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THE PROBLEM 

Many problems in linkage require the comparison of two or more 
values obtained under different genetic or environic conditions, with 
the object of determining whether or not the observed differences between 
these values are "significant." By the term "significant difference" is 
here meant one of such size that i t  would be improbable for i t  to have 
arisen solely as a result of the random sampling of identical germinal 
material. For the purpose of such comparisons, then, it is necessary 
first to know the size of the deviations which random sampling by itself 
would be likely to cause. This is gauged by means of the "standard 
error," i t  being ordinarily true that deviations greater than two or three 
(according to the standard of certainty) times the standard error are very 
improbable, as a mere result of random sampling. (The use of the so- 
called "probable error" merely involves the standard error in some- 
what different guise, as the former is ordinarily obtained by multiplying 
the latter by .6745,--a rather superfluous procedure except in special 
cases). 

I t  has thus become almost axiomatic, for rigorous workers, that in 
order to be sure of their ground in the interpretation of their results 
they must have an idea of the standard errors of the values with which 
they deal. It is true that often the differences are so obviously decisive 
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that great refinements are not necessary, and yet, unless some estimates 
are made of the "errors" involved, there will be occasions, not infrequent, 
when the investigator will either run the risk of being led into some 
serious misinterpretation, or else will fail to reap the full meaning from 
his results. 

The standard error of the simple proportion of "crossovers," or, more 
accurately, of separations, between two pairs of genes,--as well as the 
error of a chromosome distance (in*:) so short that i t  includes no 
double or multiple crossovers,-is well known, being determined by the 

familiar formula e p  = ,where e p  is the standard error of the 

proportion of separations or crossovers, p, and n is the total number of 
individuals counted. (When 9 represents percents rather than pro- 

portions the formula is ep, = .) But the standard errors of 

longer map lengths, involving double crossovers, and of the index of 
double-crossover frequency itself,-coincidence,-have not hitherto been 
worked out. As these are values just as important, in their way, and as 
frequently used in theoretical work, as the simple crossover values, i t  is 
essential that formulae be available for calculating their standard errors 
also. 

STANDARD ERROR OF A NAP LENGTH 

Let us consider first the standard error of a chromosome map, or a 
section of a map long enough to include double, etc., crossovers, based 
on a count involving simultaneously all the loci dealt with. The map 
length is the sum of the percent of crossovers in each of the separate 
regions; this is evidently the same as (100 times) the quotient formed 
by dividing the total number of individuals counted into the number of 
crosszngs over (as distinguished from crossovers,-each double crossover 
containing 2 crossings over, each triple crossover 3 crossings over, etc.). 
Thus, the map length of the regions considered is really (100 times) the 
mean value of the number of crossings over per individual in these regions. 
Now the standard error of any mean value (m) is equal to the standard 
deviation of the values of the individuals that go to make up the mean, 

divided by the square root of the number of such individuals em =-- ( :J 
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In  a given set of data, a, the standard deviation of the values of the 
individuals, may be determined by the usual process, which consists of 
getting the square of the deviation of each individual value from the 
mean value, averaging these squares, and extracting the square root of 

this average, thus, a = , where m is the mean value, in our 

case the "EEL!@! ,,, or mean number of crossings over per individual, 
and i the individual value or number of crossings over in  any given 

individual. This can also be expressed in the form, a = J z ( z )  -m2. 

I t  follows that em = 
n 

All that now remains is to find the result of substituting for Z 

in the above formula the values derived from the data. Let s be the 
proportion of single crossovers in the entire total; in the case of each 
single crossover the value of i, and i2, is 1, and the sum of the values 

i2 
- is therefore s. Let d be the proportion of double crossovers; since each 
n 

double crossover has a value of 2 for i, and of 4 for i2, the sum 

for these is 4d. Similarly, let t be the proportion of triple crossovers, 

the sum of (f) for the triples being 91; for the quadruples i t  is 16g, 

and so on. Then, the entire sum, 2 - , equals s + 4d + 9t + 169 . . . (3 
But m, the map length, equals s+2d +3t +4q - . - ; hence, 2 (f) = 

m+2d+61+12q . , . (or nz+2.ld+3.2t+4.3q . . . ). Substituting this 

value of X (:) in the formula for c, we have 
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I t  is evident that where there are no double or multiple crossovers to 

be considered, this expression reduces to the iamiliar for the 
n 

standard error, E,, of the proportion of separations. The above value 
for em,  of course, applies to the mean proportion of crossings over, or 
map length 

loo , so that the standard error of the map length itself, when the 
latter is expressed in "chromosome units" or percents of crossings over, 
rather than in proportions, has a value 100 times that of the above 
expression. When, therefore, m represents the number of units of map 
length, and d, 2, q, etc., represent the percents rather than the proportions 
of double, triple, quadruple, etc., crossovers, we have instead the relation 

The above formulae can also be arrived a t  by considering the map 
as the sum of the various component distances,--a, b, c,. . . .---and ap- 
plying the equation for the standard error of a sum, 

where E,, E * ,  E,, etc., are the standard errors of a,  b, c, etc., obtained by 

the formula, and r , b ,  r,,, rbc, etc., are the correlations between 
n 

a and b, a and c, b and c, etc., fespectively. These correlations are ob- 

d - P I P 2  
tained by the formula rPlp2 = , where d is the propor- 

.\jplp2(l - P I N  - P2) 

tion of double crossovers, and pl and p2 are the proportions of crossovers 
in the two respective regions considered. 

Of course, the formulae given do not take into account possible errors 
due to the existence of unobserved double crossovers both of whose loci 
of crossing over lie between two "adjacent" genes, i. e., within the limits 
of a region indivisible in the experiment; such errors are caused by the 
conditions of the experiment, whereas the errors given by the formulae 
are merely those which would be caused by random sampling under these 
experimental conditions. Furthermore, the formulae do not take into 
account variations due to determinate causes other than sampling, such 
as genetic, "developmental," or environic circumstances that  influence 
either crossing over, or the viability of different classes of offspring. As 
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such sources of variation are seldom absent except where the strictest 
attention has been given to genetic homogeneity of the parental ma- 
terial, and identity of age, and when the various experiments have been 
performed simultaneously, with the same food, etc., i t  would seem a 
supererogation to develop the formulae for the error of map length due 
to random sampling further a t  present, so as to include the errors of 
composite maps, formed by the combination of the results of wholly 
different experiments, involving different genes. The methods for de- 
termining the "most probable" value of the map from a combination of 
experiments with different loci have been worked out by FISHER (1922) 
and by KELLEY (1923), but the standard error of such a "most probable'' 
map can only be estimated roughly, after numerous experiments have 
given a basis for judging the usual amount of variation due to "deter- 
minate" causes, among the results, for identical loci, of experiments 
involving different subsidiary loci and different environic conditions. 

STANDARD ERROR OF COINCIDENCE 

Coincidence is the ratio of the proportion of double crossovers (d)  
"units" which actually occur in two regions (of "lengths" a and b in -), 

to the proportion of double crossovers which would occur there if crossings 
over in the two regions were independent of one another (the latter value 
being evidently ab). Thus the value of the coincidence ratio, c, is given 

d 
by the formula c = - . 

ab 

In  calculating the standard error of this ratio we may treat i t  as the 

d b 
quotient of two proportions, pl and Po, where p l=  - and p - . 

a 
Pi 

O -  i- 
Then, c=- . The numerator, pl, is the proportion of crossovers in region 

P o  
b which occurs among the a n  cases having crossing over in region a ,  and 
the denominator, PO, is the proportion of crossovers in region b which 
occurs in the entire total of n individuals. Thus, we are enabled to use 
for the standard error of coincidence, the well known close-approximation 
formula for the standard error of a quotient, which may be stated as 
follows : 

(where E represents the standard error, and r the correlation, of the values 
G ~ m n c s  10: N 1925 
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given in the respective subscripts). To solve this expression for the 

present case we must find the values of E , c and rp p ,  and substitute 
0 1 

them in the equation given. 
As po is merely a proportion (b) of a fixed total ( n )  its standard error 

in random sampling is accurately given by the formula E 
 PO(^ - PO) 

Po n 

Somewhat similarly, pl is a proportion of the "total" n and its standard 

may be taken as J . As will be explained later, how- 

ever, the latter expression is only an approximation to ep,, since the 
observed value of a n  is itself subject to variation. In  obtaining the value 
of r,,,,, i t  should be noted that the proportion po is gotten by the in- 
clusion of the individuals that go to form p1 (the double crossovers), 
with others (single crossovers in region b), to form a proportion of a 
larger total (n). The formula for the correlation of two such propor- 
tions,--one based on individuals that are also included in the other,-is 

nl s, r = - - , where nl is the smaller total, in this case an, out of which pl 
no 'p 

is obtained, and no is the more inclusive total, in which pa occurs. I n  

anep, the present case, then, r = - = - 
n €Po EP, 

Substituting, now, the above values of cPO, epl, and r, , in the formula 
0 1 

for the standard error of a quotient and simplifying each term, we obtain 

1 -p1 . Next, substituting for p o  and pl 

d 
their values b and - : 

a 

a -d  21a-d) 

adn  a b n  

,,/ad(l - b )+b(a -d ) -2d (o -d )  
Reducing to common denominator, E, = c --- - 

abdn 
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Simplifying the numerator and rearranging terms, 

c c = c y  
abdn 

d 
Substituting for - its value c, and for (a-d) and (b-d) the symbols a, 

ab 

and b,, respectively, signifying the proportion of single crossovers in 
regions a and b, we have, finally, 

ec =c ,/I -c(a;b.+ab) - (approximately) . . . . 

For much work it  will be found sufficiently-accurate to use in place of 
this a rougher approximation, derivable from-it, - as follows: 

1 -cm 
(approximatelv), . . . . . (2a) 

where m is the "w of the regions in question, i. e., m=a+b, and 
D =dn, the absolute number of double crossovers. 

Another form of formula (2), sometimes more convenient in practice, 
may be obtained from the expression just preceding (2) by dividing the 
terms of the numerator into the denominator. We then have: 

1 1 1 1 2 ~  +-. 
drt bn art n n 

Denoting dn, bn and an by Dl B and A ,  which are the absolute numbers 
rather than the proportions of double crossovers and of crossovers in 
regions b and a, respectively, we have: 

2c-1 1 1 1 + - (approximately) . - (2b) 
A B D  

As all these formulae are symmetrical with respect to a and b (that is, 
the latter may be interchanged without altering the final value) i t  is 

d 
evident that the use of - as pl  and of a as po in working out the result 

l b  
would have led to the same expression. Nevertheless, as mentioned pre- 
viously, even formulae (2) and (2b) are not strictly accurate, first, be- 
cause the formula used for the standard error of a quotient is only an 
approximation, though a very close one, and second, because the formula 
GENETICS 10: N 1925 
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for tP1 is approximate, since the observed values representing the "total" 
an are variable. 

Where the total out of which a proportion is taken is variable, strict 
accuracy usually demands the use of H ,  the harmonic mean of these 
totals, rather than the arithmetic mean fin our case an), in the place of 

n in the formula t, = . Where the actual values of the totals 
'Y! 

are not available for determining H, the latter may usually be sal- 
culated from the arithmetic mean, n, by the approximation formula, 

. Substituting, for our case, an for n and 

for a,, we have H = an+a- 1. If this is used in place of an in the formula 
for t,,, and the formula for E ,  worked out by steps similar to those taken 
previously, we obtain: 

a 1 1  
(approximately) (3) 

This is obviously unsym~netrical with respect to a and b, due to the fact 
that the formula for E l  used was only an approximation. In  fact, i t  can 
be shown that the difference between the value of this expression and 
that obtained when a and b are interchanged would not infrequently 
be greater, in cases of the sort dealt with experimentally, than the dif- 
ference between one of them and the original formula (2). Doubtless 
a better approximation could be obtained by using the mean of a and b 
rather than a in the unsymmetrical portions of formula (3). This works 
out as follows: 

The error caused in actual problems by the use of the arithmetic 
rather than the approximate harmonic mean for an is, however, never 
more than a few percent of the value of tc. Such an amount is usually 
of negligible consequence when standard errors are dealt with, for the 
latter are ordinarily used for determining in round numbers (or numbers 
of the accuracy of 2.5) the multiple which a given deviation is of the 
standard deviation. Hence, there would seldom be reason for employing 
the unwieldy formula (3) or (3a) rather than (2) or (2a). 
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In strictest accuracy, 6 is indeterminate, because in reality E,, is 
indeterminate. The real harmonic mean, H, of observed values of an, 
must always be 0, since in a practically negligible proportion of samples 
an will be 0, and the harmonic mean of any series including 0 must always 
be 0 also; this in turn would make eP1=0. I t  is more correct, however, 
to consider the deviations of pl itself, since the root mean square of these 
really give epl. If we do this, we find that when an = 0, since the deviation 

d 0 
of d also-0, the proportion p, being -, or - is indeterminate, and 

an 0' 

its deviation is therefore indeterminate also. This causes epl to be in- 
determinate, and consequently E,, even though a sample in which an was 
0 would not occur, in ordinary work, once in a billion times (an would be 
zero about once in 200,000,000,000 times if a represented 5 units and n 
a total of 500 individuals). 

If, then, we use the term standard error in the most rigorously exact 
sense we see that in the case of coincidence its value cannot be found, 
and does not, in fact, exist, as a definite quantity. Nevertheless, we can 
continue to speak of it, and to use one of the above formulae for ec in our 
work, and these values will have a practical meaning similar to that of 
the standard error of other quantities, inasmuch as a random deviation 
of a certain number of times this ec will have about the same amount of 
probability as a random deviation of another quantity which is the same 
number of times its standard deviation. And the "probable error," as 
in other cases, will here too be about .6745 times the value taken as 
representing standard error, provided dn is a reasonably large number. 
In the case of coincidence, in fact, the "probable error" is really a value 
of more definite meaning than the standard error, being determinate, 

d 
and independent of the indeterminate value of - for the cases when 

an 
an=O. Usually, however, i t  would be necessary first to determine EC as 
above, before the probable error could be found. 

I t  should also be noted that although e,, strictly speaking, is in- 
determinate, the range of indetermination is very small, since for all 
ordinary values of a and n used the proportion of samples in which an =O 
is exceedingly minute, and in each of the latter samples, even though 

d 0 
-=- , this ratio can never be greater than 1 (nor less than 0)) as d can 
an 0 

never exceed an. The standard error, then, which involves the sum of 
GENETICS 10: N 1925 
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numerous determinate quantities and these few indeterminate quantities 
of limited value, becomes very narrowly fixed. Theoretically, limits 
could be assigned to EC and i t  would be found that the difference between 
these limits is utterly negligible compared with the size of E ,  itself, or 
compared with the difference between either of them and the practically 
adequate value given by approximation formula (2). Thus, the question 
of the more exact determination of E C  ceases to be of practical moment. 

THE USE O F  THE STANDARD-ERROR FORMULAE 

Errors oj observed versus true values 

Every one of the formulae mentioned so far, including those for 
crossovers, map length and coincidence, has given the standard deviation 
to be observed in a large collection of random samples if the true values 
(for proportion of crossovers, double crossovers, coincidence, etc.), 
that is, the values which would be found in an indefinitely large sample 
of the same material, were those used in the formula. Values resulting 
from random sampling of this material that deviate from the "true" 
value by more than two or three times this standard error may then be 
taken as improbable, since they can be shown to occur infrequently, 
and when such values are found i t  is therefore considered probable that 
they were drawn from material with a true value different from that 
assumed. 

In  practice, however, the question usually to be answered is not the 
above,-what the observed values may be which have the greatest reason- 
able deviation from a certain assumed true value,-but the converse, 
that is, what the true values could be which would have as their greatest 
"reasonable" deviant a certain observed value. We can not answer this 
question precisely by the simple use of the preceding formulae, since the 
standard error, given in the formula, of a true value equal to that ob- 
served, is not precisely the same as the standard error of a true value 
differing from that observed by plus or minus two or three times the 
latter standard error itself. However, the values of these errors are usually 
sufficiently alike that one may be used in place of the other without 
serious danger of an erroneous conclusion, unless the absolute number 
of one or more of the variants involved is extremely small, and it has 
accordingly been the practice to use such formulae as the above for 
finding the limits of the true values which observed values may represent, 
by adding to and subtracting from the latter 2 or 3 times the error given by 
the formulae. It is as legitimate to do this in the caseof themap and co- 
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incidence formulae as in the case of the other formulae where this is com- 
monly done. 

When greater accuracy is desired, i t  is customary to use a rather 
cumbersome method of approximation. In  this method the observed 
value is first assumed to be true, and by the aid of a formula like one of 
those given above, the plus and minus limits of the "reasonably possible" 
observed values (differing from the former by 2 or 3 times the standard 
error) are calculated. These are then assumed to be true, and their 
standard errors are calculated by the same formula. Deviations from the 
observed value of two or three times these, in the plus or minus direction, 
respectively, now give the true values to a second approximation. The 
same process may be repeated as many times as necessary, until the 
desired degree of accuracy is attained. In the case of coincidence, this 
procedure would be considerably more difficult and intricate than would 
appear from the above outline, since the standard error of any true or 
assumedly true value of coincidence is a function not only of the co- 
incidence itself, and the total number counted, but also of the different 
classes of crossovers, the values of which vary in partial independence 
of one another. Just how to take all these variations into account 
simultaneously is not a t  present clear. 

When we are dealing with the simple proportion of crossovers, how- 
ever, or any other simple proportion (such as of non-disjunctional ex- 
ceptions, mutations, etc.), the above approximation method may be re- 
placed by a more direct and exact procedure. Let po be the observed 
value of the proportion and pl and pz the respective larger and smaller 
possible true values which differ from po by a certain number of times, say 

a times, their own standard error. Then we have pl-po = a  E 
and pa- p, = a  fl2('np2) . If we solve these equations for pl and p2,  

respectively, we find that pl = 
2-rzPo+a2+a &po(l -po) +a2 

2(n+a2) 
and p2 

equals an expression which is the same as the above except that a minus 
sign occurs before the term containing the radical. Thus, if we let pi 
represent either extreme possible true value, we have 
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where PO is the observed value and a the number of times the standard 
deviation of the possible true value whereby the latter differs from the 
observed value. This formula does not seem to be well known, but, 
although somewhat lengthy, i t  is necessary where exactitude is sought, 
and i t  is especially important when pn is a rather small number. 

Errors due  to causes other than random sampling 

A second point which must be kept in mind in the application of any 
of the formulae above discussed is that they give an idea of the size of 
such deviations as result from random sampling alone. A deviation 
greater than that thus indicated would not prove the effectiveness of a 
given factor or agency in influencing the value studied unless i t  could 
be shown that no other variation was possible in the experiment except 
that due to random sampling and to this agency. This is seldom the case 
in work on linkage, non-disjunction, and other genetic processes giving 
irregular ratios, and so the unmodified formulae of random sampling 
are only applicable in the comparison of experiments in which the strictest 
attention has been given to uniformity of genetic and other conditions 
in all respects except those the influence of which i t  is desired to de- 
termine (or those the amount of influence of which is definitely predict- 
able). As GOWEN'S (1919) work shows, even in such cases there may be 
uncontrollable sources of variation making the deviations greater than in 
random sampling. 

Wherever possible, then, statistical tests should be applied to the 
material, by getting the results of various samples taken under the 
(supposedly) same conditions, and determining whether or not the de- 
viations of these samples from one another are greater than would be 
,expected of purely random samples. The formula for this test is easy, 
since the deviations of the values in the samples from the general mean 
value, when squared, summed and averaged, so as to get the standard 
deviation of these values, should not differ significantly from the standard 
error to be expected of the average sample (determined by one of the above 
formulae, with the use of H, the harmonic mean, as the mean number 
per sample). Whether the resultant difference is significant may usually 
be found with sufficient accuracy by the use of the approximate formula 

e 
for the standard error of a standard deviation, that is, --- in which 

dm 

e is the calculated standard error of the samples and N is the number of 
samples. These methods apply alike to problems of map length, coin- 
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cidence, percent of crossovers, of non-disjunction, etc. Of course a 
satisfactory agreement of the observed deviations of the samples with 
the error expected from random sampling is not a sure proof that other 
sources of variation may not be a t  work, but a contrary result,-a signifi- 
cant disagreement,-does prove that the unmodified random sampling 
formulae do not apply. 

If, by reason of tests like the above or on account of a priori con- 
siderations, i t  is concluded that the random sampling rules are insufficient, 
there may remain another mode of procedure for determining whether 
a given condition or set of conditions is exerting a significant influence 
upon the genetic phenomenon studied, or for determining the amount 
of such influence. This, however, like the above test, requires that a 
considerable number of separate samples have been recorded, preferably 
in both (or all) of the series to be contrasted. The standard deviation 
of the values of the separate samples from the general mean value is 
then calculated for all the series taken together, by the same method 
as used in the tests discussed above, and this standard deviation, a, 
divided by the square root of the number of samples ( N J  comprised in 

(d&) allowed for the mean a given series, will give the standard error -- 

of this entire series, provided the special controlled agency which dif- 
ferentiates one series from another is ineffective in influencing the genetic 

u 
process studied. Similarly, - the standard error of the mean of the vx' 
entire second series, composed of N p  samples, may be obtained. These 
two quantities can now be used in the familiar formula for the standard 
error of a difference, where there is no correlation, a d =  da12+622, to 
determine in this case the standard error for the difference of the means of 
the two entire series. If, then, the actual difference between these means 
is more than two or three times the latter standard error, i t  may be con- 
cluded that the agency studied has been effective. 

This final conclusion will be valid even if there were numerous other 
agents affecting the genetic process studied, so long as there was no cause 
other than "chance" to lead these agents to act on the samples of one 
series rather than the other,-that is, i f  each sample, independently of 
every other, were as likely to come under the influence of one or more 
of these agents as every other sample. For the diversifying influences 
GENETICS 10: N 1925 
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of these extraneous factors, uncorrelated with the controlled factor, 
has been allowed for by taking the observed standard deviations of the 
samples rather than the errors calculated on the basis of random sampling. 
But, as before, while a significant difference between the means of the 
series will thus prove the effectiveness of an agent, the lack of such a 
difference will not categorically disprove the latter but will merely assign 
an upper limit to it. 

The above method is theoretically applicable no matter whether the 
value studied be proportion of crossovers, of non-disjunction or other 
exceptions, map length, coincidence, or anything else. I n  the case of 
coincidence, however, since this requires such large numbers in a sample 
for a single good determination, i t  is often impracticable to secure large 
numbers of samples, but the work can usually be divided into a few 
samples, a t  least, so that some estimate can be obtained of the amount 
of variability due to all "extraneous" causes combined. Thus, an idea 
of the upper limit of such variability may be formed, by which the sig- 
nificance of the differences observed in different series may be gauged. 

Where, however, the coincidence values to be compared concern dif- 
ferent regions all of which were studied in the same counts, the formulae 
of random sampling (2. Za, 2b) are accurately applicable, provided the 
approximate equality of contrary classes shows that the effects of dif- 
ferential viability are negligible. For in such a case identical genetic, de- 
velopmental and other environic factors were acting in the formation of 
the different gametic coincidence ratios, and the only possible sources of 
difference in the observed coincidences, aside from the effects of random 
sampling, are those inherent in the behavior of the different regions con- 
cerned and selective agents which may cause the adult ratios to differ 
from the gametic ones. 

Cornparisom of values 

The formula for the standard error of a difference, of course, applies 
both in cases like those previously discussed,where the differences between 
means are dealt with, and also in all cases of purely random sampling. Since 
this process of getting the root sum of two squares must often be performed 
repeatedly, i t  is convenient to use a geometric scheme for making the 
computation (just as in multiplications and divisions we may use the slide 
rule). For the present calculation the authors find that if a sheet of co- 
ordinate paper be used, with the lines numbered by tens, both down and 
across, and another numbered piece of the paper, in the form of a strip, 
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be taken as a ruler, sufficient accuracy is attained by reading the distance 
subtended on the ruler when this is placed diagonally from a point on the 
upper edge having a numerical value equal to one of the standard devia- 
tions to a point along the left vertical edge having a value equal to the 
other standard deviation. This method, which obviously depends upon a 
hypotenuse being equal to the root sum of the squares of the sides, has 
been found to save considerable time and to be far quicker for this purpose 
than the slide rule. 

Not merely the significance of a difference, but also the limits allowed for 
the intensity or degree of effect produced, are determined by the formula 
for the standard error of a difference. Intensities of effect are, however, 
expressed more intelligibly, and are more readily dealt with, by means of 
the quotients than by the differences of the values found in different 
series. The formula for the standard error of quotients of uncorrelated 
quantities in general has been mentioned in the section on coincidence. 
For the handling of these quotients the reader may be referred to the 
examples treated in the account of the effect of X rays upon crossing over 
in Drosophila autosomes (MULLER 1925). 

SUMMARY 

1. The formula is given (formulae 1 and la) for the standard deviation 
which would result from random sampling in the case of a chromosome 
map, or section of a map, the loci involved in which are followed simul- 
taneously. 

2. I t  is shown that the standard error of coincidence is not finally 
determinate, but that ordinarily its value is very narrowly limited. 
Formulae (2, 2a, 2b, 3, 3a) are presented, that give with various degrees 
of approximation the standard deviation of coincidence which would occur 
in random sampling. 

3. Cautions to be observed in the use of these and other formulae for the 
standard deviations caused by random sampling are pointed out. Methods 
are reviewed for determining the significance of results in case other 
sources of variation besides random sampling and the possible influence 
of the factors to be studied unavoidably enter into the experiment. 
4. The formula (4) is given for determining the maximum and mini- 

mum "possible" true values of a proportion of crossovers or of other 
genetic types which might, in random sampling, have been represented by 
a given observed value. This gives results somewhat different from those 
obtained by the formula in common use for this purpose. 
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