecological responses, particularly in sensitive freshwater, coastal, and marine ecosystems. We synthesized observational studies of extreme events in these aquatic ecosystems, finding that many studies do not use consistent definitions of extreme events. Furthermore, many studies do not capture ecological responses across the full spatial scale of the events. In contrast, sampling often extends across longer temporal scales than the event itself, highlighting the usefulness of long-term monitoring. Many ecological studies of extreme events measure biological responses but exclude chemical and physical responses, underscoring the need for integrative and multidisciplinary approaches. To advance extreme event research, we suggest prioritizing pre- and postevent data collection, including leveraging long-term monitoring; making intersite and cross-scale comparisons; adopting novel empirical and statistical approaches; and developing funding streams to support flexible and responsive data collection.

RevDate: 2022-08-30
CmpDate: 2022-08-09

Gallitelli L, Battisti C, Pietrelli L, et al (2022)

Anthropogenic particles in coypu (Myocastor coypus; Mammalia, Rodentia)' faeces: first evidence and considerations about their use as track for detecting microplastic pollution.

Environmental science and pollution research international, 29(36):55293-55301.

Anthropogenic plastic litter is widespread in all environments, with particular emphasis on aquatic habitats. Specifically, although freshwater mammals are important as they are at the top of food web, research mainly focus on marine animals, while only few studies have been carried out on freshwater mammals. The main gap is that microplastics (MP) are completely understudied in freshwater mammals. Here, we reported the first evidence of the presence of anthropogenic particles (including MP) in coypu (Myocastor coypus)' faeces. Coypu is a rodent mammal inhabiting rivers and wetland areas, and we discussed our preliminary data suggesting the use of these tracks as possible future bioindicator of MP pollution in wetlands and freshwaters. We collected 30 coypu's faeces in "Torre Flavia wetland" nature reserve. Then, in laboratory, faeces were digested in 30 ml hydrogen peroxide (30%) for a week a 20 °C and analysed under stereoscope. All the suspected found MP were isolated in a petri dish, using FT-IR analysis to confirm the polymers. Overall, we recorded 444 natural and anthropogenic particles with most of items being fibres. FT-IR analysis of the 10% of the particles recovered revealed that 72% of them was not MP (mainly, polyethylene, polyethylene terephthalate, and polyamide). Also, the number of anthropogenic particles is not correlated with the faecal weight. Given that alien species, such as coypu, are widespread species, our results might have a great importance as these species and MP in faecal tracks may be used as undirect proxy of environmental bioavailability of MP pollution.

RevDate: 2022-07-25

Rastetter EB, Kwiatkowski BL, Kicklighter DW, et al (2022)

N and P constrain C in ecosystems under climate change: Role of nutrient redistribution, accumulation, and stoichiometry.

Ecological applications : a publication of the Ecological Society of America [Epub ahead of print].

We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO2 , warming, and decreased precipitation combined because higher water-use efficiency with elevated CO2 and higher fertility with warming compensate for responses to drought. Response to elevated CO2 , warming, and increased precipitation combined is additive. We analyze changes in ecosystem carbon (C) based on four nitrogen (N) and four phosphorus (P) attribution factors: (1) changes in total ecosystem N and P, (2) changes in N and P distribution between vegetation and soil, (3) changes in vegetation C:N and C:P ratios, and (4) changes in soil C:N and C:P ratios. In the combined CO2 and climate change simulations, all ecosystems gain C. The contributions of these four attribution factors to changes in ecosystem C storage varies among ecosystems because of differences in the initial distributions of N and P between vegetation and soil and the openness of the ecosystem N and P cycles. The net transfer of N and P from soil to vegetation dominates the C response of forests. For tundra and grasslands, the C gain is also associated with increased soil C:N and C:P. In ecosystems with symbiotic N fixation, C gains resulted from N accumulation. Because of differences in N versus P cycle openness and the distribution of organic matter between vegetation and soil, changes in the N and P attribution factors do not always parallel one another. Differences among ecosystems in C-nutrient interactions and the amount of woody biomass interact to shape ecosystem C sequestration under simulated global change. We suggest that future studies quantify the openness of the N and P cycles and changes in the distribution of C, N, and P among ecosystem components, which currently limit understanding of nutrient effects on C sequestration and responses to elevated CO2 and climate change.

RevDate: 2022-07-16

Gaiser EE, Kominoski JS, McKnight DM, et al (2022)

Long-term ecological research and the COVID-19 anthropause: A window to understanding social-ecological disturbance.

Ecosphere (Washington, D.C), 13(4):e4019.

The period of disrupted human activity caused by the COVID-19 pandemic, coined the "anthropause," altered the nature of interactions between humans and ecosystems. It is uncertain how the anthropause has changed ecosystem states, functions, and feedback to human systems through shifts in ecosystem services. Here, we used an existing disturbance framework to propose new investigation pathways for coordinated studies of distributed, long-term social-ecological research to capture effects of the anthropause. Although it is still too early to comprehensively evaluate effects due to pandemic-related delays in data availability and ecological response lags, we detail three case studies that show how long-term data can be used to document and interpret changes in air and water quality and wildlife populations and behavior coinciding with the anthropause. These early findings may guide interpretations of effects of the anthropause as it interacts with other ongoing environmental changes in the future, particularly highlighting the importance of long-term data in separating disturbance impacts from natural variation and long-term trends. Effects of this global disturbance have local to global effects on ecosystems with feedback to social systems that may be detectable at spatial scales captured by nationally to globally distributed research networks.

RevDate: 2022-03-29

Wheeler MM, Collins SL, Grimm NB, et al (2021)

Water and nitrogen shape winter annual plant diversity and community composition in near-urban Sonoran Desert preserves.

Ecological monographs, 91(3):1-19.

Increased nitrogen (N) deposition threatens global biodiversity, but its effects in arid urban ecosystems are not well studied. In addition to altered N availability, urban environments also experience increases in other pollutants, decreased population connectivity, and altered biotic interactions, which can further impact biodiversity. In deserts, annual plant communities make up most of the plant diversity, support wildlife, and contribute to nutrient cycling and ecosystem processes. Functional tradeoffs allowing coexistence of a diversity of annual plant species are well established, but maintenance of diversity in urban conditions and with increased availability of limiting nutrients has not been explored. We conducted a 13-year N and phosphorus (P) addition experiment in Sonoran Desert preserves in and around Phoenix, AZ, to test how nutrient availability interacts with growing season precipitation, urban location, and microhabitat to affect winter annual plant diversity. Using structural equation modeling and generalized linear mixed modeling, we found that annual plant taxonomic diversity was significantly reduced in N-enriched and urban plots. Water availability in both current and previous growing seasons impacted annual plant diversity, with significant interaction effects showing increased diversity in wetter years and greater responsiveness of the community to water following a wet year. However, there were no significant interactions between N enrichment and water availability, urban location, or microhabitat. Lowered diversity in urban preserves may be partly attributable to increased urban N deposition. Changes in biodiversity of showy species like annual wildflowers in urban preserves can have important implications for connections between urban residents and nature, and reduced diversity and community restructuring with N enrichment represents a challenge for future preservation of aridland biodiversity.

RevDate: 2022-07-21
CmpDate: 2022-03-29

Santangelo JS, Ness RW, Cohan B, et al (2022)

Global urban environmental change drives adaptation in white clover.

Science (New York, N.Y.), 375(6586):1275-1281.

Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.

RevDate: 2022-07-16
CmpDate: 2022-02-16

Schaeffer B, Salls W, Coffer M, et al (2022)

Merging of the Case 2 Regional Coast Colour and Maximum-Peak Height chlorophyll-a algorithms: validation and demonstration of satellite-derived retrievals across US lakes.

Environmental monitoring and assessment, 194(3):179.

Water quality monitoring is relevant for protecting the designated, or beneficial uses, of water such as drinking, aquatic life, recreation, irrigation, and food supply that support the economy, human well-being, and aquatic ecosystem health. Managing finite water resources to support these designated uses requires information on water quality so that managers can make sustainable decisions. Chlorophyll-a (chl-a, µg L-1) concentration can serve as a proxy for phytoplankton biomass and may be used as an indicator of increased anthropogenic nutrient stress. Satellite remote sensing may present a complement to in situ measures for assessments of water quality through the retrieval of chl-a with in-water algorithms. Validation of chl-a algorithms across US lakes improves algorithm maturity relevant for monitoring applications. This study compares performance of the Case 2 Regional Coast Colour (C2RCC) chl-a retrieval algorithm, a revised version of the Maximum-Peak Height (MPH(P)) algorithm, and three scenarios merging these two approaches. Satellite data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS) and the Ocean and Land Colour Instrument (OLCI), while field observations were obtained from 181 lakes matched with U.S. Water Quality Portal chl-a data. The best performance based on mean absolute multiplicative error (MAEmult) was demonstrated by the merged algorithm referred to as C15-M10 (MAEmult = 1.8, biasmult = 0.97, n = 836). In the C15-M10 algorithm, the MPH(P) chl-a value was retained if it was > 10 µg L-1; if the MPH(P) value was ≤ 10 µg L-1, the C2RCC value was selected, as long as that value was < 15 µg L-1. Time-series and lake-wide gradients compared against independent assessments from Lake Champlain and long-term ecological research stations in Wisconsin were used as complementary examples supporting water quality reporting requirements. Trophic state assessments for Wisconsin lakes provided examples in support of inland water quality monitoring applications. This study presents and assesses merged adaptations of chl-a algorithms previously reported independently. Additionally, it contributes to the transition of chl-a algorithm maturity by quantifying error statistics for a number of locations and times.

RevDate: 2022-08-30
CmpDate: 2022-06-02

Sonti NF, Groffman PM, Nowak DJ, et al (2022)

Urban net primary production: Concepts, field methods, and Baltimore, Maryland, USA case study.

Ecological applications : a publication of the Ecological Society of America, 32(4):e2562.

Given the large and increasing amount of urban, suburban, and exurban land use on Earth, there is a need to accurately assess net primary productivity (NPP) of urban ecosystems. However, the heterogeneous and dynamic urban mosaic presents challenges to the measurement of NPP, creating landscapes that may appear more similar to a savanna than to the native landscape replaced. Studies of urban biomass have tended to focus on one type of vegetation (e.g., lawns or trees). Yet a focus on the ecology of the city should include the entire urban ecosystem rather than the separate investigation of its parts. Furthermore, few studies have attempted to measure urban aboveground NPP (ANPP) using field-based methods. Most studies project growth rates from measurements of tree diameter to estimate annual ANPP or use remote sensing approaches. In addition, field-based methods for measuring NPP do not address any special considerations for adapting such field methods to urban landscapes. Frequent planting and partial or complete removal of herbaceous and woody plants can make it difficult to accurately quantify increments and losses of plant biomass throughout an urban landscape. In this study, we review how ANPP of urban landscapes can be estimated based on field measurements, highlighting the challenges specific to urban areas. We then estimated ANPP of woody and herbaceous vegetation over a 15-year period for Baltimore, MD, USA using a combination of plot-based field data and published values from the literature. Baltimore's citywide ANPP was estimated to be 355.8 g m-2 , a result that we then put into context through comparison with other North American Long-Term Ecological Research (LTER) sites and mean annual precipitation. We found our estimate of Baltimore citywide ANPP to be only approximately half as much (or less) than ANPP at forested LTER sites of the eastern United States, and more comparable to grassland, oldfield, desert, or boreal forest ANPP. We also found that Baltimore had low productivity for its level of precipitation. We conclude with a discussion of the significance of accurate assessment of primary productivity of urban ecosystems and critical future research needs.

RevDate: 2022-05-08
CmpDate: 2022-04-05

Adelizzi R, O'Brien EA, Hoellrich M, et al (2022)

Disturbance to biocrusts decreased cyanobacteria, N-fixer abundance, and grass leaf N but increased fungal abundance.

Ecology, 103(4):e3656.

Interactions between plants and soil microbes influence plant nutrient transformations, including nitrogen (N) fixation, nutrient mineralization, and resource exchanges through fungal networks. Physical disturbances to soils can disrupt soil microbes and associated processes that support plant and microbial productivity. In low resource drylands, biological soil crusts ("biocrusts") occupy surface soils and house key autotrophic and diazotrophic bacteria, non-vascular plants, or lichens. Interactions among biocrusts, plants, and fungal networks between them are hypothesized to drive carbon and nutrient dynamics; however, comparisons across ecosystems are needed to generalize how soil disturbances alter microbial communities and their contributions to N pools and transformations. To evaluate linkages among plants, fungi, and biocrusts, we disturbed all unvegetated surfaces with human foot trampling twice yearly from 2013-2019 in dry conditions in cyanobacteria-dominated biocrusts in the Chihuahuan Desert grassland and shrubland ecosystems. After 5 years, disturbance decreased the abundances of cyanobacteria (especially Microcoleus steenstrupii clade) and N-fixers (Scytonema sp., and Schizothrix sp.) by >77% and chlorophyll a by up to 55% but, conversely, increased soil fungal abundance by 50% compared with controls. Responses of root-associated fungi differed between the two dominant plant species and ecosystem types, with a maximum of 80% more aseptate hyphae in disturbed than in control plots. Although disturbance did not affect 15 N tracer transfer from biocrusts to the dominant grass, Bouteloua eriopoda, disturbance increased available soil N by 65% in the shrubland, and decreased leaf N of B. eriopoda by up to 16%, suggesting that, although rapid N transfer during peak production was not affected by disturbance, over the long-term plant nutrient content was disrupted. Altogether, the shrubland may be more resilient to detrimental changes due to disturbance than grassland, and these results demonstrated that disturbances to soil microbial communities have the potential to cause substantial changes in N pools by reducing and reordering biocrust taxa.

RevDate: 2022-08-30
CmpDate: 2022-06-02

Nevison C, Goodale C, Hess P, et al (2022)

Nitrification and denitrification in the Community Land Model compared with observations at Hubbard Brook Forest.

Ecological applications : a publication of the Ecological Society of America, 32(4):e2530.

Models of terrestrial system dynamics often include nitrogen (N) cycles to better represent N limitations on terrestrial carbon (C) uptake, but simulating the fate of N in ecosystems has proven challenging. Here, key soil N fluxes and flux ratios from the Community Land Model version 5.0 (CLM5.0) are compared with an extensive set of observations from the Hubbard Brook Forest Long-Term Ecological Research site in New Hampshire. Simulated fluxes include microbial immobilization and plant uptake, which compete with nitrification and denitrification, respectively, for available soil ammonium (NH4 +) and nitrate (NO3 -). In its default configuration, CLM5.0 predicts that both plant uptake and immobilization are strongly dominated by NH4 + over NO3 - , and that the model ratio of nitrification:denitrification is ~1:1. In contrast, Hubbard Brook observations suggest that NO3 - plays a more significant role in plant uptake and that nitrification could exceed denitrification by an order of magnitude. Modifications to the standard CLM5.0 at Hubbard Brook indicate that a simultaneous increase in the competitiveness of nitrifying microbes for NH4 + and reduction in the competitiveness of denitrifying bacteria for NO3 - are needed to bring soil N flux ratios into better agreement with observations. Such adjustments, combined with evaluation against observations, may help to improve confidence in present and future simulations of N limitation on the C cycle, although C fluxes, such as gross primary productivity and net primary productivity, are less sensitive to the model modifications than soil N fluxes.

RevDate: 2022-04-05
CmpDate: 2022-04-04

Ross Brown A, Lilley MKS, Shutler J, et al (2022)

Harmful Algal Blooms and their impacts on shellfish mariculture follow regionally distinct patterns of water circulation in the western English Channel during the 2018 heatwave.

Harmful algae, 111:102166.

Harmful algal blooms (HABs) can have severe ecological, societal and economic impacts upon marine ecosystems, human health and the seafood industry. We evaluated changes in marine plankton communities with prevailing physico-chemical conditions throughout an exceptionally warm summer (2018), to elucidate key factors governing HABs and their impacts on shellfish mariculture in the western English Channel. Despite warm, stable weather conditions and widespread seasonal stratification throughout the summer, divergent plankton community compositions were observed at two rope-grown mussel (Mytilus edulis) farms (St Austell Bay and Lyme Bay) and a long-term ecological research LTER site (Plymouth L4). There were significant differences between sites in the abundances of HAB species, including Dinophysis spp. and Karenia mikimotoi, whose cell counts bloomed in excess of UK Food Standards Agency (FSA) advisory 'trigger' levels at Plymouth L4 and St Austell Bay, but not at the Lyme Bay site. The K. mikimotoi bloom occurred over two weeks in August and comprised up to 88% of the standing phytoplankton biomass in St Austell Bay. Dinophysis spp. also bloomed here from May to September, constituting up to 28% of phytoplankton biomass. This protracted bloom resulted in concentrations of Dinophysis toxins 1 & 2 and pectenotoxins and okadaic acid in shellfish, which closed shellfish harvesting operations on farms located in St Austell Bay, and other shellfish sites in the west of the western English Channel (but not in the east of the region). Inter-site differences in the abundances of these and other HAB species were associated with variations in water circulation and co-occurring phytoplankton and zooplankton communities. Furthermore, plankton monitoring data obtained from the L4 site over the past 3 decades showed HAB species (including Dinophysis spp.) with abundances commonly occurring above advisory trigger levels during warmer periods, such as that coinciding with our study. Under projected climate warming these blooms are likely to continue to be governed by regionally distinct patterns of water circulation, which need to be taken into account in marine spatial planning, when assessing the suitability of new shellfish mariculture sites.

RevDate: 2022-03-16
CmpDate: 2022-03-16

Cáliz J, Subirats J, Triadó-Margarit X, et al (2022)

Global dispersal and potential sources of antibiotic resistance genes in atmospheric remote depositions.

Environment international, 160:107077.

Antibiotic resistance has become a major Global Health concern and a better understanding on the global spread mechanisms of antibiotic resistant bacteria (ARB) and intercontinental ARB exchange is needed. We measured atmospheric depositions of antibiotic resistance genes (ARGs) by quantitative (q)PCR in rain/snow collected fortnightly along 4 y. at a remote high mountain LTER (Long-Term Ecological Research) site located above the atmospheric boundary layer (free troposphere). Bacterial composition was characterized by 16S rRNA gene sequencing, and air mass provenances were determined by modelled back trajectories and rain/snow chemical composition. We hypothesize that the free troposphere may act as permanent reservoir and vector for ARB and ARGs global dispersal. We aimed to i) determine whether ARGs are long-range intercontinental and persistently dispersed through aerosols, ii) assess ARGs long-term atmospheric deposition dynamics in a remote high mountain area, and iii) unveil potential diffuse ARGs pollution sources. We showed that the ARGs sul1 (resistance to sulfonamides), tetO (resistance to tetracyclines), and intI1 (a proxy for horizontal gene transfer and anthropogenic pollution) were long-range and persistently dispersed in free troposphere aerosols. Major depositions of tetracyclines resistance matched with intensification of African dust outbreaks. Potential ARB mostly traced their origin back into agricultural soils. Our study unveils that air masses pathways are shaping ARGs intercontinental dispersal and global spread of antibiotic resistances, with potential predictability for interannual variability and remote deposition rates. Because climate regulates aerosolization and long-range air masses movement patterns, we call for a more careful evaluation of the connections between land use, climate change and ARB long-range intercontinental dispersal.

RevDate: 2022-01-10
CmpDate: 2022-01-10

Cluzel N, Courbariaux M, Wang S, et al (2022)

A nationwide indicator to smooth and normalize heterogeneous SARS-CoV-2 RNA data in wastewater.

Environment international, 158:106998.

Since many infected people experience no or few symptoms, the SARS-CoV-2 epidemic is frequently monitored through massive virus testing of the population, an approach that may be biased and may be difficult to sustain in low-income countries. Since SARS-CoV-2 RNA can be detected in stool samples, quantifying SARS-CoV-2 genome by RT-qPCR in wastewater treatment plants (WWTPs) has been carried out as a complementary tool to monitor virus circulation among human populations. However, measuring SARS-CoV-2 viral load in WWTPs can be affected by many experimental and environmental factors. To circumvent these limits, we propose here a novel indicator, the wastewater indicator (WWI), that partly reduces and corrects the noise associated with the SARS-CoV-2 genome quantification in wastewater (average noise reduction of 19%). All data processing results in an average correlation gain of 18% with the incidence rate. The WWI can take into account the censorship linked to the limit of quantification (LOQ), allows the automatic detection of outliers to be integrated into the smoothing algorithm, estimates the average measurement error committed on the samples and proposes a solution for inter-laboratory normalization in the absence of inter-laboratory assays (ILA). This method has been successfully applied in the context of Obépine, a French national network that has been quantifying SARS-CoV-2 genome in a representative sample of French WWTPs since March 5th 2020. By August 26th, 2021, 168 WWTPs were monitored in the French metropolitan and overseas territories of France. We detail the process of elaboration of this indicator, show that it is strongly correlated to the incidence rate and that the optimal time lag between these two signals is only a few days, making our indicator an efficient complement to the incidence rate. This alternative approach may be especially important to evaluate SARS-CoV-2 dynamics in human populations when the testing rate is low.

RevDate: 2021-12-17
CmpDate: 2021-12-17

Fadini RF, Brocardo CR, Rosa C, et al (2021)

Long-term standardized ecological research in an Amazonian savanna: a laboratory under threat.

Anais da Academia Brasileira de Ciencias, 93(suppl 4):e20210879 pii:S0001-37652021000801012.

A few decades ago, researchers from the National Institute for Amazonian Research (INPA) started a pilot study to integrate the ecological studies of several organisms using monitoring plots, which then became the embryo for the creation of the RAPELD (Rapid Assessments and Long-term Ecological Research) system used by the Program for Biodiversity Research (PPBio) and the Long-term ecological research site POPA (PELD Western Pará). They installed and maintained permanent plots in an Amazonian-savanna patch near to the village of Alter do Chão. Amazonian savannas constitute a threatened ecosystem comprising only 6% of the Amazon biome. Most of the studies focused on three main long-term ecological research questions, but the site was also of importance for other inquiries and for the training of young researchers, contributing 71 articles so far and 32 masters and doctorate theses. Here, we present the experimental design and results of standardized studies in the savannas and forest fragments near Alter do Chão that have been carried out over the years. We discuss the future prospects and local threats to the area (e.g. soy crops and land speculation), and highlight the need to incorporate Alter do Chão villagers in land-use planning in the region.

RevDate: 2022-07-16
CmpDate: 2022-01-20

Wurtzer S, Waldman P, Levert M, et al (2022)

SARS-CoV-2 genome quantification in wastewaters at regional and city scale allows precise monitoring of the whole outbreaks dynamics and variants spreading in the population.

The Science of the total environment, 810:152213.

SARS-CoV-2 is a coronavirus causing a globalized outbreak called COVID-19. SARS-CoV-2 transmission is associated with inhalation of contaminated respiratory droplets and could causes severe complications. Until today several "waves" of infections have been observed despite implementation of strict health policies. Decisions for such sanitary measures are based on population health monitoring. Unfortunately, for COVID-19, a significant proportion of individuals are asymptomatic but play a role in the virus transmission. To overcome these limitations, several strategies were developed including genome quantification in wastewater that could allow monitoring of the health status of population, since shedding of SARS-CoV-2 in patient stool is frequent. Wastewater-based epidemiology (WBE) was established and several countries implemented this approach to allow COVID-19 outbreak monitoring. In France, the OBEPINE project performed a quantitative analysis of SARS-CoV-2 in raw wastewater samples collected from major wastewater treatment plants (WWTP) since March 2020. In the greater Paris area 1101 samples (507 for five WWTP and 594 for sewer) were collected. This 16 months monitoring allows us to observe the outbreak dynamics. Comparison of WBE indicators with health data lead to several important observation; the good level of correlation with incidence rates, the average 3 days lead time, and the sensitivity (WBE change when incidence is > to 7/100000 inhabitants). We also compared the local monitoring (city level) with the regional monitoring, to help cluster identification. Moreover, variants of concern (VOC) emerged due to the selection pressure. We developed a specific RT-qPCR method targeting the deletion H69-V70 in the spike protein, using this deletion as a proxy of the B.1.1.7 presence in the wastewater. With this data we demonstrate the predominant role played by this strain in the third wave. All these results allow a better description and understanding of the pandemic and highlight the role of such WBE indicators.

RevDate: 2022-04-01
CmpDate: 2022-03-30

Roeder KA, Benson BR, Weiser MD, et al (2022)

Testing the role of body size and litter depth on invertebrate diversity across six forests in North America.

Ecology, 103(2):e03601.

Ecologists search for rules by which traits dictate the abundance and distribution of species. Here we search for rules that apply across three common taxa of litter invertebrates in six North American forests from Panama to Oregon. We use image analysis to quantify the abundance and body size distributions of mites, springtails, and spiders in 21 1-m2 plots per forest. We contrast three hypotheses: two of which focus on trait-abundance relationships and a third linking abundance to species richness. Despite three orders of magnitude variation in size, the predicted negative relationship between mean body size and abundance per area occurred in only 18% of cases, never for large bodied taxa like spiders. We likewise found only 18% of tests supported our prediction that increasing litter depth allows for high abundance; two-thirds of which occurred at a single deciduous forest in Massachusetts. In contrast, invertebrate abundance constrained species richness 76% of the time. Our results suggest that body size and habitat volume in brown food webs are rarely good predictors of variation in abundance, but that variation in diversity is generally well predicted by abundance.

RevDate: 2022-01-14
CmpDate: 2022-01-14

Juyal A, Guber A, Oerther M, et al (2021)

Pore architecture and particulate organic matter in soils under monoculture switchgrass and restored prairie in contrasting topography.

Scientific reports, 11(1):21998.

Bioenergy cropping systems can substantially contribute to climate change mitigation. However, limited information is available on how they affect soil characteristics, including pores and particulate organic matter (POM), both essential components of the soil C cycle. The objective of this study was to determine effects of bioenergy systems and field topography on soil pore characteristics, POM, and POM decomposition under new plant growth. We collected intact soil cores from two systems: monoculture switchgrass (Panicum virgatum L.) and native prairie, at two contrasting topographical positions (depressions and slopes), planting half of the cores with switchgrass. Pore and POM characteristics were obtained using X-ray computed micro-tomography (μCT) (18.2 µm resolution) before and after new switchgrass growth. Diverse prairie vegetation led to higher soil C than switchgrass, with concomitantly higher volumes of 30-90 μm radius pores and greater solid-pore interface. Yet, that effect was present only in the coarse-textured soils on slopes and coincided with higher root biomass of prairie vegetation. Surprisingly, new switchgrass growth did not intensify decomposition of POM, but even somewhat decreased it in monoculture switchgrass as compared to non-planted controls. Our results suggest that topography can play a substantial role in regulating factors driving C sequestration in bioenergy systems.

RevDate: 2021-12-14
CmpDate: 2021-12-07

Gallitelli L, Battisti C, Olivieri Z, et al (2021)

Carpobrotus spp. patches as trap for litter: Evidence from a Mediterranean beach.

Marine pollution bulletin, 173(Pt B):113029.

Dunal plants may affect the patterns of deposition of beach litter. In this study, we aimed at evaluating if Carpobrotus spp. patches may act as a litter trap in coastal dune systems. To do so, we counted the number of macrolitter occurring in both Carpobrotus and control (embryo dune vegetation) patches classifying each item into categories according to the Marine Strategy. Totally, we observed a significant difference between litter trapped in Carpobrotus (331 items, representing 62.4% of the total beach litter) and control (199, 37.6%). Plastic fragments were the most trapped items by both Carpobrotus (46.2%) and control patches (47.2%). We also calculated the item co-occurrence, obtaining a random aggregated 'litter community'. The main emerging output is that Carpobrotus patches act as filter in respect to different anthropogenic materials (overall plastics), suggesting that alien plant management actions may contribute to solve beach litter issues as well.

RevDate: 2021-10-23
CmpDate: 2021-10-22

Trubl G, Kimbrel JA, Liquet-Gonzalez J, et al (2021)

Active virus-host interactions at sub-freezing temperatures in Arctic peat soil.

Microbiome, 9(1):208.

BACKGROUND: Winter carbon loss in northern ecosystems is estimated to be greater than the average growing season carbon uptake and is primarily driven by microbial decomposers. Viruses modulate microbial carbon cycling via induced mortality and metabolic controls, but it is unknown whether viruses are active under winter conditions (anoxic and sub-freezing temperatures).

RESULTS: We used stable isotope probing (SIP) targeted metagenomics to reveal the genomic potential of active soil microbial populations under simulated winter conditions, with an emphasis on viruses and virus-host dynamics. Arctic peat soils from the Bonanza Creek Long-Term Ecological Research site in Alaska were incubated under sub-freezing anoxic conditions with H218O or natural abundance water for 184 and 370 days. We sequenced 23 SIP-metagenomes and measured carbon dioxide (CO2) efflux throughout the experiment. We identified 46 bacterial populations (spanning 9 phyla) and 243 viral populations that actively took up 18O in soil and respired CO2 throughout the incubation. Active bacterial populations represented only a small portion of the detected microbial community and were capable of fermentation and organic matter degradation. In contrast, active viral populations represented a large portion of the detected viral community and one third were linked to active bacterial populations. We identified 86 auxiliary metabolic genes and other environmentally relevant genes. The majority of these genes were carried by active viral populations and had diverse functions such as carbon utilization and scavenging that could provide their host with a fitness advantage for utilizing much-needed carbon sources or acquiring essential nutrients.

CONCLUSIONS: Overall, there was a stark difference in the identity and function of the active bacterial and viral community compared to the unlabeled community that would have been overlooked with a non-targeted standard metagenomic analysis. Our results illustrate that substantial active virus-host interactions occur in sub-freezing anoxic conditions and highlight viruses as a major community-structuring agent that likely modulates carbon loss in peat soils during winter, which may be pivotal for understanding the future fate of arctic soils' vast carbon stocks. Video abstract.

RevDate: 2022-01-07
CmpDate: 2022-01-07

Triadó-Margarit X, Cáliz J, EO Casamayor (2022)

A long-term atmospheric baseline for intercontinental exchange of airborne pathogens.

Environment international, 158:106916.

The atmosphere is a potential pathway for global-scale and long-range dispersal of viable microorganisms, promoting biological interconnections among the total environment. We aimed to provide relevant baseline information for long-range long-term intercontinental exchange of potentially infectious airborne microorganisms of major interest in environmental and health-related disciplines. We used an interannual survey (7-y) with wet depositions fortnightly collected above the boundary layer (free troposphere) at a remote high-elevation LTER (Long-Term-Ecological-Research) site, analyzed by 16S and 18S rRNA genes, and compared to a database of 475 well-known pathogens. We applied a conservative approach on close relatives of pathogenic species (>98% identity) standing their theoretical upper limit for atmospheric baseline relative abundances. We identified c. 2-3% of the total airborne microbiota as potential pathogens. Their most frequent environmental origins were soil, aquatic, and anthropogenic sources. Phytopathogens (mostly fungi) were the potential infectious agents most widely present. We uncovered consistent interannual dynamics with taxa foreseeable over time (i.e., predictable seasonal behavior) and under recurrent environmental scenarios (e.g., Saharan dust intrusions), respectively, being highly valuable microbial forensic environmental indicators. Up to 8 bacterial and 21 fungal genera consistently showed temporal abundances and recurrences unevenly distributed. Incidence of allergenic fungi was lower in summer, and significantly higher in spring. Close relatives to Coccidioides posadasii consistently showed higher signals (i.e., high specificity and high fidelity) in winter, whereas Cryptococcus neoformans had a significant signal in spring. Along Saharan dust intrusions, the bacterial phytopathogens Acidovorax avenae and Agrobacterium tumefaciens and the fungal phytopathogens Pseudozyma hubeiensis and Peniophora sp. consistently showed higher signals. Potential human pathogens showed low proportion, being mostly fungal allergens. Microorganisms related to obligated human, amphibian and fish pathogens were commonly found in winter. More studies in remote field sites above the boundary layer will unveil whether or not a similar trend is found globally.

RevDate: 2022-10-04
CmpDate: 2021-11-03

Le Guernic A, Palos Ladeiro M, Boudaud N, et al (2022)

First evidence of SARS-CoV-2 genome detection in zebra mussel (Dreissena polymorpha).

Journal of environmental management, 301:113866.

The uses of bivalve molluscs in environmental biomonitoring have recently gained momentum due to their ability to indicate and concentrate human pathogenic microorganisms. In the context of the health crisis caused by the COVID-19 epidemic, the objective of this study was to determine if the SARS-CoV-2 ribonucleic acid genome can be detected in zebra mussels (Dreissena polymorpha) exposed to raw and treated urban wastewaters from two separate plants to support its interest as bioindicator of the SARS-CoV-2 genome contamination in water. The zebra mussels were exposed to treated wastewater through caging at the outlet of two plants located in France, as well as to raw wastewater in controlled conditions. Within their digestive tissues, our results showed that SARS-CoV-2 genome was detected in zebra mussels, whether in raw and treated wastewaters. Moreover, the detection of the SARS-CoV-2 genome in such bivalve molluscans appeared even with low concentrations in raw wastewaters. This is the first detection of the SARS-CoV-2 genome in the tissues of a sentinel species exposed to raw and treated urban wastewaters. Despite the need for development for quantitative approaches, these results support the importance of such invertebrate organisms, especially zebra mussel, for the active surveillance of pathogenic microorganisms and their indicators in environmental waters.

RevDate: 2021-11-15
CmpDate: 2021-11-15

Radujković D, Verbruggen E, Seabloom EW, et al (2021)

Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?.

Ecology letters, 24(12):2713-2725.

Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory-driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co-limitation by NP and micronutrients.

RevDate: 2021-11-12
CmpDate: 2021-11-12

Lin SY, Hameed A, Tsai CF, et al (2021)

Zeimonas arvi gen. nov., sp. nov., of the family Burkholderiaceae, harboring biphenyl- and phenolic acid-metabolizing genes, isolated from a long-term ecological research field.

Antonie van Leeuwenhoek, 114(12):2101-2111.

A polyphasic taxonomic approach was used to characterize a Gram-stain-negative bacterium, designated strain CC-CFT501T, harboring xenobiotic- and allelochemical-metabolizing genes, isolated from a long-term ecological research field in Taiwan. Cells of strain CC-CFT501T were catalase- and oxidase-positive, non-motile and short rods. Optimal growth occurred at 30 °C, pH 8 and 1% NaCl. Strain CC-CFT501T was found to share high 16S rRNA gene sequence similarity with the members of genera Quisquiliibacterium (94.3%, n = 1), Pandoraea (93.4-94.0%, n = 23) and Paraburkholderia (93.3-94.0%, n = 9), affiliated to the family Burkholderiaceae. Strain CC-CFT501T shared 76.4% orthologous average nucleotide identity (OrthoANI) and 20.9% digital DNA-DNA hybridization (dDDH) values with Quisquiliibacterium transsilvanicum DSM 29781T. Draft genome sequence (3.83 Mb) of strain CC-CFT501T revealed several genes encoding the proteins involved in biphenyl and phenolic acid metabolism. Fatty acid profile contained C16:0, C18:0, C10:0 3-OH, C16:1 ω7c/C16:1 ω6c and C18:1 ω7c/C18:1 ω6c in predominant amounts. The polar lipid profile consisted of phosphatidylethanolamine, thirteen unidentified amino lipids, two unidentified phospholipids and two unidentified glycolipids. The major polyamine was spermidine and ubiquinone Q-8 was the sole respiratory quinone. The DNA G + C content was 70.0 mol%. Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, ANI and dDDH analyses, strain CC-CFT501T is considered to represent a novel genus and species of the family Burkholderiaceae, for which the name Zeimonas arvi gen. nov., sp. nov. is proposed. The type strain of the type species is CC-CFT501T (= BCRC 81218T = JCM 33506T).

RevDate: 2021-09-30

Henschel JR (2021)

Long-Term Population Dynamics of Namib Desert Tenebrionid Beetles Reveal Complex Relationships to Pulse-Reserve Conditions.

Insects, 12(9):.

Noy-Meir's paradigm concerning desert populations being predictably tied to unpredictable productivity pulses was tested by examining abundance trends of 26 species of flightless detritivorous tenebrionid beetles (Coleoptera, Tenebrionidae) in the hyper-arid Namib Desert (MAP = 25 mm). Over 45 years, tenebrionids were continuously pitfall trapped on a gravel plain. Species were categorised according to how their populations increased after 22 effective rainfall events (>11 mm in a week), and declined with decreasing detritus reserves (97.7-0.2 g m-2), while sustained by nonrainfall moisture. Six patterns of population variation were recognised: (a) increases triggered by effective summer rainfalls, tracking detritus over time (five species, 41% abundance); (b) irrupting upon summer rainfalls, crashing a year later (three, 18%); (c) increasing gradually after series of heavy (>40 mm) rainfall years, declining over the next decade (eight, 15%); (d) triggered by winter rainfall, population fluctuating moderately (two, 20%); (e) increasing during dry years, declining during wet (one, 0.4%); (f) erratic range expansions following heavy rain (seven, 5%). All species experienced population bottlenecks during a decade of scant reserves, followed by the community cycling back to its earlier composition after 30 years. By responding selectively to alternative configurations of resources, Namib tenebrionids showed temporal patterns and magnitudes of population fluctuation more diverse than predicted by Noy-Meir's original model, underpinning high species diversity.

RevDate: 2021-11-17
CmpDate: 2021-11-17

Atkinson ST, Cale D, Pinder A, et al (2021)

Substantial long-term loss of alpha and gamma diversity of lake invertebrates in a landscape exposed to a drying climate.

Global change biology, 27(23):6263-6279.

Many regions across the globe are shifting to more arid climates. For shallow lakes, decreasing rainfall volume and timing, changing regional wind patterns and increased evaporation rates alter water regimes so that dry periods occur more frequently and for longer. Drier conditions may affect fauna directly and indirectly through altered physicochemical conditions in lakes. Although many studies have predicted negative effects of such changes on aquatic biodiversity, empirical studies demonstrating these effects are rare. Global warming has caused severe climatic drying in southwestern Australia since the 1970s, so we aimed to determine whether lakes in this region showed impacts on lake hydroperiod, water quality, and α, β and γ diversity of lake invertebrates from 1998 to 2011. Seventeen lakes across a range of salinities were sampled biennially in spring in the Wheatbelt and Great Southern regions of Western Australia. Multivariate analyses were used to identify changes in α, β and γ diversity and examine patterns in physicochemical data. Salinity and average rainfall partially explained patterns in invertebrate richness and assemblage composition. Climatic drying was associated with significant declines in lake depth, increased frequency of dry periods, and reduced α and γ diversity (γ declined from ~300 to ~100 taxa from 1998 to 2011 in the 17 wetlands). In contrast, β diversity remained consistently high, because each lake retained a distinct fauna. Mean α diversity per-lake declined both in lakes that dried and lakes that did not dry out, but lakes which retained a greater proportion of their maximum depth retained more α diversity. Accumulated losses in α diversity caused the decline in γ diversity likely through shrinking habitat area, fewer stepping stones for dispersal and loss of specific habitat types. Biodiversity loss is thus likely from lakes in drying regions globally. Management actions will need to sustain water depth in lakes to prevent biodiversity loss.

RevDate: 2021-09-07

Grosse M, Ahlborn MC, W Hierold (2021)

Metadata of agricultural long-term experiments in Europe exclusive of Germany.

Data in brief, 38:107322 pii:S2352-3409(21)00606-5.

Agricultural long-term experiments (LTEs) are an important research infrastructure for agriculture, plant and soil sciences. The aim of this metadata compilation is to make LTEs easier to find and to facilitate networking. LTEs are here defined as agricultural experiments with a minimum duration of 20 years and research in the context of soil and yield. An extensive literature review was conducted to identify LTEs in Europe exclusive of Germany, because Germany's LTEs were published before. Sources were scientific papers as well as other articles, books, trial guides and websites. The following information was searched for and compiled in this dataset, if available: site and name of the LTE, start and end (if appropriate), holding institution, type of land use (e.g. field crops or grassland), research theme, website (if available), participation in networks, measured parameters, farming category (i.e. conventional or organic), size of the LTE area, longitude and latitude of the LTE, experimental setup including factors, treatments, randomization and replication, number of plots, size of the plots, crop rotation, soil type, substrate, texture, literature which was written in the context of the LTE data, and AGROVOC keywords. LTE from the following countries are included: Austria, Belarus, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, Finland, France, Great Britain, Hungary, Italy, Moldova, Norway, Poland, Romania, Serbia, Slovenia, Spain, Sweden, Switzerland, Ukraine. In total, 186 LTEs could be identified. The LTEs were classified according to the following research themes: fertilization, tillage, crop rotation, other. The majority of LTEs have the research theme "fertilization" (n = 125). Thirty LTEs have the research theme "crop rotation", 26 LTEs have the research theme "tillage", and 26 LTEs have "other" research themes. The following networks could be identified: GLTEN (Global long-term experiment network), ILTER (International long-term ecological research), IOSDV (International Organic Nitrogen Fertilization Experiment), NLFT (National Long-term Fertilization Trials, Hungary), RetiBio 2 (Italy). The oldest LTE was set up 1843, but the largest number of LTEs was established in the second half of the 20th century. Most of the LTEs are held by a scientific institution, i.e. 88 LTEs are held by a non-university scientific institution and 81 LTEs are held by a university or university of applied sciences. The link to the holding institution is provided whenever possible to facilitate contacting.

RevDate: 2021-12-23
CmpDate: 2021-12-23

Manlick PJ, Maldonado K, SD Newsome (2021)

Competition shapes individual foraging and survival in a desert rodent ensemble.

The Journal of animal ecology, 90(12):2806-2818.

Intraspecific variation, including individual diet variation, can structure populations and communities, but the causes and consequences of individual foraging strategies are often unclear. Interactions between competition and resources are thought to dictate foraging strategies (e.g. specialization vs. generalization), but classical paradigms such as optimal foraging and niche theory offer contrasting predictions for individual consumers. Furthermore, both paradigms assume that individual foraging strategies maximize fitness, yet this prediction is rarely tested. We used repeated stable isotope measurements (δ13 C, δ15 N; N = 3,509) and 6 years of capture-mark-recapture data to quantify the relationship between environmental variation, individual foraging and consumer fitness among four species of desert rodents. We tested the relative effects of intraspecific competition, interspecific competition, resource abundance and resource diversity on the foraging strategies of 349 individual animals, and then quantified apparent survival as function of individual foraging strategies. Consistent with niche theory, individuals contracted their trophic niches and increased foraging specialization in response to both intraspecific and interspecific competition, but this effect was offset by resource availability and individuals generalized when plant biomass was high. Nevertheless, individual specialists obtained no apparent fitness benefit from trophic niche contractions as the most specialized individuals exhibited a 10% reduction in monthly survival compared to the most generalized individuals. Ultimately, this resulted in annual survival probabilities nearly 4× higher for generalists compared to specialists. These results indicate that competition is the proximate driver of individual foraging strategies, and that diet-mediated fitness variation regulates population and community dynamics in stochastic resource environments. Furthermore, our findings show dietary generalism is a fitness maximizing strategy, suggesting that plastic foraging strategies may play a key role in species' ability to cope with environmental change.

RevDate: 2021-10-27
CmpDate: 2021-10-27

Cresta E, C Battisti (2021)

Anthropogenic litter along a coastal-wetland gradient: Reed-bed vegetation in the backdunes may act as a sink for expanded polystyrene.

Marine pollution bulletin, 172:112829.

We investigated the accumulation of litter along a transition gradient from the dunal beaches (B), to the backdunes (BD), to the channels of a coastal wetland (W), considering both the total litter and a sub-category represented by expanded polystyrene (EPS). Using a removal sampling technique carried out in spring (April and May), we hypothesized that: (i) the total accumulation of litter decreases progressively from the dunes to the backdunes to wet environments while (ii) the lighter polystyrene concentrates in the BD-W fringe where the Phragmites australis reedbeds can have a sink role for this polymer. The total litter density showed a significant decrease along the gradient B-BD-W in both months, with an evident collapse between BD and W. Analogously, EPS showed a significant difference in density along the B-BD-W gradient in both months, although with a different pattern: a maximum in the BD and a significant collapse between BD and W. The presence of backdune hygrophilous vegetation (Phragmites australis' reedbeds) may act as a sink trapping all types of litter in both cases (total litter and EPS). The different accumulation pattern between total litter and the EPS is due to the lower specific weight of the latter polymer: while the generic litter tends to decrease quantitatively moving away from the sea, the lighter EPS is removed by the winds and pushed towards the land, beyond the dune, where it is trapped by the vegetation, thus showing a peak in density in the backdunes. No significant differences were observed between the litter density in the two months (before and after the removal) either considering the total litter and only EPS. This may suggest a continuous supply of litter from the sea, highlighting how clean-ups actions should be carried out with a higher frequency rather than monthly. This may be even more valid in the period of greater frequency of intense weather-marine events (autumn-winter) when a greater quantity of litter is deposited. These are the first data for the Mediterranean regarding a specific role of wetland hygrophilous vegetation as a sink for anthropogenic litter, mainly expanded polystyrene.

RevDate: 2021-09-29
CmpDate: 2021-09-29

Cesarini G, Cera A, Battisti C, et al (2021)

Is the weight of plastic litter correlated with vegetal wrack? A case study from a Central Italian beach.

Marine pollution bulletin, 171:112794.

This study analyzes the occurrence and distribution of plastic litter and the entrapment of plastic by wrack beached on a natural reserve. Large microplastics (2.5 - 5 mm) were the most abundant plastic size category detected. The main color and shape were white and fragment, respectively. The plastics entrapped by egagropiles were mainly transparent fibers. We analyzed the correlation between the weights of plastic litter and vegetal wrack in two transects, selected for their different environmental characteristics. The transect closer to a breakwater showed a significant positive correlation between the weights of plastics and wrack, while the other transect suggested a casual pattern of plastic deposition on the beach. Further research is suggested to focus on the role of breakwaters in altering marine currents and enhancing plastic beaching.

RevDate: 2021-12-14
CmpDate: 2021-12-09

Pilla RM, Mette EM, Williamson CE, et al (2021)

Global data set of long-term summertime vertical temperature profiles in 153 lakes.

Scientific data, 8(1):200.

Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.

RevDate: 2021-08-06

Wohner C, Ohnemus T, Zacharias S, et al (2021)

Assessing the biogeographical and socio-ecological representativeness of the ILTER site network.

Ecological indicators, 127:107785.

The challenges posed by climate and land use change are increasingly complex, with rising and accelerating impacts on the global environmental system. Novel environmental and ecosystem research needs to properly interpret system changes and derive management recommendations across scales. This largely depends on advances in the establishment of an internationally harmonised, long-term operating and representative infrastructure for environmental observation. This paper presents an analysis evaluating 743 formally accredited sites of the International Long-Term Ecological Research (ILTER) network in 47 countries with regard to their spatial distribution and related biogeographical and socio-ecological representativeness. "Representedness" values were computed from six global datasets. The analysis revealed a dense coverage of Northern temperate regions and anthropogenic zones most notably in the US, Europe and East Asia. Significant gaps are present in economically less developed and anthropogenically less impacted hot and barren regions like Northern and Central Africa and inner-continental parts of South America. These findings provide the arguments for our recommendations regarding the geographic expansion for the further development of the ILTER network.

RevDate: 2021-09-30
CmpDate: 2021-09-30

De Falco N, Tal-Berger R, Hjazin A, et al (2021)

Geodiversity impacts plant community structure in a semi-arid region.

Scientific reports, 11(1):15259.

Geodiversity refers to the variety of geological and physical elements as well as to geomorphological processes of the earth surface. Heterogeneity of the physical environment has an impact on plant diversity. In recent years, the relations between geodiversity and biodiversity has gained attention in conservation biology, especially in the context of climate change. In this study, we assessed the spatial and temporal change in plant's community structure in a semi-arid region, Sayeret Shaked Long Term Ecosystem Research (LTER) station, Israel. Vegetation surveys were conducted on different hillslopes, either with or without rock covers in order to study the spatial trends of hillslope geodiversity. The surveys were conducted for two consecutive years (2016 and 2017), of which the second year was drier and hotter and therefore permitted to investigate the temporal change of plant's community structure. The results of the spatial trends show that (1) geodiversity increases vegetation biodiversity and promotes perennial plants and those of the temporal change show that (2) the positive effect of geodiversity on plants' community structure and species richness is greater in the drier year than that in a wetter year. The main insight is that in these drylands, hillslopes with higher geodiversity appear to buffer the effect of drier years, and supported a more diverse plant community than lower geodiversity hillslopes.

RevDate: 2021-09-20
CmpDate: 2021-09-20

Seabloom EW, Borer ET, Hobbie SE, et al (2021)

Soil nutrients increase long-term soil carbon gains threefold on retired farmland.

Global change biology, 27(19):4909-4920.

Abandoned agricultural lands often accumulate soil carbon (C) following depletion of soil C by cultivation. The potential for this recovery to provide significant C storage benefits depends on the rate of soil C accumulation, which, in turn, may depend on nutrient supply rates. We tracked soil C for almost four decades following intensive agricultural soil disturbance along an experimentally imposed gradient in nitrogen (N) added annually in combination with other macro- and micro-nutrients. Soil %C accumulated over the course of the study in unfertilized control plots leading to a gain of 6.1 Mg C ha-1 in the top 20 cm of soil. Nutrient addition increased soil %C accumulation leading to a gain of 17.8 Mg C ha-1 in fertilized plots, nearly a threefold increase over the control plots. These results demonstrate that substantial increases in soil C in successional grasslands following agricultural abandonment occur over decadal timescales, and that C gain is increased by high supply rates of soil nutrients. In addition, soil %C continued to increase for decades under elevated nutrient supply, suggesting that short-term nutrient addition experiments underestimate the effects of soil nutrients on soil C accumulation.

RevDate: 2021-11-11
CmpDate: 2021-11-11

Meng B, Li J, Maurer GE, et al (2021)

Nitrogen addition amplifies the nonlinear drought response of grassland productivity to extended growing-season droughts.

Ecology, 102(11):e03483.

Understanding the response of grassland production and carbon exchange to intra-annual variation in precipitation and nitrogen addition is critical for sustainable grassland management and ecosystem restoration. We introduced growing-season drought treatments of different lengths (15, 30, 45 and 60 d drought) by delaying growing-season precipitation in a long-term nitrogen addition experiment in a low diversity meadow steppe in northeast China. Response variables included aboveground biomass (AGB), ecosystem net carbon exchange (NEE), and leaf net carbon assimilation rate (A). In unfertilized plots drought decreased AGB by 13.7% after a 45-d drought and 31.7% after a 60-d drought (47.6% in fertilized plots). Progressive increases in the drought response of NEE were also observed. The effects of N addition on the drought response of productivity increased as drought duration increased, and these responses were a function of changes in AGB and biomass allocation, particularly root to shoot ratio. However, no significant effects of drought occurred in fertilized or unfertilized plots in the growing season a year after the experiment, N addition did limit the recovery of AGB from severe drought during the remainder of the current growing season. Our results imply that chronic N enrichment could exacerbate the effects of growing-season drought on grassland productivity caused by altered precipitation seasonality under climate change, but that these effects do not carry over to the next growing season.

RevDate: 2021-09-09
CmpDate: 2021-09-09

O'Connell JL, Mishra DR, Alber M, et al (2021)

BERM: a Belowground Ecosystem Resiliency Model for estimating Spartina alterniflora belowground biomass.

The New phytologist, 232(1):425-439.

Spatiotemporal patterns of Spartina alterniflora belowground biomass (BGB) are important for evaluating salt marsh resiliency. To solve this, we created the BERM (Belowground Ecosystem Resiliency Model), which estimates monthly BGB (30-m spatial resolution) from freely available data such as Landsat-8 and Daymet climate summaries. Our modeling framework relied on extreme gradient boosting, and used field observations from four Georgia salt marshes as ground-truth data. Model predictors included estimated tidal inundation, elevation, leaf area index, foliar nitrogen, chlorophyll, surface temperature, phenology, and climate data. The final model included 33 variables, and the most important variables were elevation, vapor pressure from the previous four months, Normalized Difference Vegetation Index (NDVI) from the previous five months, and inundation. Root mean squared error for BGB from testing data was 313 g m-2 (11% of the field data range), explained variance (R2) was 0.62-0.77. Testing data results were unbiased across BGB values and were positively correlated with ground-truth data across all sites and years (r = 0.56-0.82 and 0.45-0.95, respectively). BERM can estimate BGB within Spartina alterniflora salt marshes where environmental parameters are within the training data range, and can be readily extended through a reproducible workflow. This provides a powerful approach for evaluating spatiotemporal BGB and associated ecosystem function.

RevDate: 2021-05-26

Arismendi I, Bury G, Zatkos L, et al (2021)

A method to evaluate body length of live aquatic vertebrates using digital images.

Ecology and evolution, 11(10):5497-5502.

Traditional methods to measure body lengths of aquatic vertebrates rely on anesthetics, and extended handling times. These procedures can increase stress, potentially affecting the animal's welfare after its release. We developed a simple procedure using digital images to estimate body lengths of coastal cutthroat trout (Oncorhynchus clarkii clarkii) and larval coastal giant salamander (Dicamptodon tenebrosus). Images were postprocessed using ImageJ2. We measured more than 900 individuals of these two species from 200 pool habitats along 9.6 river kilometers. The percent error (mean ± SE) of our approach compared to the use of a traditional graded measuring board was relatively small for all length metrics of the two species. Total length of trout was -2.2% ± 1.0. Snout-vent length and total length of larval salamanders was 3.5% ± 3.3 and -0.6% ± 1.7, respectively. We cross-validated our results by two independent observers that followed our protocol to measure the same animals and found no significant differences (p > .7) in body size distributions for all length metrics of the two species. Our procedure provides reliable information of body size reducing stress and handling time in the field. The method is transferable across taxa and the inclusion of multiple animals per image increases sampling efficiency with stored images that can be reviewed multiple times. This practical tool can improve data collection of animal size over large sampling efforts and broad spatiotemporal contexts.

RevDate: 2021-05-18
CmpDate: 2021-05-18

Wurtzer S, Waldman P, Ferrier-Rembert A, et al (2021)

Several forms of SARS-CoV-2 RNA can be detected in wastewaters: Implication for wastewater-based epidemiology and risk assessment.

Water research, 198:117183.

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a public health emergency of international concern. Although SARS-CoV-2 is considered to be mainly transmitted by inhalation of contaminated droplets and aerosols, SARS-CoV-2 is also detected in human feces and to a less extent in urine, and in raw wastewaters (to date viral RNA only) suggesting that other routes of infection may exist. Monitoring SARS-CoV-2 genomes in wastewaters has been proposed as a complementary approach for tracing the dynamics of virus transmission within human population connected to wastewater network. The understanding on SARS-CoV-2 transmission through wastewater surveillance, the development of epidemic modeling and the evaluation of SARS-CoV-2 transmission from contaminated wastewater are largely limited by our knowledge on viral RNA genome persistence and virus infectivity preservation in such an environment. Using an integrity based RT-qPCR assay this study led to the discovery that SARS-CoV-2 RNA can persist under several forms in wastewaters, which provides important information on the presence of SARS-CoV-2 in raw wastewaters and associated risk assessment.

RevDate: 2021-05-25
CmpDate: 2021-05-25

Li Z, AM Cupples (2021)

Diversity of nitrogen cycling genes at a Midwest long-term ecological research site with different management practices.

Applied microbiology and biotechnology, 105(10):4309-4327.

Nitrogen fertilizer results in the release of nitrous oxide (N2O), a concern because N2O is an ozone-depleting substance and a greenhouse gas. Although the reduction of N2O to nitrogen gas can control emissions, the factors impacting the enzymes involved have not been fully explored. The current study investigated the abundance and diversity of genes involved in nitrogen cycling (primarily denitrification) under four agricultural management practices (no tillage [NT], conventional tillage [CT], reduced input, biologically-based). The work involved examining soil shotgun sequencing data for nine genes (napA, narG, nirK, nirS, norB, nosZ, nirA, nirB, nifH). For each gene, relative abundance values, diversity and richness indices, and taxonomic classification were determined. Additionally, the genes associated with nitrogen metabolism (defined by the KEGG hierarchy) were examined. The data generated were statistically compared between the four management practices. The relative abundance of four genes (nifH, nirK, nirS, and norB) were significantly lower in the NT treatment compared to one or more of the other soils. The abundance values of napA, narG, nifH, nirA, and nirB were not significantly different between NT and CT. The relative abundance of nirS was significantly higher in the CT treatment compared to the others. Diversity and richness values were higher for four of the nine genes (napA, narG, nirA, nirB). Based on nirS/nirK ratios, CT represents the highest N2O consumption potential in four soils. In conclusion, the microbial communities involved in nitrogen metabolism were sensitive to different agricultural practices, which in turn, likely has implications for N2O emissions. KEY POINTS: • Four genes were less abundant in NT compared to one or more of the others soils (nifH, nirK, nirS, norB). • The most abundant sequences for many of the genes classified within the Proteobacteria. • Higher diversity and richness indices were observed for four genes (napA, narG, nirA, nirB). • Based on nirS/nirK ratios, CT represents the highest N2O consumption potential.

RevDate: 2021-10-07
CmpDate: 2021-10-07

Pansera M, Camatti E, Schroeder A, et al (2021)

The non-indigenous Oithona davisae in a Mediterranean transitional environment: coexistence patterns with competing species.

Scientific reports, 11(1):8341.

The Venice lagoon (VL) has been recognized as a hot spot of introduction of non-indigenous species (NIS), due to several anthropogenic factors and environmental stressors that combined may facilitate NIS invasions. In the last decades an increasing number of zooplankton NIS have been observed in the VL. This work aims to provide a picture of the annual cycle and distribution of the recently recorded non-indigenous copepod Oithona davisae, considering the coexistence patterns with the congeneric resident Oithona nana. Therefore, zooplankton samplings were carried out monthly from August 2016 to July 2017 at five Long-Term Ecological Research LTER stations in the VL. Oithona davisae showed a persistent occurrence throughout the year with the highest abundances in the warm season and in the inner areas, while the congeneric O. nana, showing a different distribution pattern, resulted more abundant near the inlets of the Lagoon, where O. davisae reached the minimum density. Oithona davisae seems to find local conditions that promote its settlement and distribution, especially in the inner and more trophic lagoon sites. In other European coastal embayments or transitional waters, O. davisae occupied the niche left by the indigenous O. nana or can replace this congeneric species through competitive exclusion mechanisms. Our data indicate that, for now, such species replacement has not occurred in the VL. One of the causes is the extreme variety of habitats and niches offered by this environment allowing a balanced coexistence with O. nana and in general with the resident copepod community.

RevDate: 2021-04-16
CmpDate: 2021-04-16

Rosa C, Baccaro F, Cronemberger C, et al (2021)

The Program for Biodiversity Research in Brazil: The role of regional networks for biodiversity knowledge, dissemination, and conservation.

Anais da Academia Brasileira de Ciencias, 93(2):e20201604 pii:S0001-37652021000301008.

The Program for Biodiversity Research (PPBio) is an innovative program designed to integrate all biodiversity research stakeholders. Operating since 2004, it has installed long-term ecological research sites throughout Brazil and its logic has been applied in some other southern-hemisphere countries. The program supports all aspects of research necessary to understand biodiversity and the processes that affect it. There are presently 161 sampling sites (see some of them at Supplementary Appendix), most of which use a standardized methodology that allows comparisons across biomes and through time. To date, there are about 1200 publications associated with PPBio that cover topics ranging from natural history to genetics and species distributions. Most of the field data and metadata are available through PPBio web sites or DataONE. Metadata is available for researchers that intend to explore the different faces of Brazilian biodiversity spatio-temporal variation, as well as for managers intending to improve conservation strategies. The Program also fostered, directly and indirectly, local technical capacity building, and supported the training of hundreds of undergraduate and graduate students. The main challenge is maintaining the long-term funding necessary to understand biodiversity patterns and processes under pressure from global environmental changes.

RevDate: 2021-05-27
CmpDate: 2021-05-27

Scotti A, R Bottarin (2021)

Fine-scale multiannual survey of benthic invertebrates in a glacier-fed stream used for hydropower generation.

Scientific data, 8(1):105.

The present dataset contains information about aquatic macroinvertebrates and environmental variables collected before and after the implementation of a small "run-of-river" hydropower plant on the Saldur stream, a glacier-fed stream located in the Italian Central-Eastern Alps. Between 2015 and 2019, with two sampling events per year, we collected and identified 34,836 organisms in 6 sampling sites located within a 6 km stretch of the stream. Given the current boom of the hydropower sector worldwide, and the growing contribution of small hydropower plants to energy production, data here included may represent an important - and long advocated - baseline to assess the effects that these kinds of powerplants have on the riverine ecosystem. Moreover, since the Saldur stream is part of the International Long Term Ecological Research network, this dataset also constitutes part of the data gathered within this research programme. All samples are preserved at Eurac Research facilities.

RevDate: 2021-06-28
CmpDate: 2021-06-28

Wilcots ME, Harpole WS, Seabloom EW, et al (2021)

Community change can buffer chronic nitrogen impacts, but multiple nutrients tip the scale.

Ecology, 102(6):e03355.

Anthropogenic nitrogen (N) inputs are causing large changes in ecosystems worldwide. Many previous studies have examined the impact of N on terrestrial ecosystems; however, most have added N at rates that are much higher than predicted future deposition rates. Here, we present the results from a gradient of experimental N addition (0-10 g·N·m-2) in a temperate grassland. After a decade of N addition, we found that all levels of N addition changed plant functional group composition, likely indicating altered function for plant communities exposed to 10 yr of N inputs. However, N addition only had weak impacts on species composition and this functional group shift was not driven by any particular species, suggesting high levels of functional redundancy among grasslands species. Adding other nutrients (P, K, and micronutrients) in combination with N caused substantially greater changes in the relative abundance of species and functional groups. Together, these results suggest that compositional change within functional groups may buffer grasslands from impacts of N deposition, but concurrent eutrophication with other elements will likely lead to substantial changes in plant composition and biomass.

RevDate: 2021-05-28
CmpDate: 2021-05-28

Haubrock PJ, Balzani P, Matsuzaki SS, et al (2021)

Spatio-temporal niche plasticity of a freshwater invader as a harbinger of impact variability.

The Science of the total environment, 777:145947.

Invasive alien fishes have detrimental ecological effects on aquatic ecosystems and the services they provide. Impacts from an invasion in a single ecosystem may differ across space and time due to variability in prey availability and environmental conditions. We hypothesize that such variability can be profound, even within a single ecosystem. Stable isotopes analysis (SIA) is commonly used to quantitatively describe the trophic niche of a species. However, spatial and temporal variability in occupied niches are often not incorporated into management strategies and policy options. Here, we used long-term monitoring data to investigate the invasion stage as well as SIA to analyse the trophic niche of the invasive channel catfish Ictalurus punctatus in Lake Kasumigaura (Japan), a long-term ecological research site (LTER), across distant sampling sites and years. We found a significant spatio-temporal variability in relative growth and isotopic niche occupation. Moreover, we defined a new index, the Isotopic Plasticity Index (IPI), which is the ratio between core and total home range of an occupied isotopic niche, to be used as a proxy for the trophic niche stretch or density. We found that this IPI varied considerably, confirming the spatio-temporal variability in trophic niches, suggesting the IPI to be an adequate new isotopic metric. Our results further provide evidence for the existence of variation across invaded landscapes, implying heterogeneous impacts on recipient native communities. Therefore, our work emphasizes the importance of exploring trophic plasticity in feeding ecology and growth as such information enables a better understanding of impacts and can inform the design and implementation of effective management responses.

RevDate: 2021-05-27
CmpDate: 2021-05-27

Van Sundert K, Arfin Khan MAS, Bharath S, et al (2021)

Fertilized graminoids intensify negative drought effects on grassland productivity.

Global change biology, 27(11):2441-2457.

Droughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full-factorial nitrogen, phosphorus, and potassium addition affected plant community responses to inter-annual variation in drought stress and to the extreme summer drought of 2018 in Europe. We found that nutrient addition amplified detrimental drought effects on community aboveground biomass production. Drought effects also differed between functional groups, with a negative effect on graminoid but not forb biomass production. Our results imply that eutrophication in grasslands, which promotes dominance of drought-sensitive graminoids over forbs, amplifies detrimental drought effects. In terms of climate change adaptation, agricultural management would benefit from taking into account differential drought impacts on fertilized versus unfertilized grasslands, which differ in ecosystem services they provide to society.

RevDate: 2021-08-11
CmpDate: 2021-08-11

Liang L, Henebry GM, Liu L, et al (2021)

Trends in land surface phenology across the conterminous United States (1982-2016) analyzed by NEON domains.

Ecological applications : a publication of the Ecological Society of America, 31(5):e02323.

Tracking phenological change in a regionally explicit context is a key to understanding ecosystem status and change. The current study investigated long-term trends of satellite-observed land surface phenology (LSP) in the 17 National Ecological Observatory Network (NEON) domains across the conterminous United States (CONUS). Characterization of LSP trends was based on a high temporal resolution (3-d) time series of the two-band enhanced vegetation index (EVI2) derived from a long-term data record (LTDR) of the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS). We identified significant trend patterns in LSP and their seasonal climate and land use/land cover drivers for each NEON domain. Key findings include (1) the start of season (SOS) predominantly shifted later in 13 out of 17 domains (24.3% of CONUS by area) due potentially to both a lack of spring warming in the eastern United States and changes in agronomic practices over agricultural lands; (2) the end of season (EOS) became predominantly later in nine domains dominated by natural vegetation (14.1% of CONUS by area) in response to widespread warming in autumn; (3) the EOS predominantly shifted earlier in three domains (10.6% of CONUS by area) over primarily agricultural lands as potentially affected by changes in crop growth cycles; and (4) earlier shift in the SOS was mostly found in the Northwest (3.6% of CONUS by area) and was predominant only in the moist Pacific Northwest (27.7% of the domain by area) in response to more pronounced spring warming in the region. The overall patterns of SOS and EOS trends across CONUS appeared constrained by continental-scale temperature trends as characterized by a west-east dipole and the distribution of the nation's agricultural lands. In addition, seasonal trend analysis revealed that most NEON domains (15/17) became predominantly greener in part of or throughout the growing season, potentially contributed by both climate change-induced growth increase and improved agricultural productivity. The domain-wide LSP trends with their underlying drivers identified here provide important contextual information for NEON science as well as for investigations within CONUS using other distributed observatories (e.g., LTER, LTAR, FLUXNET, USA-NPN, etc.).

RevDate: 2021-05-27
CmpDate: 2021-05-27

Wurtzer S, Maréchal V, Bertrand I, et al (2021)

[Viral infectious diseases seen through wastewater].

Virologie (Montrouge, France), 25(1):8-11.

RevDate: 2021-05-27
CmpDate: 2021-05-27

Wurtzer S, Maréchal V, Bertrand I, et al (2021)

Viral infectious diseases seen through wastewater.

Virologie (Montrouge, France), 25(1):1-4.

RevDate: 2021-04-15
CmpDate: 2021-04-15

Cusser S, Helms J, Bahlai CA, et al (2021)

How long do population level field experiments need to be? Utilising data from the 40-year-old LTER network.

Ecology letters, 24(5):1103-1111.

We utilise the wealth of data accessible through the 40-year-old Long-Term Ecological Research (LTER) network to ask if aspects of the study environment or taxa alter the duration of research necessary to detect consistent results. To do this, we use a moving-window algorithm. We limit our analysis to long-term (> 10 year) press experiments recording organismal abundance. We find that studies conducted in dynamic abiotic environments need longer periods of study to reach consistent results, as compared to those conducted in more moderated environments. Studies of plants were more often characterised by spurious results than those on animals. Nearly half of the studies we investigated required 10 years or longer to become consistent, where all significant trends agreed in direction, and four studies (of 100) required longer than 20 years. Here, we champion the importance of long-term data and bolster the value of multi-decadal experiments in understanding, explaining and predicting long-term trends.

RevDate: 2021-04-23
CmpDate: 2021-04-23

Evers SM, Knight TM, Inouye DW, et al (2021)

Lagged and dormant season climate better predict plant vital rates than climate during the growing season.

Global change biology, 27(9):1927-1941.

Understanding the effects of climate on the vital rates (e.g., survival, development, reproduction) and dynamics of natural populations is a long-standing quest in ecology, with ever-increasing relevance in the face of climate change. However, linking climate drivers to demographic processes requires identifying the appropriate time windows during which climate influences vital rates. Researchers often do not have access to the long-term data required to test a large number of windows, and are thus forced to make a priori choices. In this study, we first synthesize the literature to assess current a priori choices employed in studies performed on 104 plant species that link climate drivers with demographic responses. Second, we use a sliding-window approach to investigate which combination of climate drivers and temporal window have the best predictive ability for vital rates of four perennial plant species that each have over a decade of demographic data (Helianthella quinquenervis, Frasera speciosa, Cylindriopuntia imbricata, and Cryptantha flava). Our literature review shows that most studies consider time windows in only the year preceding the measurement of the vital rate(s) of interest, and focus on annual or growing season temporal scales. In contrast, our sliding-window analysis shows that in only four out of 13 vital rates the selected climate drivers have time windows that align with, or are similar to, the growing season. For many vital rates, the best window lagged more than 1 year and up to 4 years before the measurement of the vital rate. Our results demonstrate that for the vital rates of these four species, climate drivers that are lagged or outside of the growing season are the norm. Our study suggests that considering climatic predictors that fall outside of the most recent growing season will improve our understanding of how climate affects population dynamics.

RevDate: 2021-07-29
CmpDate: 2021-07-29

Paciorek CJ, Cogbill CV, Peters JA, et al (2021)

The forests of the midwestern United States at Euro-American settlement: Spatial and physical structure based on contemporaneous survey data.

PloS one, 16(2):e0246473.

We present gridded 8 km-resolution data products of the estimated stem density, basal area, and biomass of tree taxa at Euro-American settlement of the midwestern United States during the middle to late 19th century for the states of Minnesota, Wisconsin, Michigan, Illinois, and Indiana. The data come from settlement-era Public Land Survey (PLS) data (ca. 0.8-km resolution) of trees recorded by land surveyors. The surveyor notes have been transcribed, cleaned, and processed to estimate stem density, basal area, and biomass at individual points. The point-level data are aggregated within 8 km grid cells and smoothed using a generalized additive statistical model that accounts for zero-inflated continuous data and provides approximate Bayesian uncertainty estimates. The statistical modeling smooths out sharp spatial features (likely arising from statistical noise) within areas smaller than about 200 km2. Based on this modeling, presettlement Midwestern landscapes supported multiple dominant species, vegetation types, forest types, and ecological formations. The prairies, oak savannas, and forests each had distinctive structures and spatial distributions across the domain. Forest structure varied from savanna (averaging 27 Mg/ha biomass) to northern hardwood (104 Mg/ha) and mesic southern forests (211 Mg/ha). The presettlement forests were neither unbroken and massively-statured nor dominated by young forests constantly structured by broad-scale disturbances such as fire, drought, insect outbreaks, or hurricanes. Most forests were structurally between modern second growth and old growth. We expect the data product to be useful as a baseline for investigating how forest ecosystems have changed in response to the last several centuries of climate change and intensive Euro-American land use and as a calibration dataset for paleoecological proxy-based reconstructions of forest composition and structure for earlier time periods. The data products (including raw and smoothed estimates at the 8-km scale) are available at the LTER Network Data Portal as version 1.0.

RevDate: 2021-01-12

Anonymous (2021)

Erratum.

Ecological applications : a publication of the Ecological Society of America, 31(1):e02231.

RevDate: 2021-05-10
CmpDate: 2021-05-10

Käse L, Metfies K, Neuhaus S, et al (2021)

Host-parasitoid associations in marine planktonic time series: Can metabarcoding help reveal them?.

PloS one, 16(1):e0244817.

In this study, we created a dataset of a continuous three-year 18S metabarcoding survey to identify eukaryotic parasitoids, and potential connections to hosts at the Long-Term Ecological Research station Helgoland Roads. The importance of parasites and parasitoids for food web dynamics has previously been recognized mostly in terrestrial and freshwater systems, while marine planktonic parasitoids have been understudied in comparison to those. Therefore, the occurrence and role of parasites and parasitoids remains mostly unconsidered in the marine environment. We observed high abundances and diversity of parasitoid operational taxonomic units in our dataset all year round. While some parasitoid groups were present throughout the year and merely fluctuated in abundances, we also detected a succession of parasitoid groups with peaks of individual species only during certain seasons. Using co-occurrence and patterns of seasonal occurrence, we were able to identify known host-parasitoid dynamics, however identification of new potential host-parasitoid interactions was not possible due to their high dynamics and variability in the dataset.

RevDate: 2021-01-01

Sherman J, Gorbunov MY, Schofield O, et al (2020)

Photosynthetic energy conversion efficiency in the West Antarctic Peninsula.

Limnology and oceanography, 65(12):2912-2925.

The West Antarctic Peninsula (WAP) is a highly productive polar ecosystem where phytoplankton dynamics are regulated by intense bottom-up control from light and iron availability. Rapid climate change along the WAP is driving shifts in the mixed layer depth and iron availability. Elucidating the relative role of each of these controls and their interactions is crucial for understanding of how primary productivity will change in coming decades. Using a combination of ultra-high-resolution variable chlorophyll fluorescence together with fluorescence lifetime analyses on the 2017 Palmer Long Term Ecological Research cruise, we mapped the temporal and spatial variability in phytoplankton photophysiology across the WAP. Highest photosynthetic energy conversion efficiencies and lowest fluorescence quantum yields were observed in iron replete coastal regions. Photosynthetic energy conversion efficiencies decreased by ~ 60% with a proportional increase in quantum yields of thermal dissipation and fluorescence on the outer continental shelf and slope. The combined analysis of variable fluorescence and lifetimes revealed that, in addition to the decrease in the fraction of inactive reaction centers, up to 20% of light harvesting chlorophyll-protein antenna complexes were energetically uncoupled from photosystem II reaction centers in iron-limited phytoplankton. These biophysical signatures strongly suggest severe iron limitation of photosynthesis in the surface waters along the continental slope of the WAP.

RevDate: 2020-12-31

Bowen JL, Giblin AE, Murphy AE, et al (2020)

Not All Nitrogen Is Created Equal: Differential Effects of Nitrate and Ammonium Enrichment in Coastal Wetlands.

Bioscience, 70(12):1108-1119.

Excess reactive nitrogen (N) flows from agricultural, suburban, and urban systems to coasts, where it causes eutrophication. Coastal wetlands take up some of this N, thereby ameliorating the impacts on nearshore waters. Although the consequences of N on coastal wetlands have been extensively studied, the effect of the specific form of N is not often considered. Both oxidized N forms (nitrate, NO3-) and reduced forms (ammonium, NH4+) can relieve nutrient limitation and increase primary production. However, unlike NH4+, NO3- can also be used as an electron acceptor for microbial respiration. We present results demonstrating that, in salt marshes, microbes use NO3- to support organic matter decomposition and primary production is less stimulated than when enriched with reduced N. Understanding how different forms of N mediate the balance between primary production and decomposition is essential for managing coastal wetlands as N enrichment and sea level rise continue to assail our coasts.

RevDate: 2022-09-15
CmpDate: 2020-12-24

Wurtzer S, Marechal V, Mouchel JM, et al (2020)

Evaluation of lockdown effect on SARS-CoV-2 dynamics through viral genome quantification in waste water, Greater Paris, France, 5 March to 23 April 2020.

Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 25(50):.

IntroductionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease (COVID-19). People infected with SARS-CoV-2 may exhibit no or mild non-specific symptoms; thus, they may contribute to silent circulation of the virus among humans. Since SARS-CoV-2 RNA can be detected in stool samples, monitoring SARS-CoV-2 RNA in waste water (WW) has been proposed as a complementary tool to investigate virus circulation in human populations.AimTo test if the quantification of SARS-CoV-2 genomes in WW correlates with the number of symptomatic or non-symptomatic carriers.MethodWe performed a time-course quantitative analysis of SARS-CoV-2 by RT-qPCR in raw WW samples collected from several major WW treatment plants in Greater Paris. The study period was 5 March to 23 April 2020, including the lockdown period in France (from 17 March).ResultsWe showed that the increase of genome units in raw WW accurately followed the increase of human COVID-19 cases observed at the regional level. Of note, the viral genome could be detected before the epidemic grew massively (around 8 March). Equally importantly, a marked decrease in the quantities of genome units was observed concomitantly with the reduction in the number of new COVID-19 cases, 29 days following the lockdown.ConclusionThis work suggests that a quantitative monitoring of SARS-CoV-2 genomes in WW could generate important additional information for improved monitoring of SARS-CoV-2 circulation at local or regional levels and emphasises the role of WW-based epidemiology.

RevDate: 2021-02-15
CmpDate: 2021-02-15

Kohli M, Henning JA, Borer ET, et al (2021)

Foliar fungi and plant diversity drive ecosystem carbon fluxes in experimental prairies.

Ecology letters, 24(3):487-497.

Plant diversity and plant-consumer/pathogen interactions likely interact to influence ecosystem carbon fluxes but experimental evidence is scarce. We examined how experimental removal of foliar fungi, soil fungi and arthropods from experimental prairies planted with 1, 4 or 16 plant species affected instantaneous rates of carbon uptake (GPP), ecosystem respiration (Re) and net ecosystem exchange (NEE). Increasing plant diversity increased plant biomass, GPP and Re , but NEE remained unchanged. Removing foliar fungi increased GPP and NEE, with the greatest effects at low plant diversity. After accounting for plant biomass, we found that removing foliar fungi increased mass-specific flux rates in the low-diversity plant communities by altering plant species composition and community-wide foliar nitrogen content. However, this effect disappeared when soil fungi and arthropods were also removed, demonstrating that both plant diversity and interactions among consumer groups determine the ecosystem-scale effects of plant-fungal interactions.

RevDate: 2021-01-12
CmpDate: 2021-01-12

Baker NJ, Pilotto F, Jourdan J, et al (2021)

Recovery from air pollution and subsequent acidification masks the effects of climate change on a freshwater macroinvertebrate community.

The Science of the total environment, 758:143685.

Freshwater ecosystems are dynamic, complex systems with a multitude of physical and ecological processes and stressors which drive fluctuations on the community-level. Disentangling the effects of different processes and stressors is challenging due to their interconnected nature. However, as protected areas (i.e. national parks) are less anthropogenically impacted, they are ideal for investigating single stressors. We focus on the Bavarian Forest National Park, a Long-Term Ecological Research (LTER) site in Germany, where the major stressors are climate warming, air pollution (i.e. acidification) and bark beetle infestations. We investigated the effects of these stressors on freshwater macroinvertebrates using comprehensive long-term (1983-2014) datasets comprising high-resolution macroinvertebrate and physico-chemical data from a near-natural stream. Macroinvertebrate communities have undergone substantial changes over the past 32 years, highlighted by increases in overall community abundance (+173%) and richness (+51.6%) as well as taxonomic restructuring driven by a disproportional increase of dipterans. Prior to the year 2000, regression analyses revealed a decline in sulphate deposition and subsequent recovery from historical acidification as potential drivers of the increases in abundance and richness rather than to increases in water temperature (1.5 °C overall increase). Post 2000, however, alterations to nutrient cycling caused by bark beetle infestations coupled with warming temperatures were correlated to taxonomic restructuring and disproportional increases of dipterans at the expense of sensitive taxa such as plecopterans and trichopterans. Our results highlight the challenges when investigating the effects of climate change within a multi-stressor context. Even in conservation areas, recovery from previous disturbance might mask the effects of ongoing disturbances like climate change. Overall, we observed strong community restructuring, demonstrating that stenothermal headwater communities face additional stress due to emerging competition with tolerant taxa. Conservation efforts should consider the temporal variability of communities and their recovery from disturbances to adequately identify species vulnerable to local or widespread extinction.

RevDate: 2020-12-01

Sakio H, T Masuzawa (2020)

Advancing Timberline on Mt. Fuji between 1978 and 2018.

Plants (Basel, Switzerland), 9(11):.

Climate change is a major cause of changes in alpine and polar vegetation, particularly at the edges of distributions. In temperate regions, these changes are expected to occur at the timberline of alpine zones. On Mt. Fuji, the highest mountain in Japan, the timberline is located 2400-2500 m above sea level. Over a 40-year period (1978-2018), we researched changes in the timberline vegetation of Mt. Fuji. A permanent belt transect extending from the upper timberline to subalpine zones was set up in August 1978. Tree diameters and heights were recorded at the establishment of the transect and every 20 years afterwards. Over the 40 years of the study, the timberline advanced rapidly upwards, and the degree of vegetation cover above the timberline increased remarkably. Notably, the expansion of Salix reinii into the upper part of the timberline facilitated the subsequent spread of Larix kaempferi into this zone. Seedlings of L. kaempferi were particularly abundant at the upper timberline and became established on the uppermost part of the slope. The shape of L. kaempferi at the upper timberline changed from a prostrate form to an upright tree form. We conclude that the upward advance of the alpine timberline observed on Mt. Fuji is due to climate change.

RevDate: 2022-02-18
CmpDate: 2020-11-25

Anthony MA, Stinson KA, Moore JAM, et al (2020)

Plant invasion impacts on fungal community structure and function depend on soil warming and nitrogen enrichment.

Oecologia, 194(4):659-672.

The impacts of invasive species on biodiversity may be mitigated or exacerbated by abiotic environmental changes. Invasive plants can restructure soil fungal communities with important implications for native biodiversity and nutrient cycling, yet fungal responses to invasion may depend on numerous anthropogenic stressors. In this study, we experimentally invaded a long-term soil warming and simulated nitrogen deposition experiment with the widespread invasive plant Alliaria petiolata (garlic mustard) and tested the responses of soil fungal communities to invasion, abiotic factors, and their interaction. We focused on the phytotoxic garlic mustard because it suppresses native mycorrhizae across forests of North America. We found that invasion in combination with warming, but not under ambient conditions or elevated nitrogen, significantly reduced soil fungal biomass and ectomycorrhizal relative abundances and increased relative abundances of general soil saprotrophs and fungal genes encoding for hydrolytic enzymes. These results suggest that warming potentially exacerbates fungal responses to plant invasion. Soils collected from uninvaded and invaded plots across eight forests spanning a 4 °C temperature gradient further demonstrated that the magnitude of fungal responses to invasion was positively correlated with mean annual temperature. Our study is one of the first empirical tests to show that the impacts of invasion on fungal communities depends on additional anthropogenic pressures and were greater in concert with warming than under elevated nitrogen or ambient conditions.

RevDate: 2020-09-15
CmpDate: 2020-09-15

Margiotta F, Balestra C, Buondonno A, et al (2020)

Do plankton reflect the environmental quality status? The case of a post-industrial Mediterranean Bay.

Marine environmental research, 160:104980.

While the effects of industrial contamination in coastal areas may persist for years in benthos communities, plankton should not show permanent impairments because of their high spatial dynamics, fast turnover times and pronounced seasonality. To test this hypothesis, in 2019 we conducted five surveys in the Bay of Pozzuoli (Gulf of Naples, Mediterranean Sea), in front of a dismissed steel factory and in the adjacent inshore coastal waters. High seasonal variability was observed for bacteria, phytoplankton and mesozooplankton, whereas plankton spatial gradients were relatively smooth during each survey. Plankton biomass and diversity did not reveal any effects of past industrial activities not even at the innermost stations of the Bay, which however showed some signals of present anthropogenic pressure. Hydrodynamic and morphological features likely play a prominent role in maintaining a relatively good status of the plankton of the Bay, which hints at the relevance of coastal circulation and meteorological dynamics to revitalize areas impacted by human activities.

RevDate: 2021-03-15
CmpDate: 2021-03-15

Harrison JL, Sanders-DeMott R, Reinmann AB, et al (2020)

Growing-season warming and winter soil freeze/thaw cycles increase transpiration in a northern hardwood forest.

Ecology, 101(11):e03173.

Climate models project higher growing-season temperatures and a decline in the depth and duration of winter snowpack throughout many north temperate ecosystems over the next century. A smaller snowpack is projected to induce more frequent soil freeze/thaw cycles in winter in northern hardwood forests of the northeastern United States. We measured the combined effects of warmer growing-season soil temperatures and increased winter freeze/thaw cycles on rates of leaf-level photosynthesis and transpiration (sap flow) of red maple (Acer rubrum) trees in a northern hardwood forest at the Climate Change Across Seasons Experiment at Hubbard Brook Experimental Forest in New Hampshire. Soil temperatures were warmed 5°C above ambient temperatures during the growing season and soil freeze/thaw cycles were induced in winter to mimic the projected changes in soil temperature over the next century. Relative to reference plots, growing-season soil warming increased rates of leaf-level photosynthesis by up to 85.32 ± 4.33%, but these gains were completely offset by soil freeze/thaw cycles in winter, suggesting that increased freeze/thaw cycles in winter over the next 100 yr will reduce the effect of warming on leaf-level carbon gains. Soil warming in the growing season increased rates of transpiration per kilopascal of vapor pressure deficit (VPD) by up to 727.39 ± 0.28%, even when trees were exposed to increased frequency of soil freeze/thaw cycles in the previous winter, which could influence regional hydrology in the future. Using climate projections downscaled from the Coupled Model Intercomparison Project, we project increased rates of whole-season transpiration in these forests over the next century by 42-61%. We also project 52-77 additional days when daily air temperatures will be above the long-term average daily maximum during the growing season at Hubbard Brook. Together, these results show that projected changes in climate across both the growing season and winter are likely to cause greater rates of water uptake and have no effect on rates of leaf-level carbon uptake by trees, with potential ecosystem consequences for hydrology and carbon cycling in northern hardwood forests.

RevDate: 2022-10-05
CmpDate: 2020-09-25

Albrecht M, Kleijn D, Williams NM, et al (2020)

The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis.

Ecology letters, 23(10):1488-1498.

Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.

RevDate: 2021-04-14
CmpDate: 2021-04-14

Risch AC, Zimmermann S, Moser B, et al (2020)

Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties.

Global change biology, 26(12):7173-7185.

Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net Nmin . Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.

RevDate: 2021-05-17
CmpDate: 2020-12-07

Crossley MS, Meier AR, Baldwin EM, et al (2020)

No net insect abundance and diversity declines across US Long Term Ecological Research sites.

Nature ecology & evolution, 4(10):1368-1376.

Recent reports of dramatic declines in insect abundance suggest grave consequences for global ecosystems and human society. Most evidence comes from Europe, however, leaving uncertainty about insect population trends worldwide. We used >5,300 time series for insects and other arthropods, collected over 4-36 years at monitoring sites representing 68 different natural and managed areas, to search for evidence of declines across the United States. Some taxa and sites showed decreases in abundance and diversity while others increased or were unchanged, yielding net abundance and biodiversity trends generally indistinguishable from zero. This lack of overall increase or decline was consistent across arthropod feeding groups and was similar for heavily disturbed versus relatively natural sites. The apparent robustness of US arthropod populations is reassuring. Yet, this result does not diminish the need for continued monitoring and could mask subtler changes in species composition that nonetheless endanger insect-provided ecosystem services.

RevDate: 2021-03-15
CmpDate: 2021-03-15

Gade MR, Connette GM, Crawford JA, et al (2020)

Predicted alteration of surface activity as a consequence of climate change.

Ecology, 101(11):e03154.

Wildlife are faced with numerous threats to survival, none more pressing than that of climate change. Understanding how species will respond behaviorally, physiologically, and demographically to a changing climate is a cornerstone of many contemporary ecological studies, especially for organisms, such as amphibians, whose persistence is closely tied to abiotic conditions. Activity is a useful parameter for understanding the effects of climate change because activity is directly linked to fitness as it dictates foraging times, energy budgets, and mating opportunities. However, activity can be challenging to measure directly, especially for secretive organisms like plethodontid salamanders, which only become surface active when conditions are cool and moist because of their anatomical and physiological restrictions. We estimated abiotic predictors of surface activity for the seven species of the Plethodon jordani complex. Five independent data sets collected from 2004 to 2017 were used to determine the parameters driving salamander surface activity in the present day, which were then used to predict potential activity changes over the next 80 yrs. Average active seasonal temperature and vapor pressure deficit were the strongest predictors of salamander surface activity and, without physiological or behavioral modifications, salamanders were predicted to exhibit a higher probability of surface activity during peak active season under future climate conditions. Temperatures during the active season likely do not exceed salamander thermal maxima to cause activity suppression and, until physiological limits are reached, future conditions may continue to increase activity. Our model is the first comprehensive field-based study to assess current and future surface activity probability. Our study provides insights into how a key behavior driving fitness may be affected by climate change.

RevDate: 2022-04-15

Schoenrock KM, Chan KM, O'Callaghan T, et al (2020)

A review of subtidal kelp forests in Ireland: From first descriptions to new habitat monitoring techniques.

Ecology and evolution, 10(13):6819-6832.

AIM: Kelp forests worldwide are important marine ecosystems that foster high primary to secondary productivity and multiple ecosystem services. These ecosystems are increasingly under threat from extreme storms, changing ocean temperatures, harvesting, and greater herbivore pressure at regional and global scales, necessitating urgent documentation of their historical to present-day distributions. Species range shifts to higher latitudes have already been documented in some species that dominate subtidal habitats within Europe. Very little is known about kelp forest ecosystems in Ireland, where rocky coastlines are dominated by Laminaria hyperborea. In order to rectify this substantial knowledge gap, we compiled historical records from an array of sources to present historical distribution, kelp and kelp forest recording effort over time, and present rational for the monitoring of kelp habitats to better understand ecosystem resilience.

LOCATION: Ireland (Northern Ireland and Éire).

METHODS: Herbaria, literature from the Linnaean society dating back to late 1700s, journal articles, government reports, and online databases were scoured for information on L. hyperborea. Information about kelp ecosystems was solicited from dive clubs and citizen science groups that are active along Ireland's coastlines.

RESULTS: Data were used to create distribution maps and analyze methodology and technology used to record L. hyperborea presence and kelp ecosystems within Ireland. We discuss the recent surge in studies on Irish kelp ecosystems, fauna associated with kelp ecosystems that may be used as indicators of ecosystem health and suggest methodologies for continued monitoring.

MAIN CONCLUSIONS: While there has been a steady increase in recording effort of the dominant subtidal kelp forest species, L. hyperborea, only recently have studies begun to address other important eco-evolutionary processes at work in kelp forests including connectivity among kelp populations in Ireland. Further monitoring, using suggested methodologies, is required to better understand the resilience of kelp ecosystems in Ireland.

RevDate: 2020-09-16
CmpDate: 2020-09-16

Serra AA, Bittebière AK, Mony C, et al (2020)

Local-scale dynamics of plant-pesticide interactions in a northern Brittany agricultural landscape.

The Science of the total environment, 744:140772.

Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop production and of ecosystem functions mediated by natural plant biodiversity. Understanding the complex effects of soil pollution requires multi-level and multi-scale approaches. Non-target and agri-environmental plant communities of field margins and vegetative filter strips are confronted with agricultural xenobiotics through soil contamination, drift, run-off and leaching events that result from chemical applications. Plant-pesticide dynamics in vegetative filter strips was studied at field scale in the agricultural landscape of a long-term ecological research network in northern Brittany (France). Vegetative filter strips effected significant pesticide abatement between the field and riparian compartments. However, comparison of pesticide usage modalities and soil chemical analysis revealed the extent and complexity of pesticide persistence in fields and vegetative filter strips, and suggested the contribution of multiple sources (yearly carry-over, interannual persistence, landscape-scale contamination). In order to determine the impact of such persistence, plant dynamics was followed in experimentally-designed vegetative filter strips of identical initial composition (Agrostis stolonifera, Anthemis tinctoria/Cota tinctoria, Centaurea cyanus, Fagopyrum esculentum, Festuca rubra, Lolium perenne, Lotus corniculatus, Phleum pratense, Trifolium pratense). After homogeneous vegetation establishment, experimental vegetative filter strips underwent rapid changes within the following two years, with Agrostis stolonifera, Festuca rubra, Lolium perenne and Phleum pratense becoming dominant and with the establishment of spontaneous vegetation. Co-inertia analysis showed that plant dynamics and soil residual pesticides could be significantly correlated, with the triazole fungicide epoxiconazole, the imidazole fungicide prochloraz and the neonicotinoid insecticide thiamethoxam as strong drivers of the correlation. However, the correlation was vegetative-filter-strip-specific, thus showing that correlation between plant dynamics and soil pesticides likely involved additional factors, such as threshold levels of residual pesticides. This situation of complex interactions between plants and soil contamination is further discussed in terms of agronomical, environmental and health issues.

RevDate: 2021-01-29
CmpDate: 2021-01-29

Goldberg L, Lagomasino D, Thomas N, et al (2020)

Global declines in human-driven mangrove loss.

Global change biology, 26(10):5844-5855.

Global mangrove loss has been attributed primarily to human activity. Anthropogenic loss hotspots across Southeast Asia and around the world have characterized the ecosystem as highly threatened, though natural processes such as erosion can also play a significant role in forest vulnerability. However, the extent of human and natural threats has not been fully quantified at the global scale. Here, using a Random Forest-based analysis of over one million Landsat images, we present the first 30 m resolution global maps of the drivers of mangrove loss from 2000 to 2016, capturing both human-driven and natural stressors. We estimate that 62% of global losses between 2000 and 2016 resulted from land-use change, primarily through conversion to aquaculture and agriculture. Up to 80% of these human-driven losses occurred within six Southeast Asian nations, reflecting the regional emphasis on enhancing aquaculture for export to support economic development. Both anthropogenic and natural losses declined between 2000 and 2016, though slower declines in natural loss caused an increase in their relative contribution to total global loss area. We attribute the decline in anthropogenic losses to the regionally dependent combination of increased emphasis on conservation efforts and a lack of remaining mangroves viable for conversion. While efforts to restore and protect mangroves appear to be effective over decadal timescales, the emergence of natural drivers of loss presents an immediate challenge for coastal adaptation. We anticipate that our results will inform decision-making within conservation and restoration initiatives by providing a locally relevant understanding of the causes of mangrove loss.

RevDate: 2020-08-24
CmpDate: 2020-08-24

Metfies K, Hessel J, Klenk R, et al (2020)

Uncovering the intricacies of microbial community dynamics at Helgoland Roads at the end of a spring bloom using automated sampling and 18S meta-barcoding.

PloS one, 15(6):e0233921.

In May 2016, the remote-controlled Automated Filtration System for Marine Microbes (AUTOFIM) was implemented in parallel to the Long Term Ecological Research (LTER) observatory Helgoland Roads in the German Bight. We collected samples for characterization of dynamics within the eukaryotic microbial communities at the end of a phytoplankton bloom via 18S meta-barcoding. Understanding consequences of environmental change for key marine ecosystem processes, such as phytoplankton bloom dynamics requires information on biodiversity and species occurrences with adequate temporal and taxonomic resolution via time series observations. Sampling automation and molecular high throughput methods can serve these needs by improving the resolution of current conventional marine time series observations. A technical evaluation based on an investigation of eukaryotic microbes using the partial 18S rRNA gene suggests that automated filtration with the AUTOFIM device and preservation of the plankton samples leads to highly similar 18S community profiles, compared to manual filtration and snap freezing. The molecular data were correlated with conventional microscopic counts. Overall, we observed substantial change in the eukaryotic microbial community structure during the observation period. A simultaneous decline of diatom and ciliate sequences succeeded a peak of Miracula helgolandica, suggesting a potential impact of these oomycete parasites on diatom bloom dynamics and phenology in the North Sea. As oomycetes are not routinely counted at Helgoland Roads LTER, our findings illustrate the benefits of combining automated filtration with metabarcodingto augment classical time series observations, particularly for taxa currently neglected due to methodological constraints.

RevDate: 2020-09-30

Käse L, Kraberg AC, Metfies K, et al (2020)

Rapid succession drives spring community dynamics of small protists at Helgoland Roads, North Sea.

Journal of plankton research, 42(3):305-319.

The dynamics of diatoms and dinoflagellates have been monitored for many decades at the Helgoland Roads Long-Term Ecological Research site and are relatively well understood. In contrast, small-sized eukaryotic microbes and their community changes are still much more elusive, mainly due to their small size and uniform morphology, which makes them difficult to identify microscopically. By using next-generation sequencing, we wanted to shed light on the Helgoland planktonic community dynamics, including nano- and picoplankton, during a spring bloom. We took samples from March to May 2016 and sequenced the V4 region of the 18S rDNA. Our results showed that mixotrophic and heterotrophic taxa were more abundant than autotrophic diatoms. Dinoflagellates dominated the sequence assemblage, and several small-sized eukaryotic microbes like Haptophyta, Choanoflagellata, Marine Stramenopiles and Syndiniales were identified. A diverse background community including taxa from all size classes was present during the whole sampling period. Five phases with several communities were distinguished. The fastest changes in community composition took place in phase 3, while the communities from phases 1 to 5 were more similar to each other despite contrasting environmental conditions. Synergy effects of next-generation sequencing and traditional methods may be exploited in future long-term observations.

RevDate: 2020-07-10
CmpDate: 2020-07-10

Battisti C, Fanelli G, Filpa A, et al (2020)

Giant Reed (Arundo donax) wrack as sink for plastic beach litter: First evidence and implication.

Marine pollution bulletin, 155:111179.

In order to maintain the hydraulic outflow in land reclaimed canalizations, the competent agencies provide to mechanically mow the Giant Reed (Arundo donax, L. 1753) along the aquatic ecosystem banks. Nevertheless, the reeds mowed can be transported away from the waters following storm surges and can be deposited in large quantities along the sandy beaches. We carried out a stratified study in a Mediterranean sandy beach to test the hypothesis that Giant Reed wrack may act as a sink and barrier for plastic beach litter. We observed a large amount of plastic litter entrapped in the Arundo donax wrack (density of 0.868 items/m2), with a higher density when compared to both the inner and the shoreline belts. Density of litter is significantly higher considering the categories of meso- and micro-plastics. Organic macrophyte wrack is useful for dunal macrodetritivorous invertebrates and generally for fauna communities, which use this litter as refuge and trophic pabulum. Significant accumulations of organic wrack can mitigate coastal erosion; nevertheless, for its structural characteristics, Arundo wrack can also act as a barrier for litter towards the inner vegetated dunes, so entrapping a large amount of anthropogenic litter. In this regard, Arundo wrack can represent a sink habitat, first attracting (due to large availability of detritus with a relative high rate of decomposition) and then, entrapping many organisms in anthropogenic litter. We suggest that, once mechanically mowed, the land reclaimed agencies should periodically remove from the channel banks the Arundo donax reeds, impeding the accumulation of incoherent vegetated matter along the aquatic ecosystem banks.

RevDate: 2021-03-03
CmpDate: 2021-03-03

Fanelli E, Aguzzi J, Marini S, et al (2020)

Towards Naples Ecological REsearch for Augmented Observatories (NEREA): The NEREA-Fix Module, a Stand-Alone Platform for Long-Term Deep-Sea Ecosystem Monitoring.

Sensors (Basel, Switzerland), 20(10):.

Deep-sea ecological monitoring is increasingly recognized as indispensable for the comprehension of the largest biome on Earth, but at the same time it is subjected to growing human impacts for the exploitation of biotic and abiotic resources. Here, we present the Naples Ecological REsearch (NEREA) stand-alone observatory concept (NEREA-fix), an integrated observatory with a modular, adaptive structure, characterized by a multiparametric video-platform to be deployed in the Dohrn canyon (Gulf of Naples, Tyrrhenian Sea) at ca. 650 m depth. The observatory integrates a seabed platform with optoacoustic and oceanographic/geochemical sensors connected to a surface transmission buoy, plus a mooring line (also equipped with depth-staged environmental sensors). This reinforced high-frequency and long-lasting ecological monitoring will integrate the historical data conducted over 40 years for the Long-Term Ecological Research (LTER) at the station "Mare Chiara", and ongoing vessel-assisted plankton (and future environmental DNA-eDNA) sampling. NEREA aims at expanding the observational capacity in a key area of the Mediterranean Sea, representing a first step towards the establishment of a bentho-pelagic network to enforce an end-to-end transdisciplinary approach for the monitoring of marine ecosystems across a wide range of animal sizes (from bacteria to megafauna).

RevDate: 2021-05-19
CmpDate: 2020-10-02

Wood LK, Hays S, JC Zinnert (2020)

Decreased temperature variance associated with biotic composition enhances coastal shrub encroachment.

Scientific reports, 10(1):8210.

Regime shift from grasslands to shrub-dominated landscapes occur worldwide driven by altered land-use and climate change, affecting landscape function, biodiversity, and productivity. Warming winter temperatures are a main driver of expansion of the native, evergreen shrub, Morella cerifera, in coastal landscapes. Shrub establishment in these habitats alters microclimate, but little is known about seasonal differences and microclimate variance. We assessed influence of shrubs on microclimate variance, community composition, and community physiological functioning across three vegetation zones: grass, transitional, and shrub in a coastal grassland. Using a novel application of a time-series analysis, we interpret microclimatic variance modification and elucidate mechanisms of shrub encroachment at the Virginia Coast Reserve, Long-Term Ecological Research site. As shrub thickets form, diversity is reduced with little grass/forb cover, while transpiration and annual productivity increase. Shrub thickets significantly reduced temperature variance with a positive influence of one day on the next in maximum air, minimum air, and maximum ground temperature. We also show that microclimatic temperature moderation reduces summer extreme temperatures in transition areas, even before coalescence into full thickets. Encroachment of Morella cerifera on the Virginia barrier islands is driven by reduced local exposure to cold temperatures and enhanced by abiotic microclimatic modification and biotic physiological functioning. This shift in plant community composition from grassland to shrub thicket alters the role of barrier islands in productivity and can have impacts on the natural resilience of the islands.

RevDate: 2022-04-14

Bush ER, Jeffery K, Bunnefeld N, et al (2020)

Rare ground data confirm significant warming and drying in western equatorial Africa.

PeerJ, 8:e8732.

BACKGROUND: The humid tropical forests of Central Africa influence weather worldwide and play a major role in the global carbon cycle. However, they are also an ecological anomaly, with evergreen forests dominating the western equatorial region despite less than 2,000 mm total annual rainfall. Meteorological data for Central Africa are notoriously sparse and incomplete and there are substantial issues with satellite-derived data because of persistent cloudiness and inability to ground-truth estimates. Long-term climate observations are urgently needed to verify regional climate and vegetation models, shed light on the mechanisms that drive climatic variability and assess the viability of evergreen forests under future climate scenarios.

METHODS: We have the rare opportunity to analyse a 34 year dataset of rainfall and temperature (and shorter periods of absolute humidity, wind speed, solar radiation and aerosol optical depth) from Lopé National Park, a long-term ecological research site in Gabon, western equatorial Africa. We used (generalized) linear mixed models and spectral analyses to assess seasonal and inter-annual variation, long-term trends and oceanic influences on local weather patterns.

RESULTS: Lopé's weather is characterised by a cool, light-deficient, long dry season. Long-term climatic means have changed significantly over the last 34 years, with warming occurring at a rate of +0.25 °C per decade (minimum daily temperature) and drying at a rate of -75 mm per decade (total annual rainfall). Inter-annual climatic variability at Lopé is highly influenced by global weather patterns. Sea surface temperatures of the Pacific and Atlantic oceans have strong coherence with Lopé temperature and rainfall on multi-annual scales.

CONCLUSIONS: The Lopé long-term weather record has not previously been made public and is of high value in such a data poor region. Our results support regional analyses of climatic seasonality, long-term warming and the influences of the oceans on temperature and rainfall variability. However, warming has occurred more rapidly than the regional products suggest and while there remains much uncertainty in the wider region, rainfall has declined over the last three decades at Lopé. The association between rainfall and the Atlantic cold tongue at Lopé lends some support for the 'dry' models of climate change for the region. In the context of a rapidly warming and drying climate, urgent research is needed into the sensitivity of dry season clouds to ocean temperatures and the viability of humid evergreen forests in this dry region should the clouds disappear.

RevDate: 2020-10-29
CmpDate: 2020-10-29

Turk Dermastia T, Cerino F, Stanković D, et al (2020)

Ecological time series and integrative taxonomy unveil seasonality and diversity of the toxic diatom Pseudo-nitzschia H. Peragallo in the northern Adriatic Sea.

Harmful algae, 93:101773.

Pseudo-nitzschia H. Peragallo (1900) is a globally distributed genus of pennate diatoms that are important components of phytoplankton communities worldwide. Some members of the genus produce the neurotoxin domoic acid, so regular monitoring is in place. However, the identification of toxic members in routine samplings remains problematic. In this study, the diversity and seasonal occurrence of Pseudo-nitzschia species were investigated in the Gulf of Trieste, a shallow gulf in the northern Adriatic Sea. We used time series data from 2005 to 2018 to describe the seasonal and inter-annual occurrence of the genus in the area and its contribution to the phytoplankton community. On average, the genus accounted for about 15 % of total diatom abundance and peaked in spring and autumn, with occasional outbreaks during summer and large inter-annual fluctuations. Increased water temperature and decreased salinity positively affected the presence of some members of the genus, while strong effects could be masked by an unsuitable definition of the species complexes used for monitoring purposes. Therefore, combining morphological (TEM) and molecular analyses by sequencing the ITS, 28S and rbcL markers, eight species were identified from 83 isolated monoclonal strains: P. calliantha, P. fraudulenta, P. delicatissima, P. galaxiae, P. mannii, P. multistriata, P. pungens and P. subfraudulenta. A genetic comparison between the isolated strains and other strains in the Mediterranean was carried out and rbcL was inspected as a potential barcode marker in respect to our results. This is the first study in the Gulf of Trieste on Pseudo-nitzschia time series from a long-term ecological research (LTER) site coupled with molecular data. We show that meaningful ecological conclusions can be drawn by applying integrative methodology, as opposed to the approach that only considers species complexes. The results of this work will provide guidance for further monitoring efforts as well as research activities, including population genetics and genomics, associated with seasonal distribution and toxicity profiles.

RevDate: 2021-02-22
CmpDate: 2021-02-22

Peters DPC, Okin GS, Herrick JE, et al (2020)

Modifying connectivity to promote state change reversal: the importance of geomorphic context and plant-soil feedbacks.

Ecology, 101(9):e03069.

Alternative states maintained by feedbacks are notoriously difficult, if not impossible, to reverse. Although positive interactions that modify soil conditions may have the greatest potential to alter self-reinforcing feedbacks, the conditions leading to these state change reversals have not been resolved. In a 9-yr study, we modified horizontal connectivity of resources by wind or water on different geomorphic surfaces in an attempt to alter plant-soil feedbacks and shift woody-plant-dominated states back toward perennial grass dominance. Modifying connectivity resulted in an increase in litter cover regardless of the vector of transport (wind, water) followed by an increase in perennial grass cover 2 yr later. Modifying connectivity was most effective on sandy soils where wind is the dominant vector, and least effective on gravelly soils on stable surfaces with low sediment movement by water. We found that grass cover was related to precipitation in the first 5 yr of our study, and plant-soil feedbacks developed following 6 yr of modified connectivity to overwhelm effects of precipitation on sandy, wind-blown soils. These feedbacks persisted through time under variable annual rainfall. On alluvial soils, either plant-soil feedbacks developed after 7 yr that were not persistent (active soils) or did not develop (stable soils). This novel approach has application to drylands globally where desertified lands have suffered losses in ecosystem services, and to other ecosystems where connectivity-mediated feedbacks modified at fine scales can be expected to impact plant recovery and state change reversals at larger scales, in particular for wind-impacted sites.

RevDate: 2020-04-08
CmpDate: 2020-04-08

Leitner S, Dirnböck T, Kobler J, et al (2020)

Legacy effects of drought on nitrate leaching in a temperate mixed forest on karst.

Journal of environmental management, 262:110338.

With climate change the occurrence of summer droughts is expected to increase in Central Europe. This could lead to increased nitrate (NO3-) leaching when water scarcity affects the N-uptake capacity of trees and increases soil N availability due to early leaf senescence and higher litter input. In the present study, we used 16 years of ecological monitoring data from the LTER research site "Zöbelboden" in Austria. The monitoring site is a mixed Spruce-Sycamore-Ash-Beech forest on karst, which is representative for many watersheds that supply drinking water in Austria. We found that in the year after a summer drought, NO3- leaching via soil water seepage was significantly elevated compared to the long-term mean. While in normal years, NO3- leaching was primarily affected by soil water seepage volume, after a summer drought these controls changed and NO3- leaching was controlled by NO3- input via precipitation, tree N uptake, and vapor-pressure deficit. Furthermore, higher aboveground litter input during dry years was correlated with increased NO3- leaching in the following year. Our findings show that NO3- leaching from temperate mountain forests on karst is susceptible to summer drought, which could affect drinking water quality in the Central European Alps in the future, especially in combination with forest disturbances like bark beetle outbreaks, which are often a direct consequence of drought damage to trees.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

cover-pic

SUPPORT ESP: Order from Amazon
The ESP project will earn a commission.

This is a must read book for anyone with an interest in invasion biology. The full title of the book lays out the author's premise — The New Wild: Why Invasive Species Will Be Nature's Salvation. Not only is species movement not bad for ecosystems, it is the way that ecosystems respond to perturbation — it is the way ecosystems heal. Even if you are one of those who is absolutely convinced that invasive species are actually "a blight, pollution, an epidemic, or a cancer on nature", you should read this book to clarify your own thinking. True scientific understanding never comes from just interacting with those with whom you already agree. R. Robbins

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin (and even a collection of poetry — Chicago Poems by Carl Sandburg).

Timelines

ESP now offers a much improved and expanded collection of timelines, designed to give the user choice over subject matter and dates.

Biographies

Biographical information about many key scientists.

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are now being automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 07 JUL 2018 )