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THE PROBLEM 

CCORDING to the theory of the chiasmatype as originally formu- A lated by JANSSENS (1909), interchange between homologous chromo- 
somes takes place when each is already split longitudinally, but at  any 
level only two of the four strands exchange parts. It was pointed out by 
MULLER (1916) and BRIDGES (1916) that the theory could be demon- 
strated genetically if it  could be shown that in eggs which have retained 
two maternal strands, one strand may be a crossover and the other a 
non-crossover, or both crossovers but not a t  the same level. Such indi- 
viduals were obtained by MULLER and BRIDGES; and although in these 
cases there was, as MULLER pointed out, the possibility that the extra 
strands had arisen by non-disjunction prior to maturation, the correctness 
of JANSSENS’S theory has since been demonstrated by the regular occur- 
rence of such individuals in races with attached X’s or high non-disjunc- 
tion and in triploids (ANDERSON 1925b, BRIDGES AND ANDERSON 1925, 
L. V. MORGAN 1925, REDFIELD 1930, STURTEVANT 1931). 

If crossing over occurred at  a two-strand stage, each chromatid would 
be identical with one of the other chromatids of the tetrad and the com- 
plement of the remaining two; hence the enumeration of the strands and 
the determination of how they are combined in the tetrad would be a 
simple matter. In four-strand crossing over, the strands recovered are 
presumably still a random sample of all the strands; but there are two 
complications. (1) Each of the missing strands is not necessarily either 
identical with or the complement of the strand recovered. (2) There is 
the possibility that crossing over may have occurred between sister strands; 
and this would not be directly detectable. 

A complete theory of crossing over must take into account the missing 
strands in each tetrad and the unrecognizable crossings over. At first 
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sight this may seem like a search for the substance of things hoped for, 
the evidence of things not seen; nevertheless the nature of the strands 
and tetrads can be deduced by calculation from the experimental data. 

MATHEMATICAL METHOD 

Definitions 

Rank .  The number of levels a t  which crossing over occurs in a strand 
or tetrad will be termed its rank. Non-crossovers are of rank 0, singles of 
rank 1, and so forth. 
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FIGURE 1. Types of single crossing over. A, lateral, involving homologous strands; B, lateral, 

involving sister strands; C, diagonal, involving homologous strands. 

Types  of sircgle crossing over. A distinction must be made between homolo- 
gous and sister-strand crossing over; also between lateral and diagonal 
crossing over if the strands of a tetrad are arranged along the edges of a 
quadrilateral prism (figure 1). 

Types  of multiple crossing over. In tetrads of rank 2 ,  crossing over will 
be termed regressive, progressive, or digressive according to whether both 
or' one or neither of the strands that cross over at  the first level is involved 
in the crossing over at  the second level (figure 2 ) .  A tetrad of higher rank 
than 2 may be mixed in type. In figure 3 are shown the various types of 
tetrads of ranks 2 and 3, but no distinction is made between lateral and 
diagonal crossing over. 

A tetrad can give rise to strands of its own rank or of lower ranks but 
not to strands of higher rank. The rank of an emerging strand may however 
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be greater than the number of levels a t  which any one of the original 
strands that enter the tetrad crosses over (figure 3, tetrad G6). 

Association of chromatids. Completely random association of chromatids 
in crossing over implies (1) that a t  any given level any two chromatids 
of a tetrad are equally likely to cross over (this may be termed random 
local association, or random occurrence of crossing over) ; (2) that the two 
chromatids which cross over a t  one level do not determine which shall 
cross over a t  other levels (random recurrence of crossing over). 

A C 
FIGURE 2. Types of double crossing over. A, regressive; B, progressive; C, digressive. 

We shall first work out the theory of crossing over for completely ran- 
dom association ; and then generalize it for cases where either occurrence, 
or recurrence, or both are not random. 

Case 1. Recurrence random, chance of detecting crossing over constant. 
A. Random occurrence (free sister-strand crossing over) 

A tetrad of rank 0 can give rise only to non-crossover strands. In  a 
tetrad of rank 1, half the strands will be crossovers and half non-cross- 
overs, so that the chance of obtaining a strand of rank 1 will be 1/2, if 
elimination into polar bodies is a random matter. But not all the cross- 
over strands will be recognizable as such: those resulting from crossing 
over between sister strands will remain unaltered. Since on a random 
basis one-third of the exchanges at  a given level will be between sister 
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FIGURE 3. Types of double and triple crossing over. In the uppermost horizontal row (marked 
0) are shown the types of tetrads of rank 2; the figure beneath each tetrad indicates its relative 
frequency. Beneath each tetrad of rank 2 are shown (rows 1-6) the tetrads that result when cross- 
ing over occurs in a third region. The numeral under each tetrad of rank 3 indicates its relative 
frequency among tetrads of rank 3 in the same vertical column; its frequency among all tetrads 
of rank 3 is the product of this number by the frequency of the tetrad of rank 2 from which 
it is derived. Where no number is indicated, 1 is understood. All frequencies in this figure are 
based on the assumption of random occurrence and recurrence. 
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strands, only the other two-thirds will be recognizable. Hence the chance 
that a tetrad of rank 1 will give rise to a chromatid recognizable as a 
single crossover will be 1/2.2/3 = 1/3; that is, the observed frequency of 
crossing over in any region short enough to have only one crossing over 
a t  a time will be one-third of the true frequency. 

If recurrence is random, the chances of detecting crossing over a t  dif- 
ferent levels are independent. Hence the chance that a tetrad of rank 2 
will result in an individual recognizable as a double crossover will be 
1/3.1/3 = 1/9; the chance that a tetrad of rank 3 will result in an indi- 
vidual recognizable as a triple crossover will be (1/3)3 = 1/27 ; and in gen- 
eral the chance that a tetrad of rank r will result in an individual recogniza- 
ble as an r-ple crossover will be (1/3)r. 

The chance that a tetrad of rank 2 will result in an individual which is a 
recognizable crossover only in the first region is 1/3.2/3 = 2/9; and this 
is also the chance that the tetrad will give rise to an individual which is 
a recognizable crossover in the second region only. The chance that an 
individual will emerge which is a non-crossover or an apparent non-cross- 
over will be 2/3.2/3 = 4/9. 

Of strands derived from tetrads of rank 3, those that are recognizable 
as triple crossovers will be (1/3)3 = 1/27; those that are recognizable as 
crossovers in the first two regions only will be (1/3)2 2/3 = 2/27, and this 
will also be the frequency of strands that are recognizable crossovers in 
regions 1 and 3 only, or in 2 and 3 only. The frequency of recognizable 
crossovers in region 1 only will be 1/3 (2/3)2; and this will also be the fre- 
quency of recognizable crossovers in region 2 only, or in region 3 only. 
Finally, the frequency of non-crossovers and apparent non-crossovers to- 
gether will be (2/3)3 =8/27. 

In general, if a tetrad is of rank r, the chance that it will give rise to 
a chromatid which is a recognizable crossover in some specified k of the r 
regions will be (1/3)k (2/3)r-k. 

By this method we can deduce from a set of crossover data the fre- 
quencies of tetrads of different classes. In table 1, the experimental data 
in the first line are taken from a cross of BRIDGES (cited by WEINSTEIN 
1918). Since each individual must have been derived from a tetrad of a t  
least its own rank, the triples must be derived from tetrads of rank 3; for 
there were probably no tetrads of higher rank, because each of the three 
regions is too short to allow more than single crossing over within 
itself. 

The one triple in the experimental data must represent 27 tetrads of 
rank 3. These tetrads must have produced in addition to the 1 triple, 2 in- 
dividuals in each of the three rank-2 classes, 4 individuals in each class 
of rank 1, and 8 non-crossovers. If we subtract each of these from the total 
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in the corresponding class, the remainder represents those individuals in 
that class derived from tetrads of rank lower than 3 .  

We now turn to the 2, 3 class. The remainder in this class must be de- 
rived from tetrads that were crossovers in regions 2 and 3 only. From 
these tetrads emerged 41 individuals of class 2, 3 ;  82 that were cross- 
overs in region 3 only, 82 that were crossovers in region 2 only, and 164 
non-crossovers. In a similar way, we can calculate the individuals de- 
rived from the l, 3 and the l ,  2 tetrads; and if we subtract all the individu- 
als derived from tetrads of rank 2, the remainders represent the individu- 
als derived from tetrads of lower ranks. The individuals in each crossover 
class of rank 1 constitute only 1/3 of those derived from the tetrads of the 
same class; the other 2/3 must have been non-crossovers and must be 
subtracted from the observed non-crossovers. 

TABLE 1 
Frequencies of tetrads calculated fo r  random association including sister-strand crossing over. 

REGIONS OF CROSSINQ OVER 0 1 2 3 12 13 23 123 

Observed frequencies 9927 1949 1664 1651 88 207 43 1 
Frequencies and distribution of tetrads 

of rank 3 8 4 4 4 2  2 2 1 
Remainders 9919 1945 1660 1647 86 205 41 

Frequencies and distribution of tetrads 164 82 82 41 
of rank 2 820 410 410 205 

344 172 172 86 
Remainders 8591 1363 1406 1155 

Frequencies and distribution of tetrads 2310 1 1 3  
of rank 1 2812 1406 

2726 1363 
Remainder 743 

Corrected frequencies cf tetrads 743 4059 4218 3465 774 1845 369 27 

Thus we arrive at the italicized figures along the diagonal, which give 
the number of individuals of each class derived from tetrads of the same 
class. 

These frequencies however are not the frequencies of the tetrads of each 
class; for, as we have seen, in a tetrad of rank r, only (1/3)r of the emerging 
strands are of the same rank, r. Hence it is necessary to multiply the re- 
mainder in each single crossover class by 3, in each double crossover class 
by 9, in each triple crossover class by 27. The results, in the lowest hori- 
zontal line, give the true number of tetrads in each class on the assumption 
of random occurrence and recurrence with sister-strand crossing over. 
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B. No sister-strand crossing over 
If we assume that there is no crossing over between sister strands but 

that otherwise association of strands is random, crossing over may occur 
in one of four ways a t  any level (ab, ab’, a’b, a’b’, where a is thesister 
strand of a’ and b of b’). The chance that the strand recovered is a cross- 
over is 1/2, and this is also the chance of detecting the crossing over a t  
that level in the tetrad, since every crossing over is recognizable once it is 
obtained. 

Of the strands derived from a tetrad of rank r, those that are also of 
rank r will be (1/2)r, those that are crossovers in any (r- 1) specified re- 
gions will be (1/2)r-1. 1/2, and so forth. In general the chance that a tetrad 
of rank r will give rise to a strand which is a crossover in some specified k 
of the r regions will be (1/2)k (1/2)r-k=(1/2)r .  That is, all the classes 
derived from tetrads of a given kind occur with equal frequency; since 
the frequency is independent of k, the number of regions in which the 
strands are crossovers. 

This procedure is illustrated in table 2.  

TABLE 2 
Frequencies of tetrads calculated jor  random associatioit w.thout sister-strand crossing over. 

REQIONB OF CR088INQ OVER 0 1 2 3 12 13 23 123 

Observed frequencies 9927 1949 1664 1651 88 207 43 1 
Frequencies and distribution of tetrads of 

rank 3 1 1 1 1 1 1 1 1  
Remainders 9926 1948 1663 1650 87 206 42 

Frequencies and distribution of tetrads 42 42 42 42 
- _ _ _ _ ~  -__- 

of rank 2 206 206 206 206 
87 87 87 87 

Remainders 9591 1655 1534 1402 

Frequencies and distribution of tetrads 1402 1402 
~- - 

of rank 1 1534 1534 
1655 1655 

Remainder 5000 

Corrected frequencies of tetrads SO00 3310 3068 2804 348 824 165 8 

The remainder in each class will now have to be multiplied by 2‘, 
where r is the rank of the class, to give the number of tetrads of that 
class. 

C. The general case 
It is conceivable that sister chromatids cross over with a frequency 

which differs from what it would be on a random basis but is not 0. The 
chance of detecting a crossing over in a region would then be neither 1/3 
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nor 1/2; let it be designated by p. Then if p has the same value in every 
region of the chromosome, the frequencies of tetrads can still be calculated 
by the method explained above. 

A formula for this procedure can be derived as follows. 
Let the chromosome be divided into regions so short that no crossing 

over of rank higher than 1 occurs within each. Let ao, al, a2, . . . a, be the 
observed frequencies of individuals that are crossovers in 0, 1, 2, . . . n 
regions. It should be noted that each subscript represents the cardinal 
number of crossings over, not the ordinal number of the region in which 
crossing over takes place. Let xo, xl, x2, . . . x, represent the number of 
tetrads that are crossovers in 0, 1, 2, . . . n regions. 

The chance that a tetrad of rank r will give rise to a strand which is a 
crossover in some specified k of these r regions is pk (1 -P)'-~, or pk qr-k 
where q = 1 -p. The number of ways in which these k regions can be speci- 
fied is [r(r-l)(r-2) . . . ( r -k+l)] / ( l .2 .3 .  . . . k). Hence the total 
chance of obtaining a crossover strand of rank k from a tetrad of rank r 
is the product of these two expressions. 

We can now form the following equations. 

ao=xo+qxl+ q2x2+ q3x3+ q4x4+ q5x5+ ' . + qnxn 
a1= px1+2pqx~+3pq~x~+ 4pq3x4+ 5pq4x5+ . . . + npqn-'xn 

a2 = p2x2+3p2qx3+6p2q2x4+ 10p2q3x6+ . . . + C2np2qn-axn 

a3 = p3x3+ 4p3qx4+1op3q2x5+ ' ' . + C3np3qn--Rxn 
a4 = p4x4+ 5p4qx5+ . ' ' + C4np4qn-4xn 

p5xs + . ' ' + C5np5qn--Sxn' a5 = 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

a, = pnxn 

In these (n+l) equations there are (n+l )  unknowns, the x's; for the 
a's are observed frequencies and p is determined by the assumptions as to 
the chance of detecting a crossing over within a region. Hence if the equa- 
tions are solved simultaneously, the x's can be evaluated. 

But the value of xo can be obtained without solving for the other x's. 
For if the equations are multiplied respectively by 1, -q/p, q2/p2, 
-qyp3, . . . (-q/p)", and then added together, the coefficients of every 
x except xo will add up to 0. Hence 

xo=ao--a1+ q (:)' - a2- (:)'a3+ . . . + ( -- :Y a,,. (1) 
P 

In this procedure a. has been used to represent the frequency of the 
non-crossovers. But it may be used for the frequency of any class; for ex- 
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ample, the crossovers in region 1, or the crossovers in regions 1 and 3, 
provided that the classes which are not crossovers in these regions are ex- 
cluded. Then in the data so selected, al, a2, a3, . . . an represent the fre- 
quencies of the classes that are crossovers in the same region or regions as 
the a. class and in 1 ,2 ,3 ,  . . . n additional regions; and xo, xl, xz, x3, . . . xn 
are the frequencies of the tetrads which are crossovers in the same regions 
as the a. class and in 0, 1, 2, 3, . . . n additional regions. 

The solution for xo will now give the number of tetrads of any specified 
class that gave rise to strands of the same class. But (unless this class is 
the non-crossovers) xo is not the total number of tetrads of the class; for 
there must have been others that gave rise to strands of lower rank and 
these have been excluded from the calculations. Since the proportion of 
tetrads of rank r that give rise to strands of the same rank is p', it is neces- 
sary to multiply xo by l/pr to get the number of all the tetrads of the class 
in question. This frequency is therefore 

= '[a - ( y)  al + ( y y a z  
P' 

-(T) 1-p a3+ . . . +(-?>'an]. 

where a. is the observed frequency of the class in question, 
a3, . . . a, the observed frequencies of classes of additional 
3, . . . n (WEINSTEIN 1928, 1932a). 

(2) 

and a1, a2, 
rank 1, 2, 

For random occurrence and recurrence with sister strand crossing over, 
p = 1/3 and the formula becomes 

X =  3'xO = 3' [ao- 2a1+4az- 8a3+ . . . +( - 2)nan]. ( 2 4  

If sister-strand crossing over is entirely excluded but occurrence and 

(2b) 

recurrence are otherwise random p = 1/2  and the formula becomes 

x = 2'x0 = 2' [ao - al+az- a3+ . . . + (- 1)nan]. 

Case 2. Recurrence random, chance of detecting crossing over variable. 
In case 1, it was assumed that p, the chance of detecting crossing over, 

is the same for all regions. It is theoretically possible however that the 
chance is not invariant, for sister chromatids might cross over in some re- 
gions and not in others, or more frequently in some regions than in others. 
Such differences might be caused by local conditions like proximity to the 
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end of the chromosome or to the spindle fibre or to inert regions or perhaps 
to particular genes. 

I n  such cases we may designate the chance of detecting crossing over 
in regions 1, 2, 3 ,  . . . n as pl, pz, p3, . . . pn. Let q l =  1 -pl, 9 2  = 1 -pz, 

If recurrence is random, the chance that a tetrad of rank r will give rise 
to a strand which is a crossover in some specified k of the r regions is the 
product of the p’s for the k regions and the q’s for the remaining regions. 
Thus the chance that a tetrad which is a crossover in regions 1, 2, and 3 
will give rise to a strand which is a crossover only in regions 1 and 3 is 
PI P3 92. 

qs=l-p3, . . . qn=l -p , , .  

The frequencies of tetrads can now be calculated as in table 3 .  

TABLE 3 

Frequencies of tetrads calculated for  random association except that sister strands cross over only 
in region 1. 

REGIONS OF CROSSING OVER 0 1 2 3 12 13 23 123 
___ _____________I________ 

Observed frequencies 9927 1949 1664 1651 88 207 43 1 
Frequencies and distribution of tetrads of 

rank 3 2 1 2 2 1 1 2 1  
Remainders 9925 1948 1662 1649 87 206 41 

Frequencies and distribution of tetrads 41 41 41 41 
of rank 2 412 206 412 206 

174 87 174 87 
Remainders 9298 1655 1447 1196 

Frequencies and distribution of tetrads 1196 1196 
of rank 1 1447 1447 

3310 1655 
Remainder 3345 

Corrected frequencies of tetrads 3345 4965 2894 2392 522 1236 164 12 

A formula for this procedure can also be deduced. 
Let the observed frequency of the non-crossovers be represented by bo; 

of the singles by bl, bz, bS, . . . b,; of the doubles by b12, b13, . . . b23, 
b24, . . . b34, . . . b(n-l),,; and similarly for the remaining classes. Each sub- 
script now represents not, as before, the cardinal number of crossings over, 
but the ordinal numbers of the regions in which crossing over occurs. The 
frequencies of tetrads of various classes can be denoted by y with corre- 
sponding subscripts; thus yo is the frequency of non-crossover tetrads, yl of 
tetrads that are crossovers in region 1 only, and so forth. 

We can now form a set of equations analogous to those in case 1. For 
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the sake of simplicity the equations will be given for only three regions; 
but the method is applicable to any number of regions. 

bo = yo+qiyi+qzyz+q3~3+qiq2yi2+qiq3~ia+q2q3~23+qiq2q3yi23 

bi = piyi + p1qzy12 + p1q3y13 +p1qzq3y123 
bz = PZYZ + p2q1y12 +p2q3y23+p2qiq3y123 
b3 = P3Y3 +p3qly13+p3q2y23+p3qlq2y123 

biz = PlP2Y12 +pip2q3y123 
b13 = PlP3Y13 +p1p3q2y123 
b23 = p2p3y23+ p2p3q1y123 
b123 = pip2p3y123 

These equations can now be solved for the y’s. But again it is possible to 
obtain the value of yo without solving for the other y’s; for if the equations 
are multiplied respectively by 

91 q2 q3 qlqz q1q3 q2q3 qlq2q3 
PI P2 P3 PIP2 PIP3 PZP3 PlP2P3 

7 -  1 -, - 1 - -1  1, - - , - - , - - 

and then added together, the coefficients of the y’s in every column, ex- 
cept yo will add up to 0. Hence 

qmq3 
PlP2P3 

b123. -- 

If the bo class is of rank 0, then yo is the number of non-crossover tetrads. 
But as in case 1, the method can be applied to part of the data: then bo 
is the frequency of a crossover class and yo is the number of tetrads of this 
class that gave rise to chromatids of the same class. Hence yo must be 
divided by the product of the p’s for the regions in which the class is a 
crossover. These regions are not any of those numbered from 1 to 3, for 
the bo or yo class is not a crossover in 1 or 2 or 3. Hence the regions in which 
the class is a crossover can be numbered separately from 1 to r, where r 
is the rank of the class. The chance of detecting crossing over in each of 
these r regions may be denoted by p’ with the proper subscript; and the 
total number of tetrads of the class now becomes 

If the equations had included n regions, the general formula for the 
number of tetrads of any class would be 
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1 q1 92 

X =  p1lp2lp3' . . . pr l[b~-(- Pl bl+-b2+ P2 . . . +%bn) Pn 

Case 3. Recurrence not random, chance of detecting crossing over constant. 
The frequencies of regressive, progressive, and digressive crossing over 

are not necessarily determined by chance alone : it is conceivable that they 
may vary with the nature of the crossings over (whether homologous or 
sister strand, lateral or diagonal), with their distance apart, and with the 
particular regions involved. They might also depend on other crossings 
over: their number, their distance away, the regions in which they occur, 
and their nature (including now not only whether they are homologous or 
sister-strand, and lateral or diagonal, but also whether they are regressive, 
progressive, or digressive with respect to the crossings over under con- 
sideration). 

In making a table like tables 1 and 2, we may therefore subdivide each 
class of tetrad into its different types (such as are shown in figure 3) and 
distribute separately the chromatids emerging from each type. 

If when we are considering tetrads of a given class we add together all 
the emerging strands that are crossovers in some specified k of the r re- 
gions, the proportion of such strands is no longer p' qr-k. The ratio of the 
actual proportion to the proportion expected on random recurrence may 
be designated by t ;  its value will in the most general case vary with the 
regions of crossing over in the tetrad and in the emerging chromatid; 
these regions may therefore be indicated by numerical subscripts, positive 
if the crossing over of the tetrad appears in the chromatid, negative if it 
does not. For example, the chance that a tetrad which is a crossover in 
regions 1, 2, and 3 will give rise to a chromatid which is a crossover in 
regions 1 and 3 only may be written as tl-2+3 p2 q. 

In  a table like table 1 the proper value of t will enter into the frequency 
of each class if recurrence is not random; for example, the distribution of 
tetrads of rank 3 will be as follows: 
Regions of crossing over 0 1 2 3 12 13 23 123 

Frequencies and distri- 
bution of tetrads of 

The xo values (the figures on the diagonal) for classes of rank 2 or more 
must be divided not merely by p' but by the product of p' and the ap- 

rank 3 8t--1-2-3 4t1--2-3 4t--1+2-3 4t-1-2+3 2tif2-3 2tl-2+3 2t-1+2+3 t1+2+3 
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propriate t:  the remainder in the 123 column must be divided by t1+2+3p3, 

that in the 23 column by tZt3p2, and so on. 
The t's will also enter into the equations corresponding to those on page 

163; this will be considered in connection with the next case. The general 
formula derived from the equations will now be more complicated; but if 
ranks above 2 are absent, the frequency of tetrads of rank 0 is 

q tlN+ t-,+z - t-1-2 qz 

P t1+z P2 
yo = ao-- al+ - a2. (6) 

Case 4. Recurrence not random, chance of detecting crossing over variable. 

The same considerations apply to this case as to case 3 and the t fac- 
tors enter into it in the same way. Thus the chance that a tetrad of rank 3 
will give rise to a strand which is a recognizable crossover in regions 1 and 3 
only will be tl-2+3plp3q2. 

With non-random recurrence, the distribution of tetrads of rank 3 in 
table 3 would be as follows: 
Regions of crossing over 0 1 2 3 12 13 23 123 

Frequencies and distri- 
bution of tetrads of 
rank 3 2t-1-2-$ ti--2-3 2t-1+2-3 2t-1-2~3 t1+2-3 tl-2+3 2t-1+2+3 t1+2+S 

and each xo value must be divided by the product of pl'pz' . . . pr' and the 
appropriate t.  

The equations on page 166 will now become as follows. 
bo =yo+q1y~+q~~2+q3~3+t-1-zq~q~y1~+t1--3qiq3y13+t-l-3q~q3~23+t-1--l--~qlqzq~~1~~ 
bl = PIYI +tl-2plqZY12 +t1-3p1q3y13 + tl-L3plq2q3Y125 
bz = p2y2 +t-l+2PZqlY12 + tl-3P2qSY23 + t-l+2-3P2qlq3Y12S 
b3 P3Y3 + t--1+3p3(11y13+ ts+sp3qzy23+ t-l-2+3PSqlq2Y12S 
biz = t1+2p1pzylZ + t1+2-3PlP2q3Y123 
bl3 = tl+3PlP3Y13 + tl-2+3plP3q2Y12J 
b23 = 

b123= tl+Zt3plp2p3y123 
t2+3p2p3y23 + t-l+Z+SP2PBqlY 123 

The formula for yo is now still more complicated; but if crossovers of 
ranks above 2 are absent or neglected, 

L Z +  t 4 + z -  t--1-2 9 1 4 2  tl-3 + t--1+3 - t-1-3 q l q 3  + biz + b 1 3  (7) 
t1+2 PlPZ t1+3 P I P 3  

t (n-l)-n + t- (n-l)+n - t- (n-l)-n q (n-1) q n  + . . .  + b (n-1 )n.  
t ( n - l ) + n  P ( n - l ) P n  

In this formula, as in the equations from which it is derived, yo and bo 
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represent respectively the number of tetrads and of chromatids of rank 0. 
If bo is used for a class of higher rank, the equations must be modified by 
omitting every term in which the y is not a crossover in at least the same 
regions as the bo class. The y’s can then be renumbered so that the class 
of lowest rank is yo, and a general formula can be derived as in cases 1 
and 2. This, however, is complicated; and the frequencies of tetrads of 
classes ranking above 0 can be obtained by solving for the y’s in the equa- 
tions as they stand. 

The frequency of chromatids 

The observed frequency of any class includes of course only the chro- 
matids that are homologous-strand crossovers in the specified regions. The 
true frequency of chromatids of the class would include sister-strand cross- 
overs as well. 

The relations between tetrad frequencies and true frequencies of chro- 
matids are given by the sets of equations on pages 163, 166, and 168, and 
by equations 1-7 if the x’s and y’s retain their original meanings, but in 
the definitions of the a’s, b’s, p’s, and t’s the true frequencies of chromatids 
are substituted for the observed frequencies. The value of p will now vary 
from 1/2 when a t  any level of crossing over only two strands are involved 
to 1 when four strands are always involved in pairs. 

The sets of equations on pages 163, 166, and 168, and equations 1-7 also 
express the relations between the observed and the true frequencies of 
chromatids if the a’s and b’s denote observed frequencies, the x’s and y’s 
the true frequencies of chromatids (not of tetrads), if each p denotes what 
proportion of exchanges are between homologous strands, and if the t’s 
are modified accordingly (WEINSTEIN 1928, 1932a). 

Each p as originally defined is of course the product of the p’s of the 
two preceding paragraphs. 

ORDINARY DIPLOIDS 

The results of applying the multiple-strand method to ordinary diploids 
are illustrated in tables 4 and 8. 

Table 4 is based on a cross involving almost the entire length of the 
X chromosome of Drosophila melanogaster (SC ec cv ct v g f ) .  The experi- 
mental data (column A) comprise 28239 individuals, including 24031 from 
BRIDGES and OLBRYCHT (1926), 2047 from ANDERSON (1925a, table IV),and 
2158 from an experiment (hitherto unpublished) by the writer. In  the other 
columns are given tetrad frequencies calculated on the assumption of ran- 
dom recurrence for various values of p. The column headed p=1 /2  is 
based on the assumption that sister chromatids do not cross over (formula 
2b); that headed p = 1/3 on the assumption that they cross over as freely 
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TABLE 4 

Crossing over involving sc ec cv ct v g f (28239 individicals). 

TETRAD FREQUENCIES CALCULATED FOR RANDOM RECURRENCE 
~- REQlONB OBSERVED 

OF CEROMATID p=1/3 INREQION8INDICATED, 112 IN OTEER REQlONS 
p = 1 / 3  CBOBBINQ FREQUENCIES* 

OYER p=2,3 ~ = 2 / 3  p = l l 2  
1 12 123 1234 12345 

A B t  C D E P Q A 1 

0 12776 6716 1709 837 -459 -2007 -4392 -5305 -5316 
1 1407 1696 1744 2616 2601 2577 2220 1707 1203 
2 2018 2483 2602 2592 3888 3864 3492 2724 1836 
3 1976 2649 3130 3112 3096 4644 4527 4116 3546 
4 3378 4515 5328 5094 4848 4770 7155 6861 6102 
5 2356 2951 3180 2812 2296 2022 1826 2739 2610 
6 2067 2284 1998 1626 1016 616 108 22 33 

12 9 15 20 30 45 36 45 45 45 
13 16 27 36 54 48 72 90 63 54 
14 142 291 468 702 702 714 1071 981 846 
15 198 430 736 1104 1104 1086 1026 1539 1530 
16 206 440 744 1116 1110 1104 1014 1008 1512 
23 11 21 36 32 48 72 81 81 99 
24 136 291 492 492 738 744 1116 1098 1008 
25 261 584 1032 1032 1548 1548 1536 2304 2295 
26 318 701 1224 1220 1830 1842 1782 1776 2664 
34 42 88 148 152 156 234 351 351 306 
35 148 324 560 548 548 822 822 1233 1188 
36 212 463 800 792 800 1200 1170 1140 1710 
45 123 262 440 400 392 392 588 882 873 
46 315 674 1136 1076 1036 1016 1524 1518 2277 
56 59 124 204 200 196 176 172 258 387 

123 3 7 8 12 18 27 -27 
124 1 2 -18 -27 -27 -27 
126 2 5 8 12 18 

135 3 10 24 36 36 54 54 81 81 
136 3 8 16 24 12 18 18 18 27 
145 10 34 80 120 120 120 180 270 270 
146 15 51 120 180 180 180 270 270 405 

12 12 12 12 18 27 156 1 3 8 
234 1 2 -8 -12 -18 -27 -27 -27  
236 -2 -8 -16 -24 -36 -36 -36 -54 
245 2 7 16 16 24 24 36 54 54 
246 10 34 80 80 120 120 180 180 270 
256 1 3 8 8 12 12 12 18 27 
346 5 17 40 40 40 60 90 90 135 
356 5 17 40 40 40 60 60 90 135 
456 1 3 8 8 8 8 12 18 27 

1234 1 5 16 24 36 54 81 81 81 
1236 1 5 16 24 36 54 54 54 81 

t In  the p =  2/3 column, the only one in which fractional values occur, they are given to the 
nearest unit. The values in the p=2/3 column also represent the true frequencies of chromatids 
when p =  1/3. 

134 -2 -8 -12 -24 -36 -54 -54 -54 

* From BRIDGES and OLBRYCHT 1926, ANDERSON 1925a, and WEINSTEIN. 
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as other chromatids (formula 2a). In the latter column the frequency of 
the non-crossover class is negative; and since this is impossible, it follows 
that there cannot be random association of chromatids with free crossing 
over between sister strands. 

The results are of course subject to errors of sampling as well as errors 
due to differential viability and other causes. These errors may become 
exaggerated in the course of the calculations because the observed fre- 
quencies of the crossovers of higher rank are small and are multiplied by 
relatively large factors, so that slight differences may be magnified. For 
this reason the negative frequencies among the crossovers (they are all 
among the triples) are obviously not significant, for they would become 0 
or positive with small changes in the observed numbers of triples or quad- 
ruples, or in some cases if the quadruples were derived from tetrads of 
rank 5 .  

The errors of sampling may be calculated by the formula for the stand- 
ard error of a function of several variables, which may be written 

where F is a function of the v's, E its standard error, and the e's are the 
standard errors of the respective v's. This formula holds for all cases where 
the distribution of errors is Gaussian (SCARBOROUGH 1930, pp. 337-338). 
For F we may substitute the tetrad frequency X; and for the v's we may 
substitute the a's of formula 2 or 2a or 2b, or the b's of formula 5 .  

The frequency of the non-crossovers in the p = 1/3 column is approxi- 
mately 20 times its standard error, which is 268. The result cannot there- 
fore be due to errors of sampling. Nor can it be due to differential viability, 
for viability was good in the experiments on which the calculations are 
based. 

We may conclude that sister strands do not cross over as freely as homolo- 
gous strands if the association of chromatids in crossing over is otherwise 
random. It does not follow however that they do not cross over a t  all: 
they might cross over only in some regions, or throughout the chromosome 
but to a smaller extent than homologous strands. 

To test the first of these alternatives, tetrad frequencies were calculated 
by means of formula 5 for p = 1/3 (free sister-strand crossing over) in some 
regions and p = 1/2 (no sister-strand crossing over) in others. The results 
are given in columns D-H of table 4. As sister-strand crossing over is re- 
stricted to a shorter'and shorter region a t  the left of the X chromosome, 
the negative frequencies approach 0 and finally become positive. The nega- 
tive frequencies are from about 10 to about 20 times their standard errors, 
except -459, which is about 2.5 times its standard error. Thus it is shown 
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that free crossing over between sister chromatids, if it occurs a t  all, must 
be limited to a short region. This is not necessarily a t  the left end of the X, 
for the results are similar if we postulate sister-strand crossing over in 
other regions. 

There remains the possibility that recurrence is not random. This can 
be tested by seeing whether the relative frequencies of tetrads can be 
altered without changing the frequencies of strands as given by experi- 
ment. 

TABLE 5 
Frequencies of tetrads of ranks 0, I ,  and 2 and of strands derivedfrom them, on the assumption of ran- 

dom association without sister-strand crossing over ( p =  1/2).  

RANK AND TYPF FREQUENCY FREQUENCIES OF STRANDS 

OF TETRAD OF TETRAD NONCROSSOVERS SINQLES DOUBLES 

0 1709 1709 
1 17982 1/2=8991 1/2 = 8991 
2 

1/4= regressives 2019 1/2 = 1009.5 1/2= lOO9.5 
1/2 =progressives 4038 1/4= 1009.5 1/2- 2019 1/4= 1009.5 
1/4=digressives 2019 2019 

Table 5 gives the frequencies of tetrads of ranks 0, 1, and 2 and of 
strands derived from them on the assumption of random association with- 
out sister-strand crossing over. The following equations indicate what com- 
binations of tetrads are equivalent with respect to the strands derived from 
them: 

1 non-crossover + 1 digressive = 2 singles. (8) 
(9) 

1 non-crossover +2 progressives = 1 regressive + 2  singles. (10) 

Still other substitutions are possible if ranks above 2 are included; for ex- 
ample, 

1 single +1 regressive = 1 non-crossover +1 digressive 

By a rank-3 digressive is meant a tetrad like D1 in figure 3;  by a rank-3 
regressive-digressive is meant one like D2 or B2. 

In making these substitutions, it is necessary to consider the regions of 
crossing over, so that the proper classes and frequencies of strands may 
result; also in order to avoid digressives with two crossings over in the 
same region, unless it is desired to test the possibility of such digressives. 
The substitutions are also limited by the frequencies of tetrads to be re- 
placed; hence it follows that deviations from random recurrence will, if 
too great, lead to negative frequencies of tetrads. Nevertheless considera- 
ble deviations are possible without changes in the frequencies of strands; 

1 regressive + 1 digressive = 2 progressives. 

(or regressive-digressive) of rank 3. (1 1) 
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but coincidence of tetrads will be altered, as will also the frequencies of 
progeny of attached X’s. These results will be considered below. 

Equations 8 and 11 hold when sister strands cross over freely; the other 
equations now assume the following forms: 

1 regressive +3 digressives = 4 progressives. (12) 
3 non-crossovers +4 progressives = 1 regressive +6 singles (13) 

If sister strands cross over freely, then as can be seen from table 6, 
random recurrence results in an excess of tetrads of ranks higher than 0 
and of non-crossover strands derived from them, so that a negative fre- 
quency of tetrads of rank 0 must be postulated to bring the total number 
of tetrads and of non-crossover strands down to the observed figure. The 
negative frequency will disappear if non-random recurrence can reduce by 
5316 the number of those tetrads of ranks higher than 0 that give rise to 
non-crossover strands. The simplest way to do this is to replace 10632 
tetrads of rank 1 by their equivalent 5316 non-crossover tetrads and 5316 
digressives, in accordance with equation 8. 

TABLE 6 
Frequencies of tetrads of ranks 0, 1, and 2 and of strands derived from them on the assumption of ran- 

dom essociation including sister-strand crossing over ( p  = 1/31, 

RANK A N D  TYPE FREQUENCY FREQUENCIES OF STRANDS 

OF TETRAD OP TETRAD NON-CROSSOVERS SINQLES DOUBLE3 

0 -5316 -5316 
1 15330 2/3=10220 1/3=5110 
2 

1/6 = regressive 2799 2/3= 1866 1/3 =933 
2/3 =progressive 11 196 5/12= 4665 1/2=5598 1/12=933 
1/6 = digressive 2799 1/3= 933 2/3=1866 

TABLE 7 
Frequencies of tetrads of ranks 0,1, and 2 and of strands derived from them on the assumption of non- 

random association with sister strand crossing over ( p = l / 3 ) .  (For explanation see text.) 

RANK AND TYPE FREQUENCY FREQUENCIES OF STRANDS 

OW TETRAD OP TETRAD NON-CR0880VER8 SINQLES DOUBLES 

0 0 0 
1 4698 3132 1566 
2 

regressive 2799 1866 933 
progressive 11196 4665 5598 933 
digressive 8115 2705 5410 

The tetrad and strand frequencies as revised by this method are given 
in Table 7. They may be modified by other substitutions. 
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TABLE 8 

Crossing over involving sc ec cv et v s j  car bb (16136 indididlmls). 

TETRAD FREQUENCIES CALCULATED FOR RANDOM RECURRENCE 
_____ OBSERVED 

CBROMATIN 

FRE- 
p = 1/3 in regions indicated, 112 in other regions 

REGIONS 

OP 

p=1/3 -- CROBSINQ OmNCIEs* ~ = 2 . ' 3  ~ = 1 / 2  - 
OVER 1 12 123 1234 12345 123456 1234567 

A B t  C n E F Q E 1 I K 

0 

1 
2 
3 
4 
5 
6 
7 
8 

12 
13 
14 
15 
16 
17 
18 

23 
24 
25 
26 
27 
28 

34 
35 
36 
37 
38 

45 
46 
47 
48 

56 
57 
58 

67 
68 
78 

~ 

6607 

506 
1049 
855 

1499 
93 7 

1647 
683 
379 

3 
6 

41 
55 

118 
54 
34 

3 
38 
85 

237 
123 
70 

22 
55 

177 
88 
38 

41 
198 
159 
91 

35 
49 
40 

21 
30 

2 

3300 

530 
1167 
996 

1817 
1143 
1867 
66 1 
350 

4 
11 
87 

118 
2 62 
117 
73 

4 
69 

182 
517 
262 
144 

46 
116 
394 
192 
80 

90 
435 
346 
189 

73 
101 
82 

44 
56 

1 

904 697 

414 621 
1046 1044 
960 952 

1876 1804 
1196 1096 
1710 1480 
420 320 
202 140 

4 6  
16 24 

144 216 
200 300 
460 690 
200 300 
124 186 

4 0  
92 92 

308 308 
892 888 
440 440 
232 232 

76 76 
192 188 
692 692 
332 332 
132 132 

156 152 
756 752 
596 588 
308 304 

120 120 
164 156 
132 128 

72 72 
80 76 

-4 -4 

175 

618 
1566 
952 

1758 
942 

1036 
100 
24 

9 
18 

216 
300 
684 
300 
186 

0 
138 
462 

1332 
660 
348 

76 
188 
688 
332 
132 

152 
736 
568 
280 

108 
140 
124 

64 
64 

- 12 

- 301 

609 
1566 
1428 
1720 
848 
692 
- 66 
- 42 

0 
27 

216 
294 
684 
300 
186 

0 
138 
462 

1326 
660 
348 

114 
282 

1032 
498 
198 

152 
736 
560 
276 

104 
132 
112 

60 
60 

- 12 

- 1161 

50 1 
1497 
1371 
2580 

772 
324 

- 346 
- 180 

0 
27 

324 
288 
678 
288 
180 

0 
207 
462 

1302 
630 
312 

171 
282 

1032 
486 
192 

228 
1104 
840 
414 

104 
132 
108 

60 
44 

- 16 

- 1547 

357 
1266 
1230 
2466 
1158 
272 

-412 
- 234 

0 
18 

315 
432 
678 
276 
174 

0 
207 
693 

1284 
606 
306 

171 
423 

1026 
474 
174 

342 
1104 
840 
408 

156 
198 
162 

60 
40 

- 16 

- 1683 

18 
624 
717 

1914 
1080 
408 

- 442 
- 254 

-9 
18 

306 
432 

1017 
276 
168 

-9 
171 
666 

1926 
594 
288 

171 
414 

1539 
468 
168 

342 
1656 
840 
384 

234 
198 
156 

90 
60 

- 16 

- 1462 

- 120 
327 
483 

1494 
98 1 
363 

- 663 
- 246 

-9 
18 

288 
414 

1017 
414 
168 

-9 
126 
630 

1908 
89 1 
276 

153 
396 

1530 
702 
168 

342 
1656 
1260 
378 

234 
297 
156 

135 
60 

- 24 

- 1339 

- 204 
189 
399 

1305 
903 
333 

-651 
- 369 

-9 
18 

279 
405 

1008 
414 
252 

-9 
72 

62 1 
1881 
873 
414 

144 
369 

1521 
702 
252 

333 
1620 
1251 
567 

225 
297 
234 

135 
90 

- 36 

* From BRIDGES. t See footnote to table 4. 
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TABLE 8 (Continued) 

Crossing over involving sc ec cv ct t~ sf car hh (16136 indklidt6dS). 

A B C D E F Q H 1 1 K 
~ 

123 
126 
135 
145 
146 
147 
148 
157 
158 
168 

236 
246 
247 
248 
256 
257 
258 
267 
268 
278 

~ 

1 3 8 12 18 27 27 27 27 27 27 
1 3 8 12 18 18 18 18 27 27 27 
1 3 8 12 12 18 18 27 27 27 27 
1 3 8 12 12 12 18 27 27 27 27 
1 3 8 12 12 12 18 18 27 27 27 
2 7 16 24 24 24 36 36 36 54 54 
1 3 8 12 12 12 18 18 18 18 27 
2 7 16 24 24 24 24 36 36 54 54 
1 3 8 12 12 12 12 18 18 18 27 
1 3 8 12 12 12 12 12 18 18 27 

1 3 8 8 12 18 18 18 27 27 27 
4 13 32 32 48 48 72 72 108 108 108 
5 17 40 40 60 60 90 90 90 135 135 
6 20 48 48 72 72 108 108 108 108 162 
3 10 24 24 36 36 36 54 81 81 81 
4 13 32 32 48 48 48 72 72 108 108 
1 3 8 8 12 12 12 18 18 18 27 
2 7 16 16 24 24 24 24 36 54 54 
3 10 24 24 36 36 36 36 54 54 81 
2 7 16 16 24 24 24 24 24 36 54 

347 2 7 16 16 16 24 36 36 36 54 54 
348 1 3 8 8 8 12 18 18 18 18 27 
356 1 3 8 8 8 12 12 18 27 27 27 
357 2 7 16 16 16 24 24 36 36 54 54 
358 3 10 24 24 24 36 36 54 54 54 81 
367 1 3 8 8 8 12 12 12 18 27 27 
368 1 3 8 8 8 12 12 12 18 18 27 

458 1 3 8 8 8 8 12 18 18 18 27 
468 4 13 32 32 32 32 48 48 72 72 108 
478 1 3 8 8 8 8 12 12 12 18 27 

568 1 3 8 8 8 8 8 12 18 18 27 

In the above analysis it has been assumed that while the relative fre- 
quencies of tetrads may differ, within each type of tetrad the frequencies 
of strands that are recognizable as crossovers in any specified regions are 
the same as when recurrence is random. This is necessarily true when sister 
strands do not cross over, but otherwise need not be true for all tetrads. 
Hence substitutions differing from those given above might be possible. 

The results of non-random recurrence can also be tested by means of 
the formulas for cases 3 and 4. For the frequency of tetrads of rank 0, 
formula 6 will be sufficient, at any rate for purposes of illustration. 
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An increase of regressives, or of progressives at  the expense of digres- 
sives, will decrease tl-2 and t-l+z and will increase tl+2 and t-l-2. This will 
lessen the value of the term in a2 and consequently of yo; hence there will 
be even more negative tetrads if sister strands cross over. An increase of 
digressives, or of progressives a t  the expense of regressives, will increase 
tl-z and t-l+2 and will decrease tl+2 and t-l-z. This will increase the value 
of the term in az and if the increase is sufficient the negative frequency of 
non-crossover tetrads will disappear. 

Other classes can be evaluated in the same way; and the method is 
essentially equivalent to the analysis already given. For some purposes 
it may be preferable, since it can be used more systematically; for ex- 
ample, the t’s may be made to vary according to some rule, such as that 
t1+2+3 = t1+2t2+3, and the correctness of the rule can thus be tested. 

The analysis of the Xple data is supported by the results of applying 
the multiple-strand theory to a cross involving the genes sc ec cv ct v s f car 
bb, which cover practically the entire crossover map of the X chromosome 
(table 8). The observed frequencies (column A) are from an experiment 
made by DR. C. B. BRIDGES, who kindly placed them a t  my disposal be- 
fore they were published (MORGAN, BRIDGES, and SCHULTZ 1935). 

Negative values appear in the non-crossover tetrads as well as some of 
those of rank 1 when sister strands are allowed to cross over beyond the 
first two regions. 

Here the negative values cannot be eliminated so simply as in the X-ple 
cross. 

The analysis is further supported by the application of the theory to 
other data, both sex-linked and autosomal, in Drosophila melanogaster and 
to sex-linked data in D. virilis. These results will be published elsewhere. 

The maximum amount of recombination between two linked genes 

In most organisms the amount of recombination between two linked 
genes approaches 50 percent as an upper limit as the intermediate distance 
lengthens. This relation is a corollary of equation 2b, which can be writ- 
ten 

(ao+az+a4+ . . . ) - (al+a3+a5+ . . . ) = ?‘X. 

If the assumptions on which the equation is based are correct, then 
2rX cannot be negative. Hence (ao+az+aa+ . . . ) 2 (al+aa+a5+ . . . ) ;  
that is, the apparent non-crossovers (classes of 0 and even rank) will equal 
or exceed the apparent crossovers (classes of odd rank). 

This relation can be deduced directly from the set of equations on page 
163; as in fact it has been deduced by EMERSON and RHOADES (1933) from 
the table of BELLING (1931) which corresponds to a special case of these 
equations. In each vertical column of the equations the coefficients of the 
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x's are the successive terms of the expansion (p+q)', where q = 1 -p. If 
p = 1/2,  the sum of the alternate terms is 1/2; and in any column (except 
the xo column) the strands with no crossings over or with an even number 
will constitute half the total. These strands together with those in the xo 
column make up the apparent non-crossovers; hence the observed recom- 
bination frequency will be less than 50 percent. As the chromosome length- 
ens genetically, the xo class will decrease and approach 0 and the propor- 
tion of recombination between the end genes will approach 50 percent as 
an upper limit. 

A more general relation can be obtained if the equations are multiplied 
respectively by 1, - 1, 1, . . . (- 1)" and added together. The result is the 
equation 

(aO+a,+a,+ . . . ) - (al+as+as+ . . . ) 
= x c + ( q - ~ ) x l + ( q - ~ p ) ~ ~ 2 +  ' . ' +(q-p)nxn. (14) 

If p = 1/2, q -p  =0, and we have the case just discussed. 
If p < 1/2, the right-hand side of the equation will remain greater than 0, 

and the recombination frequency between the end genes will remain less 
than 50 percent as n increases. 

If p > 1/2, the terms in (q -p) will be positive if the exponent is even, 
negative if i t  is odd. Hence their sum will be increased by the terms with 
even exponents, decreased by those with odd exponents. The precise na- 
ture of the result will therefore depend on the number of x's and their 
relative sizes; that is, on the length of the chromosome and the coincidence. 
This situation would result if more than two chromatids crossed over at 
one level or within a region. 

The relations just deduced are only part of still more general relations. 
For in the equations on page 163, a. may represent the frequency of any 
class, not necessarily the non-crossovers. It follows that if p=1/2, the 
sum of the crossovers in any specified region or regions and in 0, 2, 4, . . . 
additional regions .will exceed the sum of the crossovers in the specified 
region or regions and in 1, 3 ,  5, . . . additional regions. This relation holds 
for Drosophila melanogaster and also for D. virilis (WEINSTEIN, unpub- 
lished data involving the X chromosome from sepia to rugose, a distance 
of about 100 units. 

The minimum distance within which double crossing over occurs 

An upper limit can be set to the possible frequency of crossing over be- 
tween sister strands by the length of the shortest distance between ad- 
jacent levels of crossing over in a chromatid. In  the X chromosome of 
D. melanogaster, this is about 14 units. Since the frequency of tetrad cross- 
ing over in such a region cannot exceed 1.00, the chance of detecting a 
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crossing over, being the ratio of the observed to the actual frequency, can- 
not be less than 0.14. But the chance of detecting a crossing over in a 
tetrad is composed of two factors: the chance of recovering a crossover 
chromosome and the chance of recognizing it when recovered. The first 
factor is 1/2 (provided that only two strands cross over within the region); 
hence the second is not less than 0.28. That is, crossover strands can be 
recognized in a t  least 0.28 of cases, and sister strands cannot cross over 
in more than 0.72 of cases. 

It might be possible to draw a further conclusion in some cases. If 
every tetrad were a crossover in the region, the amount of crossing over 
in the region could not exceed 33 1/3 percent if sister strands crossed over 
and 50 percent if they did not. Thus single crossing over exceeding 33 1/3 
percent within a region where no double crossing over occurred might be 
an indication that there was no crossing over between sister strands. 

COINCIDENCE AND INTERFERENCE 

The coincidence of two regions may be expressed as 

D/N D N  

A/N B/N AB 

where Tu’ is the total number of individuals, A the number of crossovers in 
the first region, B in the second region, and D in both regions simultane- 
ously. The regions whose coincidence is being measured will be referred 
to as nodal regions; the points of crossing over as nodes. The distance be- 
tween the nodes will be termed the internode, and the distance between 
the nodal regions will be termed the intermediate region. 

Coincidence may be of several types. In the type originally defined, 
A, B, and D include all individuals that are crossovers in the nodal re- 
gions, regardless of whether they are also crossovers in other regions. They 
may be termed inclusive totals, and coincidence so calculated inclusive co- 
incidence. Inclusive coincidence, which is a measure of interference, in- 
creases as the internode lengthens (MULLER 1916). 

If crossovers in the intermediate region are excluded from D, the result- 
ant coincidence may be termed select; it measures the frequencies of in- 
ternodes of different lengths (WEINSTEIN 1918). 

If crossovers in the intermediate region are excluded from A, B, D, and 
N, the resultant coincidence has been termed partial (MULLER 1925). The 
concept of partial coincidence may be extended by excluding regions other 
than the intermediate ones; in the extreme case all regions may be ex- 
cluded except those whose coincidence is being measured. This extreme 
type may be termed exclusive coincidence. 

-- - 
9 
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All the above types of coincidence as ordinarily measured are based on 

the observed frequencies of chromatids. They may therefore be termed 
chromatid or strand coincidence. Coincidence might also be based on true 
chromatid frequencies, or on tetrad frequencies. Tetrad coincidence might 
be based merely on the levels of crossing over, regardless of which strands 
are involved; or it might be calculated separately for regressive, progres- 
sive, and digressive crossing over; and further distinctions are possible ac- 
cording to whether the exchanges are between lateral or diagonal, homol- 
ogous or sister strands. 

Inclusive coincidence 
If recurrence is random, inclusive coincidence for tetrads or for the true 

frequencies of strands is equal to the strand coincidence as ordinarily cal- 
culated. For if XA, XB and XD denote respectively the inclusive frequencies 
of tetrads that are crossovers in the first nodal region, in the second nodal 
region, and in both nodal regions, then strand coincidence whether based 
on observed or true values is PA p B  XD N/PA XA PB XB =XD N/XA XB, 
which is the tetrad coincidence. This invariance holds regardless of whether 
or not sister strands cross over, and regardless of whether the p’s are the 
same or different in different regions. 

But if recurrence is not random, strand coincidence is 
t A + B  PA PB X D  N/PA XA PB XB; 

hence 
inclusive chromatid coincidence 

inclusive tetrad coincidence = (15) 
t A + B  

If random recurrence is altered by an increase of progressives at the ex- 
pense of digressives, or by an increase of regressives, tA+B > 1, and tetrad 
coincidence will be less than the observed value. If random recurrence is 
altered by an increase of progressives a t  the expense of regressives, or by 
an increase of digressives, tA+B < 1, and tetrad coincidence will be greater 
than the observed value. 

Only those deviations from random recurrence need be considered that 
yield the observed frequencies of chromatids : for example, those indicated 
in equations 8-13 and in table 7.  These deviations will not alter the fre- 
quency of recognizable crossing over in any one region, and hence will not 
alter the denominator of the coincidence fraction. Their effect on coinci- 
dence will result from an alteration of the number of double crossover 
tetrads and hence of the numerator of the fraction. 

The substitutions indicated in equations 9, 11, and 12 would not alter 
the total number of tetrads that are crossovers in both regions involved 
and hence would not affect the coincidence. This applies to equation 11 
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only if the rank-2 regressive involves both nodal regions. But a change 
would result from the substitutions indicated in the other equations. Since, 
on random recurrence without sister-strand crossing over, the progressives 
constitute one-half of rank-2 tetrads, the regressives and digressives one 
quarter each, the substitutions in equation 10 might increase or decrease 
tetrad coincidence by as much as 25 percent. A similar decrease might re- 
sult from the elimination of digressives indicated in equation 8. The reverse 
substitution in this equation would increase tetrad coincidence by an 
amount dependent on the number of singles available. Thus the coinci- 
dence of regions 1 and 6, which is 912.28239/4036.6442 =1.0, could be 
increased to 2.9 if all the 1744 singles in region 1 and an equal number in 
region 6 were replaced by 1744 digressives and 1744 non-crossovers. Simi- 
larly, the coincidence of regions 2 and 6 could be increased from 1.0 to 2.5 
if the 1998 singles in region 6 and an equal number in region 2 were re- 
placed by digressives and non-crossovers. 

Not all the coincidence values could be altered simultaneously. Thus if 
all the 1998 singles in region 6 were used to raise the 2, 6 coincidence, there 
would be none left to raise the coincidence of 1 and 6. Again, only 1709 
digressives could be added or eliminated by equation 8 since there are only 
1709 non-crossovers. If the changes are distributed among the various 
classes, the increase or decrease in any one class would be much less than 
indicated above. 

Similar procedures with similar results apply if there is crossing over 
between sister strands. The distribution of tetrads in table 7 would in- 
crease coincidence since it adds 5316 tetrads to rank 2.  The increase would 
be negligible for all values involving region 6, for the additional doubles are 
a t  the expense of singles, of which there are only 33 in region 6 (table 4, 
column I) ; but other values might be considerably affected. The increases 
could be minimized if the additional tetrads were distributed among all 
classes; but they could not be counteracted by substitutions since there 
are no non-crossovers a t  whose expense these could be made. 

It is perhaps unlikely that inclusive tetrad coincidence differs greatly 
from the observed value, for the following reasons: (1) Great deviations 
are brought about only by restricting substitutions of tetrads to one or a 
few classes, with the result that two adjacent regions have very different 
coincidences with the same region. (2) An increase of coincidence to more 
than 1 would imply that crossing over in one region is helped by that in an- 
other. ( 3 )  A decrease of inclusive coincidence for widely separated regions 
to less than 1 is not consistent with the mutual independence that might 
be expected from such regions. But we do not know how widely separated 
two regions must be to achieve independence; and in our present state of 
knowledge none of these reasons is conclusive. 
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Select coincidence 

If Xd, Xd+l, Xd+2, . . . Xd+n are the frequencies of tetrads that are cross- 
overs in both nodal regions and also at 0, 1, 2, . . . n levels in the inter- 
mediate region, then if recurrence is random and p constant, 

select chromatid coincidence = 
Pz[Xd+qXd+l+q2Xd+2+ . . ' +qnXd+n1N 

[qXd+l+q2Xd+2+ . . . +q"xd+"lN 

PXA PXB 

(16) ----- = select tetrad coincidence+ 

Hence select coincidence for tetrads is less than the true value for chro- 
matids, which in turn is less than the observed value since q for the true 
value is less than for the observed value. These relations hold if the p's 
differ, but not necessarily if recurrence is not random. 

As the intermediate region lengthens, there will ultimately be a de- 
crease in the frequency of tetrads that are not crossovers in it, and con- 
sequently a decrease of select tetrad coincidence. Select coincidence for 
strands will also ultimately decrease if recurrence is random, and even if 
it is not random except on rather special assumptions. 

X A  XB 

Partial coincidence 

Partial coincidence for tetrads will in general differ from the observed 
value; for when tetrad frequencies are replaced by the corresponding 
strand frequencies, the changes in the numerator and denominator do not 
necessarily compensate for each other. The same is true when non-inter- 
mediate regions or all non-modal regions are excluded. 

A detailed discussion of coincidence in D. melanogaster and D. oirilis 
will be published separately. 

NON-DIS JUNCTION AND ATTACHED X'S 

The multiple-strand method can be applied to cases of non-disjunction 
and attached X's if allowance is made for the fact that two chromatids 
are recovered instead of one and that they are not necessarily a random 
pair. The situation is clearest in attached X's, where the genes in the at- 
tached strands tend to remain together, the tendency being absolute at 
the point of attachment and decreasing distally because of crossing over 
with strands of the other attached pair. 

It will be best therefore to begin a t  the point of attachment; and if we 
do this, the strands resulting from tetrads of any given rank can be de- 
duced as follows. 

Crossing over between the spindle fibre and the first heterozygous pair 
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of genes might occur in three ways: (1) between strands attached to each 
other (these are homologous) ; (2) between sister strands; and (3) between 
a strand and its homologue in the other attached pair. Types 1 and 2 will 
leave each attached pair heterozygous; type 3 will result in homozygosis 
in each pair. If any two chromatids are equally likely to cross over, the 
three types will occur with equal frequency, and homozygosis will be 
produced in 1/3 of the cases. 

If the first crossing over leaves each attached pair of chromatids heter- 
ozygous, then crossing over in the next region can occur in the same three 
ways, with the same results. If the first crossing over has produced homo- 
zygosis, the next crossing over can occur in two ways: (1) between strands 
attached to each other (these are now sister strands), (2) between strands 
of different attached pairs (these are now all homologous). If it is a matter 
of chance which strands cross over, type 1 will occur in 1/3 of cases, type 2 
in 2/3. 

This procedure can be continued for the entire length of the chromo- 
some. It may be represented by the following diagram, in which a repre- 
sents homozygosis for one strand, b for the other, and H heterozygosis. 

The chance that a tetrad of any rank will give rise to a particular type 
of offspring can be obtained by multiplying the appropriate fractions. For 
example, among offspring derived from tetrads of rank 3, there will be 
(2/3)3 that are heterozygous throughout and (1/6)3 that  are homozygous 
for strand a throughout. 

If crossing over does not occur between sister strands, but association 
of strands is otherwise random, the procedure must be modified to con- 
form with the following diagram: 

H 

$H fa fb H H $H fa fb H H 
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TABLE 9* 
Calculated and observed frequencies of daughters of attached-X females 

(Observed frequencies from Sturteuant 1931) 

4- I 
sc ec cv ct v gf  

Obs . Calc . 
+ . . . . . . . . . . .  614 613 
sc . . . . . . . . . . .  21 19 
s c e c  . . . . . . . . .  36 29 
sceccv  . . . . . . .  18 27 
s c e c c v c t  . . . . .  47 45 
s c e c c v c l v  . . . .  16 25 
s c e c c v c t v g  .. 9 15 
s c e c c v c t v g f  . 5 9 
e5 ............ 1 0.2 
eccv . . . . . . . . .  2 0.4 
cc cv ct . . . . . . .  4 4 
e c c v c 8 v  . . . . . .  5 6 
e c c v c t v g  ..... 9 6 
ec cv ct v gf  . . .  3 6 

cvct  . . . . . . . . . .  7 4 

c t v g  . . . . . . . . .  6 6 
c t v g f  . . . . . . . .  5 6 
U . . . . . . . . . .  6 3  
v g  . . . . . . . . . .  8 10 
v g f  . . . . . . . . .  9 7 

g f  . . . . . . . . . .  4 4 
f . . . . . . . . . . . .  1 1  
s c v g  . . . . . . . .  2 0.2 
Total . . . . . . .  880 

c t v  f 
sc ec cv g 

+ . . . . . . . . . . .  349 362 
sc . . . . . . . . . . . .  22 16 
s c e c  . . . . . . . . .  15 23 
s c e c c v  . . . . . . .  56 80 
s c e c c v g  . . . . . .  1 1  21 
ct . . . . . . . . . . . .  46 44 
c l v  . . . . . . . . . .  68 66 
c t v f  . . . . . . . . .  15 23 
e c c v  . . . . . . . . .  11 8 
c c c v g  . . . . . . . .  10 10 
cv . . . . . . . . . . .  14 10 
c u g  . . . . . . . . . .  15 13 
v . . . . . . . . . . .  15 11 
u f  . . . . . . . . .  1 6 
g . . . . . . . . .  44 29 
f . . . . . . . . . . .  14 4 
scg  . . . . . . . .  3 0.5 
s c e c g  . . . .  2 0.3 
S C C f V  . . . . . .  1 0 . 1  
s c v f  . . . .  1 0 . 2  
scf . . . . . .  1 0.1 
s c e c v f  . . . . . .  1 0 . 1  
sc e c f  . . . . . .  1 0.2 
Total . . . . . . . .  728 

cc cv ct  v g f  
I1 

SG 

Obs . Calc . + ........... 551 518 
sc . . . . . . . . . .  198 210 
ec . . . . . . . . . .  34 36 
e c c v  . . . . . . . . .  29 35 
e c c v c l  . . . . . . .  54 61 
eccv  c l v  . . . . . .  32 38 
e c c v c t v g  . . . .  24 26 
e c c v c l v g f  . . .  6 19 
c v c t  . . . . . . . . .  9 5 
c v c t v  . . . . . . . .  19 10 
c u c t v g  . . . . . .  1 1 2  
c v c t v g f  . . . . .  8 8 
ct ............ 0 1 . 6  
c t v  . . . . . . . . . .  15 6 
c t v g  . . . . . . . . .  10 8 
c f u g f  . . . . . . .  1 8 
v . . . . . . . . . . . .  9 4  
v g . ,  . . . . . . . .  18 12 
v g f  . . . . . . . . . .  21 9 
g . . . . . . . . . . .  3 2  
gf  . . . . . . . . . . .  17 4 

e c v g  . . . . . . . .  1 0.2 
e c c v g f  . . . . . .  2 0.1 
e c c v c t g f  . . . .  2 0.5 
e c c v c t f  . . . . . .  1 0.2 
s c v g  . . . . . . . .  1 0.6 
s c v g f  . . . . . . .  3 0.3 
SC E ...... 1 0.2 
s c g f  . . . . . . . .  4 0.1 
s c f  . . . . . . . . . .  1 0.2 
s c c t v g f  . . . . .  1 0 
Total ........ 1096 

ec v f 
VI 

sc cv ct g 

+ . . . . . . . . . . .  386 391 
sc . . . . . . . . . .  62 49 
s c c v  . . . . . . . . .  20 28 
s c c v c t  . . . . . . .  31 12 
s c c v c t g  . . . . . .  9 26 
ec . . . . . . . . . . .  102 109 
e c v  . . . . . . . . . .  43 54 
e c v f  . . . . . . . .  13 16 
cv . . . . . . . . . . .  2 0.8 
c v c t  . . . . . . . . .  32 22 
c v c t g  . . . . . . . .  28 29 
ct . . . . . . . . . . .  14 6 
c t g  . . . . . . . . .  12 13 
v . . . . . . . . . .  61 43 
v f  . . . . . . . . .  24 20 
g . . . . . . . . . . .  39 23 
/ . . . . . . . .  1 1  4 
c v g  . . . . . .  1 0 
s c g  . . . . . . .  5 1 

s c z f  . . . . . . . . .  4 0.3 
s c f . ,  . . . . . . . .  1 0.3 

s c v  . . . . . . . . .  6 0.6 

e c g  . . . . . . . . .  4 1 
Total . . . . . . . .  916 

g f  

Obs . Calc . + . . . . . . . . . . .  515 534 
sc . . . . . . . . . . .  16 19 
s c e c  . . . . . . . . .  20 28 
S C ~ C C V  . . . . . . .  22 21 
s c e c c v c t  . . . . .  28 44 
sc ec cv c t v  . . .  39 48 
g . . . . . . . . . . . .  56 49 
g f  . . . . . . . . . . .  38 32 
e c c v  . . . . . . . . .  2 0.4 
e c c v c l  . . . . . . .  7 4 
e c c v c t v  . . . . . .  28 11 
cv . . . . . . . . . . .  1 0.4 
c u c t . ,  . . . . . . .  5 4 
cv c t v  . . . . . . . .  28 23 
ct . . . . . . . . . . .  2 1.3 
c t v  . . . . . . . . . .  30 11 
8 . . . . . . . . . . . .  21 20 
/ . . . . . . . . . . . .  2 1 . 1  
s c v  . . . . . . . . . .  2 0.5 
s c e c v  . . . . . . . .  1 0 . 2  
s c g  . . . . . . . . . .  1 0.3 
s c e c g f  . . . . . .  3 0.2 
Total . . . . . . . .  873 

111 
sc ec GV ct v 

ec c l v  f 
VI1 

+ ........... 352 398 
sc . . . . . . . . . . .  69 49 
sccv . . . . . . . . .  90 100 
s c c v g  . . . . . . . .  12 26 

SC cv g 

. . .  54 53 
e c c t v f  ....... 4 16 
cv . . . . . . . . . . .  31 23 
c u g  . . . . . . . . . .  34 29 
ct . . . . . . . . . . .  14 6 
c l v  . . . . . . . . . .  44 29 
c l v f  . . . . . . . . .  15 13 
v . . . . . . . . . . . .  15 14 
v f  . . . . . . . . . . .  5 1 
g . . . . . . . . . . . .  41 36 
f . . . . . . . . . . . .  3 4  
s c g  . . . . . . . . . .  2 1 
e c v  . . . . . . . . .  3 0.3 
e c c t f  . . . . . . . .  1 0.5 
x c c t v  . . . . . . . .  1 0 . 0  
s c v f  . . . . . . . . .  2 0.3 
s c f  . . . . . . . .  1 0.3 
e c g  . . . . . . .  2 0.6 
e c c t g  . . . . . . .  1 0 . 4  
e c c v  . . . . . . . . .  1 0 
Total . . . . . . . .  916 

e c c v  g f  

IV sc c t v  

Obs . Calc . 
+ . . . . . . . . . .  308 318 
s c . ,  . . . . . . . .  7 4 6 1  
s c c t  . . . . . . . .  3 9 3 1  
s c c t v  . . . . . . .  3 6 4 0  
ec . . . . . . . . . .  2 8 4 6  
e c c v . ,  . . . . . .  8 3 6 5  
e c c v g  . . . . . . .  9 1 8  
e c c v g f  . . . . .  5 1 3  
ct . . . . . . . . .  1 1 8  
c t v . ,  . . . . . . .  3 1 4 8  
cv . . . . . . . . . .  6 1 0  
c v g  . . . . . . . . .  1 8  
c v g f  ........ 4 5  
g . . . . . . . . . . .  2 1 1 5  

v . . . . . . . . . . .  2 5 1 6  
f ........... 2 0 . 1  
e c g  . . . . . . . . .  10.1 
e c g f  . . . . . . .  1 0 . 2  
eccuf . . . . . . .  1 0 . 1  
s c g  . . . . . . . . .  1 0 . 5  
s c g f  . . . . . .  1 0 . 5  
scf . . . . . . .  _ . 1 0 . 1  
s c c t g  . . . . . . .  1 0 . 0  
Total . . . . . . .  725 

gf  . . . . . . . . . .  1 1 1 4  

cv g 

"IIIsc ec ct  u / 
+ .......... 413 433 
sc .......... 3 5 2 0  
s c e c  . . . . . . . .  5 9 5 9  
s c e c c t  ...... 3 8 4 1  
s c e c c f v  ..... 2 1 4 2  
s c e c c t v f  . . .  2 9  
cv . . . . . . . . . .  121 125 
c v g  . . . . . . . . .  4 0 5 5  
ec . . . . . . . . . .  8 0 . 6  
e c c t  . . . . . . . .  1 4  
e c c t u  . . . . . . .  1 1 1 2  
e c c t v f  ...... 3 6  
ct . . . . . . . . . .  1 0 6  
c l v  . . . . . . . . .  4 1 3 0  
c t v f  . . . . . . . .  2 1 1 3  
g . . . . . . . . . . .  4 3 3 7  
v . . . . . . . . . . .  1 1 1 4  
v f  . . . . . . . . .  1 9 1  
f . . . . . . . . . . .  4 5  
s c v /  . . . . . . . .  1 0 . 2  
s c e c v  . . . . . .  1 0 . 4  
s c c v g  . . . . . .  1 0 . 1  
s c g  . . . . . . . . .  1 0 . 6  
s c e c g  . . . . . .  3 0 . 6  
s c e c c t g  . . . . .  1 0 . 3  
e c g  . . . . . . . . .  10.0 
Total . . . . . . .  928 

* This table includes all calculated frequencies of 1 or more; and. where the observed frequency 
is not 0. every calculated frequency of less than 1 . Calculated figures are given to the nearest unit; 
except those of 1 or less. which are given to the nearest 0.1. 
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In either of the above cases, if recurrence is not random, the frequency 
of each class obtained from a tetrad of a given kind will not be the simple 
product of the fractions in the table, but this product multiplied by a fac- 
tor which, in the most general case, will differ according to the rank of 
the tetrad, the regions involved, and the nature of the crossings over: 
whether homologous or sister-strand; lateral or diagonal; regressive, pro- 
gressive, or digressive. 

Thus if the frequencies of tetrads are known, the frequencies o i  geno- 
types and phenotypes among the offspring can be calculated. In table 9 
are given the frequencies of phenotypes expected among offspring of at- 
tached-X females heterozygous for sc ec cv ct v g f ,  on the assumption 
that sister strands do not cross over but association of chromatids is other- 
wise random. The tetrad frequencies in the column headed p=1/2 in 
table 4 have been used as a basis; but since they do not include crossing 
over between the spindle fibre and forked, a correction has been applied 
by taking into account what proportion of each class must also have been 
crossovers to the right of forked. This correction is based on a cross 
involving the loci y bi cv ct v g B bb, the unpublished data of which were 
kindly placed at  my disposal by DR. C. B. BRIDGES in 1932. The crossover 
values in this cross agree closely with those in the X-ple cross (MORGAN, 
BRIDGES and SCHULTZ 1933). 

The calculations have been made for the eight types of heterozygous 
mothers that gave the greatest number of offspring in the experiments of 
STURTEVANT (1931), and STURTEVANT’S actual counts are included for 
comparison. The frequencies are on the whole in agreement. The discrep- 
ancies are probably due a t  least in part to the small counts and to differ- 
ential viability; there may also have been differences in proportions of 
crossing over between the attached-X stock and those on which the cal- 
culated values are based. 

A comparison can also be made between calculated and observed fre- 
quencies of offspring heterozygous for all the genes involved. The calcu- 
lated value is 39.9 on the basis of table 4 (corrected) and 40.9 on the basis 
of table 8. The value observed by STURTEVANT (1931) is 34.5; and from 
the data given by BEADLE and EMERSON (1935, table 2) it appears that 
among 1478 offspring whose genetic constitutions were tested, 668 were 
heterozygous for all genes from scute to forked inclusive, this being a pro- 
portion of 45.2. The calculated values are almost precisely half way be- 
tween the observed values. It should be noted also that STURTEVANT’S 
figure is based on tests of only 383 wild-type daughters; and that the pro- 
portions of crossing over in the attached-X stock used by BEADLE and 
EMERSON were somewhat different from those of the stocks on which the 
calculated values are based. 
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The proportion of completely heterozygous individuals in attached X’s, 

is equal to xo+qxl+q2xz+q3x3+ . . . +qnx,, provided that a t  any level 
of crossing over only two strands are involved; hence it is precisely equal 
to the proportion of non-crossovers in the same region among offspring 
of females with unattached X’s. The variations in the frequencies of x’s 
and p’s compensate for one another, and the result is therefore inde- 
pendent of the value of p. Nevertheless a figure obtained on the assump- 
tion of crossing over between sister strands would not be significant despite 
its agreement with observation; for the tetrad frequencies on which it 
would be based are incorrect, involving as they do negative values. The 
agreement would therefore be purely formal since it would be due to 
compensating errors. 

The proportion of homozygosis for each gene can also be calculated. 
This is done by adding the proportions of the appropriate classes in the 
diagrams on page 182. If p = 1/2, the sum is 

~ X l + + X 2 + ~ ~ X 3 + & X , +  . . . 

where the x’s are the frequencies of tetrads that are crossovers at 1, 2, 
3,4, . ‘ levels between the point of attachment and the gene in question. 
Values have been calculated on the basis of the p = 1/2 columns of table 4 
(corrected for crossing over between f and bb) and of table 8. These, to- 
gether with observed values, are given in table 10 and illustrated in fig- 
ure 4. 

The solid curves in figure 4 illustrate homozygosis plotted against actual 
map distance in each cross. The two lines coincide almost completely from 
the spindle fibre to about v ;  beyond v the curve based on table 4 rises above 
that based on table 8. 

The total map distance is almost exactly the same in the two crosses; 
but corresponding regions do not always have the same length. Hence, 
while the ends of the curves lie in the same perpendicular, the other corre- 
sponding loci do not. In order to facilitate the comparison of corresponding 
genes, the curves have been redrawn so that the abscissa of each gene is 
the average of the values in the two crosses. The results are the dash 
line for the data of table 4 and the dot-and-dash line for those of table 8. 

The theoretical and observed results are of the same general type, rising 
from nearly 0 a t  the proximal end to above 16 2/3 (the value expected on 
pure chance) a t  the distal end. The greatest discrepancies are the low 
values observed by EMERSON and BEADLE in the region from car to ct; 
these are undoubtedly due to the fact that there was less crossing over 
in the attached X stock used by EMERSON and BEADLE than in the stocks 
of tables 4 and 8. Differences in crossing over and in coincidence may also 
account in part for the discrepancies in ct and more distal genes; but differ- 
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entia1 viability is suggested by the low value of cv as compared with ct 
and of sc as compared with y in some of the data. 

The theoretical curve based on table 4 and on the y bi cv ct v g B bb 
cross was exhibited a t  the Sixth International Congress of Genetics and 
before the Genetics Society of America in 1932. Homozygosis when sister 
strands do not cross over was independently calculated by SAX (1932) and 
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FIGURE 4. Proportions of homozygosis for recessive genes in offspring of heterozygous at- 
tached-X females. The abscissa indicates distance from the spindle fibre. The curves are drawn 
through the theoretical values given in table 10. The observed values in table 10 are also indi- 
cated; those from ANDERSON, L. V. MORGAN, and STURTEVANT by dots enclosed in circles; those 
from RHOADES by concentric circles; those from EMERSON and BEADLE by simple circles. 

subsequently by BELLING (1933), KIKKAWA (1933)2 and MATHER (1935) ; 
the data on which these calculations were based did not include the entire 
length of the X chromosome. BEADLE and EMERSON (1935) have obtained 
a similar curve from an analysis of crossing over in the attached X's them- 
selves. 

MAP DISTANCE 
car 0 f 

2 KIKKAWA'S previous (1932) method was, as he himself pointed out, incorrect because the 
highest frequencies of homozygosis yielded by it were distinctly less than 16 2/3 percent. KIK- 
KAWA in 1932 stated that the writer's theory as embodied in formula 2 of the present paper would 
not allow for aaalaba individuals. This objection is answered by the analysis given above, which 
shows that such individuals are expected and with a frequency corresponding to the one observed 
experimentally. KIKKAWA'S objection was due to a misinterpretation of the writer's theory; spe- 
cial cases of the theory have since been used by KIKKAWA himself. 
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The agreement of a theory with observation is of course not significant 

unless other theories agree less closely. It is therefore necessary to con- 
sider how the curve would be modified if the assumptions on which it was 
calculated were altered. 

For regions near the point of attachment the curve is a straight line, 
the homozygosis being half the map distance from the spindle fibre. This 

TABLE 10* 
Percentages of homozygosis in daughters of attached-X females. 

CALCULATED OBSERVED 

OENE TABLE 4 TABLE 8 ANDERSON 1925 RKOADEB 1931 EMERSON AND BEADLE 

p=1/2 p =  1/2 L. v .  MORGAN 1925 1933 1935 
CORRECTEDFOR STURTEVANT 1831 
CROSSINQ OVER SUMMARIZED BY 

BETWEEN~AND bb STURTEVANT 

car 
B 
f 4.6 
g 10.1 
S 

m 
V 14.6 
12 

1 
ct 18.4 
cv 19.5 
rb 
ec 19.6 
w or wa 
sc 19.4 
Y 

2.2 

5.9 

13.0 

15.8 

17.6 
18.1 

18.3 

18.0 

4.1 
5 . 1  

10.3 

13.5 
14.8 
14.9 
16.1 
16.4 
15.9 

16.6 
16.5 (w) 
17.1 
19.0 

4.9 

17.6 
17.3 
17.5 (w') 
17.9 
19.2 

0.8 
3.0 

2.5 
7 . 3  
8.1 7.0 

10.2 
11.9 11.8 

14.8 
18.0 

18.4 

20.3 

* This table includes all the data hitherto published. The proportions headed REIOADES (1931), 
and EMERSON and BEADLE (1933), have been calculated by the writer from the total counts of 
these workers. The homozygosis values calculated by RAOADES differ slightly from those recorded 
here because he excluded some of his data. 

In the experiment of EMERSON and BEADLE (1933) the value marked B is the average for Bar 
and its normal allelomorph. 

would be expected on random association without sister strand crossing 
over; because homozygosis for a given gene is 1/4 of the frequency of 
tetrads of rank 1, while the map distance is 1/2, and there are few if any 
tetrads of higher rank. If sister strands cross over freely, homozygosis is 
1/6 and map distance 1/3 of rank-1 tetrads; so that the agreement is 
equally good and this part of the curve cannot be used as evidence for or 
against sister-strand crossing over. But the distal part of the curve, as has 
been pointed out by the writer (WEINSTEIN 1932c) supplies the necessary 
evidence; for if sister strands crossed over, the proportion of homozygosis 
(as can be seen from the first diagram on page 182) would be 
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&x1+Qxz+&xt+ . . .+ Qx, 
so that even if all tetrads were crossovers, the amount of homozygosis 
would not exceed one-sixth. The fact that both calculated and experimen- 
tal curves rise above this level shows that crossing over does not occur 
freely between sister strands. 

The curve also proves that only two of the four strands cross over at any 
level. For if all four always crossed over, no homozygosis would be pro- 
duced a t  all; and if all four sometimes crossed over, the homozygosis in the 
proximal part of the curve would not be half the map distance but less. 
This is true regardless of whether crossing over occurs between sister 
strands. 

The curve can also be used to test whether recurrence is random. That 
the proportion of homozygosis depends on the nature of recurrence can 
be seen from the fact that in tetrads of rank 2 homozygosis of genes distal 
to both exchanges results not from regressives or digressives but only from 
some of the progressives. If there is no crossing over between sister strands, 
homozygosis is produced only by those progressives in which the proximal 
crossing over is lateral (the distal crossing over must then be lateral also); 
this type is illustrated in figure 2B. The terms lateral and diagonal are 
applied according to the relative positions of the strands in the region of 
crossing over, and do not necessarily describe their relation a t  the proximal 
end. 

If recurrence is random, these progressives constitute one-half of all 
progressives or one quarter of all rank-2  tetrad^.^ That is, the same propor- 
tion of rank-2 progressives as of single crossover tetrads produce homozy- 
gosis; while regressives, digressives, and non-crossovers do not produce 
i t  a t  all. 

The substitutions indicated in equations 8-13 and table 7 can be tested 
with respect to their effect on homozygosis for scute with the aid of the 
following table. 

TABLE 11 
Tetrad frequencies for the X chromosome (random recurrence, no sister-strand crossing over) 

RANK 0 1 2 2 2 3 4 
REQRESSIYE PROQRESSIYE DIQREPBIYE 

Table 4 (corrected to in- 
clude crossing over be- 
tween f and bb) 557 15678 2755 5510 2755 888 96 

Table 8 904 7824 1730 3460 1730 488 

Equation 8. The replacement of non-crossovers and digressives by 
singles would increase homozygosis. In the corrected Xple figures, since 

3All these proportions must be divided by 2 when homozygosis for the recessive gene only is 
considered. 
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there are only 557 non-crossover tetrads there could be not more than 11 14 
additional singles, of which 278.5 would produce homozygosis for scute; 
this would raise the proportion from 19.4 to 20.4-not so good an agree- 
ment with the observed values for sc and y. 

The reverse substitution (non-crossovers and digressives for singles) 
could have a much greater effect. If all of the 15678 singles were replaced, 
homozygosis for scute would fall to 5.5, an impossibly low figure. A reduc- 
tion of homozygosis to 16.7 would require the replacement of 1/5 of the 
singles; this is highly improbable, since most of the observed values for 
sc and y differ significantly from 16.7. 

On the basis of table 8, the highest value would be 20.8, the lowest 5.9; 
and a decrease to 16.7 would involve replacing 1/9 of the singles. 

Equation 9. The progressives could be doubled or eliminated; and 
homozygosis would fall as low as 14.6 or rise as high as 24.2 on the basis 
of table 4 (corrected). The corresponding values on the basis of table 8 
would be 12.6 and 23.4. Hence only a small part of the substitutions would 
be possible. 

Equation 10. This would not alter homozygosis, since the effectiveness 
of a progressive is equivalent to that of a single. 

Equation 11. Homozygosis would remain unaltered because a non- 
progressive tetrad of rank 3 has the same effect as a single. This follows 
from the fact that in the rank-3 tetrad two of the crossings over are regres- 
sive with respect to each other and neutralize each other; the third cross- 
ing over effects homozygosis if it  is diagonal but not if it  is lateral. 

If sister strands cross over freely, homozygosis results from 1/3 of the 
tetrads of rank 1 and 1/2 of the progressives of rank 2, but not from re- 
gressives or digressives of rank 2 or from non-crossovers (see footnote 3). 
Since homozygosis calculated on free sister-strand crossing over and ran- 
dom recurrence is too low, only those deviations from random recurrence 
are possible that raise the calculated proportion to the observed level. 

The method by which the negative frequency of non-crossovers was 
eliminated (table 7) consisted in decreasing the number of tetrads of 
rank 1 by 10632 and increasing the digressives by 5316. This wouldde- 
crease the proportion of homozygosis for distal genes and is therefore 
impossible. 

Of the substitutions indicated in equations 8, 11, 12, and 13 the only 
ones that would increase homozygosis are the replacement of the left-hand 
by the right-hand side of equations 8 and 12. But singles cannot be in- 
creased by the substitutions indicated in equation 8, since there are no 
non-crossovers a t  whose expense this could be accomplished; hence the 
only substitution that remains is of progressives for regressives and 
digressives (equation 12). To test this completely the figures in table 7 
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do not suffice, since they include only the region from forked to scute; but 
they can be considered as roughly applicable to the region from the point 
of attachment to crossveinless or echinus, which is about as long as that 
from forked to scute. On this basis there might be as many as 10820 addi- 
tional progressives; and the proportion of homozygosis due to singles and 
progressives might be increased to as much as 1/28239 (1/6 4698+1/4 
22016) =22.2-too high a figure, so that only part of the substitution is 
possible. 

POLYPLOIDS 

Triploids 

In triploids there is evidence that only two of the six strands cross over 
at any level (BRIDGES and ANDERSON 1925, REDFIELD 1930). Hence among 
the strands emerging from a hexad which is a crossover a t  a given level, 
the proportion that are recognizable crossovers a t  that level is the product 
of 1/3 by the chance of recognizing a crossover strand once i t  is recovered. 
This chance depends on two factors: (1) whether all three chromosomes 
are distinguishable from each other or two are indistinguishable, and (2) 
whether crossing over takes place between sister strands. The results for 
four possible cases are as follows: 

CR0881NQ OVER BETWEEN NO CROSSINQ OVER 
SISTER STRANDS AS BETWEEN SISTER 

FREQUENT A 8  ON CHANCE STRANDS 

~~ - ~ 

All 3 chromosomes distinguishable 1/3(4/5) =4/15 113 
2 chromosomes indistinguishable 1/3(8/15) =8/45 1/3(8/12) =2/9 

These fractions represent the chances of detecting a crossing over a t  
one level if one chromatid is recovered (“regular” offspring). If two chro- 
matids are recovered (“exceptional” offspring), then p for hexads is the 
product of the chance that at least one is a crossover by the chance of rec- 
ognizing a crossover strand once it is obtained provided that the two 
chromatids are recovered a t  random. 

BRIDGES and ANDERSON (1925) showed that a chromosome may cross 
over with different chromosomes at different levels; and they concluded 
that synapsis involves all three chromosomes equally throughout their 
length. On this theory recurrence would be random for all six chromatids, 
except that sister-strand crossing over may be excluded. But when hexad 
frequencies are calculated on this basis, negative values are encountered 
(WEINSTEIN 1932~). 

In table 12 are given the hexad frequencies calculated for the cross of 
REDFIELD (1930, table 1, broods 1 and 2 combined), which covers about 
half of the third chromosome. Here all three chromosomes are marked; 
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hence formula 2 can be applied with p =4/15 and p = 1/3. When p = 4/15, 
the largest negative value (-135) is 1.6 times its standard error. When 
p = 1/3, the negative value (-30) is 0.6 times its standard error. The re- 
sults are not conclusive; still they suggest that with longer stretches of 
chromosome significant negative frequencies would appear. 

TABLE 12 

+ D nza Sb + 
Crossing over in triploids of constitution se M h  + + H 

h + GU bx ea 

OBSERYED 

IrREQUENCIES 
REQIONS OF 

CRDSSING 

OVER 

TETRAD FREQUENCIES CALCULATED FOR RANDOM RECURRENCE 

REDFIELD 1930 p=1:a p=1/3 p=4/15 
n = 1030 

0 

12 
13 
14 
23 
24 
34 

123 
124 
134 

565 

87 
171 
70 
47 

22 
11 
8 

21 
12 
6 

1 
2 
1 

272 

100 
226 
56 
48 

76 
36 
20 

104 
40 
20 

8 
16 
8 

127 

63 
183 
- 30 

21 
- 

144 
63 
18 

225 
72 
36 

27 
54 
27 

10 1 

17 
97 

.135 
- 7  

193 
7 7  

-4 
341 
91 
46 

53 
105 
53 

Negative values are in fact obtained for the cross covering almost the 
entire length of the third chromosome given in REDFIELD'S table 5. Here 
only one of the chromosomes is marked, hence p = 2/9. And a further modi- 
fication of procedure is necessitated by the fact that since there are two 
strands of one kind and one of the other, the chances of recognizing cross- 
ing over a t  different levels are not independent, even though recurrence 
be random. It becomes necessary therefore to use equations like those in 
case 3. The analysis need not be given in detail because a similar one has 
been made by other workers (MATHER, 1933, 1935; KIKKAWA, 1931; see 
KIKKAWA for the equations). These negative frequencies are not in them- 
selves significant; but they point in the same direction as those in the 
previous cross. 

These results suggest that, for considerable distances, only two of the 



192 ALEXANDER WEINSTEIN 

chromosomes conjugate while the third goes unmated to either pole. On 
this assumption, the unmated chromosome region can be neglected; for 
the conjugating chromosomes form what is essentially a tetrad, and the 
chromosome recovered in regular offspring is always one of those that 
conjugate. Hence the data in table 12 can be treated as in diploids; that 
is, formula 2 can be applied with p = 1/3 if sister strands cross over and 
p=1/2 if they do not. When p=1/3, as we have seen, some negative 
values are encountered, though their significance is doubtful; when p = 1/2,  
however, all frequencies are positive and support the theory on which they 
are based. 

If the conclusions suggested by these results are correct, we should ex- 
pect that when two strands are recovered (exceptional offspring), usually 
not more than one strand will be a crossover. This is borne out by the re- 
sults with the X chromosome: from BRIDGES and ANDERSON (1925 table 5) 
it appears that a crossover chromatid is associated with a non-crossover 
82 times out of 97, and with a crossover only 15 times. The tendency is 
complete a t  the spindle fibre and decreases for more distal regions because 
of crossing over between them and the spindle fibre. In the autosomes there 
is a similar relation between association of chromosomes and distance from 
the spindle fibre (REDFIELD 1930). As has been pointed out by MULLER 
(unpublished, cited by WEINSTEIN 1932c), these facts support the view 
that only two of the chromosomes conjugate while the third remains un- 
mated, although there may be some change of partners. 

Similar conclusions concerning conjugation in triploids have been 
reached by MATHER (1933, 1935) ; and on cytological grounds by BELLING 
(1921), MULLER (1922) and DARLINGTON (1932). RHOADES (1933) and 
KIKKAWA (1934) have presented somewhat different interpretations. The 
questions raised by these workers cannot be discussed here but will be 
treated elsewhere. 

Frequency of crossing over in diploids and triploids 
In comparing the amount of crossing over in diploids and triploids, i t  is 

necessary to distinguish between crossing over per strand and crossing 
over per tetrad or hexad (WEINSTEIN 1932a). 

If in any given region crossing over is constant per chromatid, then if 
chromatids are recovered at  random there would be no change in crossing 
over per chromatid in triploids if sister strands do not cross over, but an 
increase if they do. For in the latter case one third of the crossings over 
in a tetrad would be undetectable, whereas in the hexad the proportion 
would be only 3/15 = 1/5. This was pointed out by BRIDGES and ANDER- 
SON (1925), who suggested that thus it might be possible to discover 
whether or not crossing over occurs between sister strands. 
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There is however another possibility which they did not consider; 

namely, that the amount of crossing over might be constant not per 
strand but per group of chromatids (tetrad or hexad). In this case the 
amount per chromatid would be decreased, since there would be the same 
number of crossings over but more strands. The ratio of recognizable cross- 
over strands in triploids to that in diploids would then be 4/15+ 1/3 =4/5 
if sister strands cross over, and 1/3 + 1/2 = 2/3 if they do not; provided of 
course that strands are recovered a t  random. Here again i t  might be 
possible to discover whether sister strands cross over. 

In BRIDGES and ANDERSON’S data for the X chromosome, the amount of 
crossing over per strand recovered was half as great in triploids as in 
diploids (except for the leftmost region of the X, which showed an increase). 
If strands were recovered a t  random, this would agree better with the sup- 
position that crossing over is the same for hexad as for tetrad and that 
sister strands do not cross over. But the decrease is too great and suggests 
that non-crossover strands are recovered more often than on chance. 
If two strands are recovered and one is usually a non-crossover, the 
amount of crossing over per recovered strand in triploids would be approx- 
imately halved, as it is; hence the figures support the theory that only 
two strands usually associate in synapsis while the third goes unmated to 
one pole. We may still conclude that crossing over per hexad is the same 
as per tetrad; but no conclusion can be drawn directly as to crossing over 
between sister strands, for the result would be the same whether this 
occurs or not, since the hexad acts essentially as a tetrad. 

At the left end of the X, where there must be a greater tendency for 
strands to be recovered at  random (because of crossing over between this 
region and the spindle fibre), the ratio might be expected to approach 2/3 
if sister strands do not cross over; instead it rises to 2. This increase re- 
mains unexplained. 

In REDFIELD’S data, since only those individuals were selected that did 
not receive the unmated chromosome, the triploid-diploid ratio per strand 
might be expected to decrease from 1 a t  the spindle fibre to about 2/3 for 
distal regions, where strands are recovered more nearly a t  random. The 
latter figure is realized near the ends of the chromosome; and there is a rise 
toward the center. Near the spindle fibre however the ratio increases to 
3 or 4; and this increase is not accounted for. 

MULLER (unpublished, see WEINSTEIN 1932c) and RHOADES (1933) 
have reached similar conclusions, though RHOADES’S interpretation of 
synapsis in triploids differs from that given above. 

Higher polyploids 

The multiple-strand theory can be applied to higher polyploids; it is 
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merely necessary to take into account which chromosomes are distinguish- 
able and how they undergo synapsis. This may result in complicated situa- 
tions; but where (as in some tetraploids) synapsis is in pairs, the treatment 
is not essentially different from that of diploids. 

SUMMARY, WITH SOME CONSIDERATION OF THE MECHANISM 

OF CROSSING OVER 

A mathematical method is described which makes it possible to calcu- 
late from the observed frequencies in a crossover experiment (1) the 
frequency of undetected crossing over including that between sister 
strands, which cannot be recognized directly, and (2) how the individual 
chromatids are associated in tetrads. The method can be applied to ordi- 
nary diploids, to cases of non-disjunction and attached chromosomes, and 
to polyploids. The calculated results differ according to the assumptions 
made as to crossing over a t  any given level and the mutual relations of 
crossings over a t  different levels; and since some of the results are incon- 
sistent with the experimental data or (as in the case of negative fre- 
quencies) meaningless, the assumptions on which they rest can be ruled 
out and our knowledge of the mechanism of crossing over thus becomes 
more precise. 

The experimental results when subjected to this mathematical treat- 
ment lead to the following conclusions regarding the mechanism of cross- 
ing over: 

(1) There is no crossing over between sister chromatids. 
(2) At any level only two of the four chromatids may cross over. 
( 3 )  Otherwise it is a matter of chance which chromatids cross over a t  

any level. 
(4) The chromatids that cross over at  one level do not determine which 

ones cross over a t  other levels. 
( 5 )  This mechanism implies that for inclusive coincidence the true value 

for strands or tetrads is identical with the observed value regardless of 
whether sister strands cross over or not; for select coincidence the tetrad 
value is less than the observed value where the two differ; and for partial 
coincidence the tetrad and the observed values are in general not identical, 
though they may be very similar. If recurrence is not random, all types 
of tetrad coincidence will in general differ from the observed values. 

Coincidence for chromatids remains identical with the observed values 
if sister strands do not cross over. 

All these propositions and others are summed up in formula 2 for p = 112; 
that is, that the frequency of any class of tetrads is given by 

~=~[ao-aI+an-aas+ . . . +(-1)nan]. 

(6) In triploids the same mechanism holds; but the evidence indicates 
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that two of the chromosomes undergo synapsis to the exclusion of the 
third, over considerable distances, though there is some change of partners; 
but recurrence is probably random among the strands of the conjugating 
chromosomes. 

Deviations from the mechanism described above lead to results that 
are inconsistent or incorrect : 

(1) Crossing over between sister chromatids would involve negative 
frequencies of tetrads, would not allow the proportion of homozygosis for 
any gene to exceed 16 2/3 percent in cases of attached X’s and non-disjunc- 
tion and would result in other discrepancies. Evidence in the same direc- 
tion is available in the work of EMERSON and BEADLE (1933) and BEADLE 
and EMERSON (1935) on attached X’s; and of L. V. MORGAN (1933) on the 
ring-shaped X;  and in the non-occurrence of sister-strand crossing over in 
Bar either in its ordinary locus (STURTEVANT 1925) or when translocated 
to the left end of the chromosome (MULLER and WEINSTEIN 1932 and un- 
published data). 

(2) Crossing over between more than two chromatids at a given level 
would diminish or eliminate homozygosis in offspring of attached X’s. This 
conclusion is supported by the non-occurrence of identical crossovers in 
offspring of attached X’s (ANDERSON 1925b) and of triploids (BRIDGES and 
ANDERSON 1925). 

(3) Random occurrence of crossing over is shown most simply in the 
equality of lateral and diagonal crossing over near the spindle fibre (or a 
2 : 1 ratio if sister strands cross over) ; and this involves random occurrence 
in other regions to give the observed results. 
(4) Deviations from random recurrence would, if too great, lead to 

negative frequencies, and would modify the proportions of homozygosis 
in attached X’s from the observed values. 

The above results would follow the modification of one condition at a 
time. Modification of two or more conditions simultaneously might in- 
crease discrepancies; for example, the crossing over of all four chromatids 
a t  the same level would produce some of the same effects as an increase of 
digressive crossing over. On the other hand, some modifications would 
compensate for one another: an increase in digressive crossing over will 
counteract some effects of increased regressive crossing over, and i t  may 
also eliminate negative frequencies produced by crossing over between 
sister strands. 

The conclusions have been stated in terms implying that a t  the time 
when crossing over occurs each chromosome is split into two separate 
strands or rows of genes. This assumption is not required by the mathe- 
matical analysis, and it leads to some difficulties which, together with the 
modifications they suggest, will be briefly considered. 
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(1) Crossing over between diagonal chromatids might prevent inter- 
change between two others a t  the same or neighboring levels by keeping 
them apart; but it is not obvious why a lateral crossing over should have 
the same effect. This suggests that when crossing over occurs sister chro- 
matids are not completely independent of each other. 

(2) It is difficult to see why two completely independent sister chroma- 
tids should not cross over with each other, particularly since a sister 
chromatid might change positions with a homologous one by crossing 
over with it. The evidence however does not actually show that sister 
strands do not cross over: such crossings over are not directly detectable 
since they result in no recombination of characters. Our criterion of their 
occurrence is really whether crossing over be tween homologous strands a t  
the same or neighboring levels is prevented, and the evidence shows that 
it is not. This could be explained if the sister genes are not arranged in two 
distinct rows but the genes a t  one level are oriented a t  random with respect 
to the genes a t  other levels; or to put it somewhat differently, there would 
be one row of double genes instead of two rows of single genes, and there 
would be no sister strand crossing over because there would be no sister 
strands (WEINSTEIN 1932~). 

It is not necessary however to assume that orientation of genes at one 
level is random with respect to all other levels; but only that it is random 
with respect to the next level a t  which crossing over occurs-a considerable 
distance, being in the X chromosome of Drosophila some 14 units or about 
one-fifth of its genetic length. It would be sufficient if within this distance 
orientation of genes were random on two sides of one interlocus; or if genes 
did tend to form two strings, but the tendency of two genes to remain in 
the same string decreased with distance between them and finally disap- 
peared when the distance became long enough for a second crossing over 
to occur. This might help to explain also why there is crossing over at all. 

(3) It is difficult to understand why two chromatids that are sufficiently 
closely associated to exchange parts are no more likely to associate to- 
gether a t  the next crossing over than either is to associate with a third. If at 
levels sufficiently far apart the orientation of sister genes is random, this 
difficulty disappears. 

Thus all three difficulties suggest that the two chromatids of a chromo- 
some are not entirely separate strands, and two of the difficulties can be 
explained if the orientation of sister genes a t  one level is random with re- 
spect to the sister genes of the same chromosome at other levels at which 
crossing over occurs. 

The limitation of crossing over at a given level to two chromatids re- 
quires however further explanation. If both sister genes are already formed 
at the time that crossing over occurs, it must for some reason be difficult 
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or impossible for both to become detached from their neighbors in the 
chromosome. This might be due to the persistence of a material connection 
between successive genes, or of some physical force. 

It is possible however that both sister genes are not already formed be- 
fore crossing over takes place; particularly if the new genes are formed not 
by division of the old ones but by being catalyzed by them. The limita- 
tion of crossing over could then be explained if the old genes remain linked 
at  the points of crossing over and only the new genes can become attached 
to new genes of the other chromosome, more or less as BELLING (1933) 
postulated. This might be brought about by the formation of the new 
genes on different sides of the old genes a t  different levels. There would 
still however have to be emerging chromatids made up of old and new 
genes of the same chromosome, to account for progressive crossing over; 
and this would come about if as the chromatids separate, old and new 
genes move a t  random at  different levels of crossing over, as has been sug- 
gested above. 

HISTORICAL NOTE 

The part of the present investigation dealing with random recurrence 
and constant p was carried out in 1928. An abstract published in that 
year (WEINSTEIN 1928) included a statement of the problem, the general 
formula numbered 2, the invariance of coincidence under certain condi- 
tions, and the applicability of the method to attached X’s and polyploids. 
The conclusion was drawn that association of strands in crossing over can 
not be entirely a matter of chance; this was based on the application of 
the formula for various values of p, including 1/3 (free sister-strand cross- 
ing over) and 1/2 (no sister-strand crossing over). The crossover frequen- 
cies worked out by BELLING (1931) and SAX (1932) correspond to the case 
p = 1/2 if different classes of the same rank are not separated. 

The theory was generalized by WEINSTEIN (1930); and the complete 
theory was presented in a paper and exhibits a t  the Sixth International 
Congress of Genetics (WEINSTEIN 1932a, 1932b). The exhibits included the 
originals of all the figures in the present paper, but the additional data 
based on table 8 have since been added to figure 4. The work on attached 
X’s and triploids was reported in the same year (WEINSTEIN 1932~). 

The derivation of formulas by sets of equations, as given in the present 
paper, was included in the writer’s report before the Congress of Genetics 
in 1932. Special cases of such sets of equations have since been used by 
MATHER (1933, 1935) and KIKKAWA (1934). 

I wish to thank Miss Grace E. Jones of the University of Minnesota for 
drawing figure 3;  and Mr. A. 0. Babendreier of the Johns Hopkins Uni- 
versity School of Engineering for drawing figures 1, 2, and 4, 
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