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For the past 20 years genetical methods have gradually been made more 
and more familiar to the practical breeders of plants and animals, upon 
whom the improvement for human use of the domesticated animals and 
cultivated plants finally depends. During this period it has become in- 
creasingly clear that the hereditary mechanism is well represented by the 
Mendelian scheme, as extended mainly by the work of the Drosophilists. 
It has been equally clear, however, that in all the practical problems of 
animal or plant improvement we are invariably faced with quantitative 
characters, which have shown themselves to be entirely intractable by 
the familiar genetical methods. These methods rest primarily upon the 
recognition of the effects of different single factors, and when these can be 
recognized the study of their effects in combination follows as a matter of 
routine. When individual factors cannot be recognized the analytic method 
of genetic study cannot even be commenced, and the question arises as to 
whether genetics as a science has any further resource to offer. 

The successes of analytic genetics have been obtained mainly with the 
numerous deleterious recessives which are abundant in most species, with 
certain easily recognizable characters of practical importance to the plant 
or animal breeder and with fancy characters such as the crest, or silky 
plumage in the fowl, which, however attractive to fanciers, cannot be re- 
garded as of general utility to mankind. The development of the quantita- 
tive characters on which practical utility is founded owes very little to 
genetic analysis except in so far as i t  has been demonstrated that i t  de- 
pends on a definite gene complex. This is implicit in the study of the indi- 
vidual effects of Mendelian factors without the means of evaluating the 
mass effects of a large number of minor factors severally influencing the 
utility character. We would stress, however, that the study of the metrical 
characters is not only of utilitarian interest. The nature of the heritable 
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elements which cause continuous or fluctuating variability must indeed be 
studied if progress in this direction is to be made possible; but such studies 
are also essential for an understanding of the evolutionary process by 
which organisms have been brought to their present state of organization 
and adaptation. 

Most of the many workers who have attacked the problem of quantita- 
tive characters have carried their work far enough to verify that the herit- 
able variability available was probably due to a large number of Mende- 
lian factors,’ interacting generally in a cumulative manner. The principal 
criterion has been the greater variance of the Fz as compared to the F1 
sample. These samples are, however, generally of very different magnitude, 
and care has not always been taken that the conditions of culture have 
been such as to make the comparison a valid one. It would seem essential 
for the purpose that the non-genetic causes of variability should be care- 
fully equalized. With plants, the cultures to be compared should be grown 
in the same year, and if, as is probable, the Fz is the larger culture, its vari- 
ability should be estimated only within areas of the same size as that oc- 
cupied by the F1; for, with uniform seed, we can always obtain a higher 
variability by using a larger area. 

In  the case of this comparison of variance, a biometrical technique has 
been used to verify a genetical conclusion. In seeking for further points in 
the genetical situation which biometrical methods, combined with an ade- 
quate cultural technique, might be able to evaluate, it should be borne in 
mind that, as a school, the biometricians have shown themselves singu- 
larly unreceptive to genetical ideas. Methods which are genetically ap- 
propriate will not therefore be found ready made, and constants such as 
the correlation coefficient, which have been introduced with the highest 
biometrical testimonials, while they probably have, in suitable cases, an 
appropriate use, have assuredly done as much to confuse as they have to 
clarify the subject. 

In  studying the properties of a system of interacting factors it has been 
shown (FISHER 1918) that departures from the simple additive law of in- 
teraction will usually have effects somewhat similiar to non-heritable modi- 
fications. We may therefore be confident that, even if a strictly additive 
interaction is not exactly realized, the mass effects of segregation in a large 
number of factors will closely simulate those of simple cumulative sys- 
tems. In  such a system certain special quantities, of which the mean and 
the variance are examples, possess the remarkable property that each is 
simply compounded of contributions derived from the several factors act- 
ing singly. Thus the heritable variance observable among any group of 
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organisms may be regarded as the sum of the variances due to the indi- 
vidual factors. The portion of the variance which is heritable may be 
easily estimated from the covariances or mean products of the measure- 
ments of related individuals so that, without being able to recognize any 
single factor, we have a direct means of estimating their total contribution 
to the heritable variance. 

This, however, is not enough to evaluate the selective potentialities of 
the population under examination. A number of further questions present 
themselves, most of which must a t  present remain unanswered. The same 
total variance might be contributed by a few factors each having a rela- 
tively large effect or by a multitude of smaller modifiers. In  both cases 
progress can be made a t  once by selection, but whereas in the first case 
such progress will soon be accompanied by a decrease in the variance avail- 
able, and will therefore soon be slowed down, in the second case progress 
can be continued much further in the same direction without the introduc- 
tion of fresh material. Equally important, and fortunately less elusive, is 
the incidence of dominance; for mass selection will be far more successful 
in establishing recessives having a desirable effect than in establishing 
dominants of like effect, and this provides an obvious reason why, in ma- 
terial which has already, consciously or unconsciously, been much selected, 
the recessives are generally found to be variants in the direction which is 
judged to be disadvantageous. 

We shall give some examples of the kind of data in which this bias in the 
prevalent direction of dominance, which selection must tend to introduce, 
appears to be shown. For the moment let us notice that effective biometri- 
cal methods of evaluating this bias will be of immediate practical value in 
the evaluation of the selective potentialities of a given population. From 
the purely scientific point of view it is also of importance that the domi- 
nance bias constitutes an existing record of the prevalent direction in which 
selection has acted in the immediate past. A geologist, by examining the 
population of individuals existing at  a given horizon, might be able not 
only to specify the mean value and the variance of any measurement in 
this population, but might have a direct indication of the direction in 
which this measurement was in process of change. 

STATISTICS OF THE THIRD DEGREE 

In  the study of the various methods by which the effects of biassed dom- 
inance may be brought to light, we shall be invariably led to the use of 
statistics of the third degree. Our knowledge of these quantities on the 
algebraic side is a t  present very incomplete. The birth of modern statistics 
GENETICS 17: Mr 1932 
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during the past generation may be typified by the transfer of attention 
from the totals and means characteristic of simple accountancy to the 
statistics of the second degree, the sums of squares and products, on which 
the whole apparatus of the calculus of correlations, or in more recent times 
of the analysis of variance and covariance, has been built. Statistics of the 
third and higher degrees have, of course, been used in fitting frequency 
curves and surfaces, but merely to evaluate empirical and arbitrarily 
chosen mathematical constants; and their practical inappropriateness for 
this purpose has been shown by their low efficiency in, for example, fitting 
the parameters of the Pearsonian curves. There is at  present no compre- 
hensive method of handling the statistics of the third degree analogous to 
the analysis of variance and covariance, to which nearly all work with 
second degree statistics can be reduced. Consequently, the methods we 
shall illustrate will probably be found to be capable of much improve- 
ment, and no exactitude can be claimed for the estimates of sampling 
error, or in consequence for the tests of significance. This, however, is a 
drawback which we may expect to be remedied with equal pace with the 
improvement of the experimental data, to which these methods may be 
applied. 

In the case of statistics of the second degree we distinguish between the 
variance derived from the squares of the values of a single variate, and the 
covariance derived from the products of the values of the two different 
variates. The corresponding statistics of the third degree are of three kinds: 
(a) those derived from the cubes of the values of a single variate, (b) those 
derived from the product of one variate with the square of a second, and 
(c) those derived from the product of three different variates. It will be 
seen that all three types are, in different cases, of value. For each type we 
must throw our calculations in such a form as to obtain an unbiassed esti- 
mate of some parameter which, like the variance, satisfies the cumulative 
property, and which in consequence is interpretable in terms of the indi- 
vidual factors of the Mendelizing system. 

For example, from a series of values of a single variate we can calculate 
the three statistics of the first, second and third degrees, namely, 

1 
kl = -S(X) 

n 

n 
k2 = -{ 1 

n - 1  
n 3 

ka = (n - l)(n - 2) ( S ( x 3 )  - -S(x”S(x) n 
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where S( ) stands for summation over the sample observed, and n is the 
sample number, which are equivalent if E is the mean, to 

kl =i7 

kz = -S(X - ii)z 1 
n - 1  

n 
(n - l)(n - 2) 

k3 = - S(X - $3 .  

Then it has been shown that kl,  kz, k3 are unbiassed estimates of quantities 
K1, Kz, K3 characteristic of the population sampled and possessing the 
cumulative property. 

A. B. D. FORTUYN (1931, p. 163) gives eight seriations for the frequen- 
cies of different numbers of tailrings in different strains of mice, derived 
from Mus  musculus, Mus wagneri and hybrids between these two forms. 
He was able to show that the variation in ring number was largely heredi- 
tary, for by selection from a common stock he obtained strains with average 
ring numbers, 142.6 and 216.2 respectively. Selection for high values of a 
variate should, when applied to a symmetrical population, generally shift 
the value of k3 in the negative direction; equally, selection for low values 
should shift it in the positive direction. The amount of these changes will 
depend on the number of factors present. In an ideal case in which selec- 
tion in opposite directions was applied to the F2 from two homozygous 
lines, so that all pairs of allelomorphs were present initially in a 1 : 1 ratio, 
the ratio of the change in k3 to that effected in the mean kl should be in- 
i tially 

- 3S(d4) 

S(d2) 
where 2d is the difference between the homozygous forms in any one factor, 
and S stands for summation over the different factors. The rate a t  which 
the third moment is modified for a given change in the mean is evidently 
greater, other things being equal, the smaller the number of factors to the 
segregation of which the variance of Fz is to be ascribed. As it stands it af- 
fords therefore a crude method of estimating or a t  least of setting a lower 
limit to the number of factors present. Although FORTUYN’S material was 
not formed as an F2 from homozygous lines, it  may be of interest to point 
out that the high selection line has in fact a negative k3, though, on the 
number counted, not a significant value. Of the seven lines given, however, 
two, both with high ring numbers, do show significantly negative k3, while 
a third with low ring number gives a k3 which is significantly positive. The 
GENETICS 17: Mr 1932 



112 R. A. FISHER, F. R. IMMER, AND OLOF TEDIN 

phenomenon to be expected thus does not seem to be beyond attainable 
precision. The seven values are as follows: 

TABLE 1 

1 ki I I g 1 n 

MUS wagneri 
L T M  
B W T W  
W T W  
Albino Mus musculus 
W M  
H T M  

138.8 
142.6 
150.1 
159.0 
189.3 
195 .O 
216.2 

-66.4 
-36.2 

+2162.1 
+467.3 
- 1194.0 
-1667.6 
-238.5 

- .095+ .228 
- .072 .229 
f.5812.199 
+.2782.182 
-.526+ .122 
-.sa+ .160 
-.258+ .143 

113 
111 
149 
179 
446 
230 
290 

The best available test for the significance of k3 (FISHER 1928) seems to 
be to calculate the ratio g=k3 k2-3/2; then for sampling from a normal 
population the true variance of g is 6n(n - l)/(n - 2) (n+ l)(n+3) and its 
distribution is, for samples over 100, sufficiently near to normality for sig- 
nificance to be inferred from the standard errors as shown in the table. The 
standard error will be used throughout this paper in testing significance. 

This example is illustrative only of the type of biometrical effect which is 
not beyond experimental precision, by which direct information may be 
obtained as to the distribution of the heritable variance among the genetic 
factors present. The interpretation of any particular body of data for which 
this effect was measured could evidently be carried much further by esti- 
mating also such quantities as the heritable variance and those unsymmet- 
rical effects ascribable to dominance. These latter will indeed, in practice, 
almost always complicate the interpretation of any data bearing on the 
size and number of the heritable factors. 

THE EFFECTS OF DOMINANCE BIAS ON F3 PROGENIES 

The observational facts that the cross (F1) between two strains fre- 
quently shows greater “vigour,” or growth rate, than either parental type 
and that inbred lines frequently show a falling off in size, which is revers- 
ible by a single cross, may be interpreted either on the view that there is 
among the genetic factors present a pronounced bias in dominance, in the 
sense that greater size is more usually dominant to less size, than vice versu, 
or, on the contrary, that the heterozygote in a single factor is frequently 
larger than either of the corresponding homozygotes. These two views 
differ considerably in their practical consequences, but the contrast may be 
reduced to the quantitative question of the normal position of the hetero- 
zygote in a single factor relative to the two homozygotes. 
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Let us suppose that two homozygotes differing in any one factor differ on 
the average in the metrical character under observation by a quantity 2d, 
so that the mean values for the two homozygotes differ from an arbitrary 
origin (the mid-point between the two homozygotes) by +d  and -d; we 
may then represent the average deviationof the heterozygote from the same 
origin by h. If h is generally positive, or a t  least generally positive for the 
more important factors, there will be in the system of factors considered a 
positive bias of dominance. The heterozygote for the whole group of factors 
will then exceed the mean of any two complementary homozygotes from 
which it might have been obtained. For any factor, if h lies between the 
limits - d and +d, dominance will be partial or incomplete, if it is equal to 
2 d dominance will be complete, but if it exceeds +d we shall have a case 
of superdominance. We shall consider how the biometrical data from F3 

progenies may be used to calculate whether the factors present as a whole 
have values of h which are positive, and if so whether there is evidence 
that they exceed the value d. 

Although the main object of this paper is to call attention to the signifi- 
cance of various statistics of the third degree, yet it will be convenient here 
to state briefly some second degree results, which, though long known in 
principle, have not, we believe, been developed in a form convenient for 
experimental utilization. The three phases of any factor, if fully viable, 
may be expected in F2 in the ratio 1 : 2 : 1. It easily follows that the contri- 
bution of such a factor to the variance in Fz will be 2(2d2+h2), when the 
deviations are measured from the mean, $h. The total observable variance 
in Fz does not, however, provide a satisfactory basis for evaluating directly 
the sum of these quantities, since, in all quantitative characters which are 
susceptible to environmental influences, a positive contribution will be 
made by environmental modification, and it does not appear that any ex- 
perimental refinement could altogether eliminate this source of error. In  
the case of the covariance, on the other hand, the environmental deviations 
will be equally frequently positive and negative, and will only lower the 
precision of the result by increasing the quantities upon which the estimate 
of error is based. The covariance is calculated from S (x - 2) (y -y)/n - 1 
where x and y are the two variates and n is the sample number., With much 
plant material two types of covariance may be fairly readily obtained: (1) 
the covariance between the Fz parent and the mean of the F3 progeny de- 
rived from it, the contribution of each independent factor to which is 
t(2d2+$h2) and (2) the covariance of parent and progeny when the F2 
are crossed inter se at  random, the value in this case being id2. From these 
two quantities we can, with precision limited only by the homozygosity of 
GENETICS 17: Mr 1932 
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the parent stocks, determine the part of the F2 variance which is geno- 
typic merely by taking twice their difference. What is equally interesting, 
the method shows a way of separately evaluating the ratio of the mean or 
average of the quantities h2 to that of the quantities d2, and so of discrimi- 
nating between the hypothesis that the system of cumulative factors is one 
in whi'ch dominance is generally absent or slight, as is often assumed, and 
the hypothesis more generally favored when hybrid vigor is manifest that 
dominance is as complete in the quantitative factors as it generally is in 
factors which can be isolated for separate study. 

Statistics of the second degree can obviously not distinguish whether h 
is positive or negative; they cannot therefore be used to investigate the ex- 
tent to which dominance is biassed. Indications of this may be obtained 
from the first degree statistics, the means, as when an F1 exceeds the mean 
of the parental values, and we infer that h is more frequently or more 
largely positive than negative. The comparisons of mean values, of which 
the most important is the difference between F1 and F2 is, however, a mat- 
ter of some experimental difficulty, especially when the number of F1 seeds 
is small, and, though they would be valuable in conjunction with other 
facts, by themselves they are not capable of more than a qualitative inter- 
pretation. From a set of Fa progenies, however, it  is possible to obtain 
three statistics of the third degree, which have a direct relevance. These 
are : 

(1) The mean value of the k3 from each of the progenies, to which each 
factor contributes ( -3/8)d2h. 

(2) The covariance of the kl and k2 in different FS progenies, to which 
each factor contributes +h(2d2+h2)/32. 

(3) The k3 of the means of different F3 progenies, to which each factor 
contributes ( -3/8)d2h. 

I n  respect of availability we shall show that no very extensive data are 
required to estimate the first of these quantities, while a larger number of 
progenies than in the examples to be given, with the exception of the barley 
data, though not an impossibly large number, would be needed to obtain 
good values for the second. The third would evidently be liable to large 
disturbances owing to the varying fertility of the areas upon which dif- 
ferent progenies must be grown, and is in any case liable to much larger 
sampling errors than is the first. The first process will therefore always give 
the preferable value. What is important, however, is that, by a comparison 
of the mean value of k3 with the covariance of kl and k2, it is possible direct- 
ly to distinguish between the views that an apparent effect of heterosis 
is due to ordinary dominance, either complete or incomplete, favoring the 
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kt 

4.286 
6.000 
7.590 
7.615 
7.647 
8.180 
8.480 
8.936 
9.539 
9.846 
9.886 

10.585 
12 .Ooo 

larger values, in which case a homozygote may be established as vigorous 
as any heterozygote, and the alternative view that in many factors the 
heterozygote is more vigorous than either homozygote. If we multiply the 
covariance by 4 its value will be greater than, equal to, or less than the 
mean value of k3 (with sign reversed) according as h (supposed positive) 
is greater than, equal to, or less than +d. With true superdominance four 
times the covariance should have a positive value exceeding the negative 
average value of k3 within F3 progenies, while if we are confronted only 
with a strong positive bias of the dominance, it should a t  most be equal to 
this value. If the system were of so simple a kind that in each factor the 
heterozygote was equal to the larger homozygote, we should find confirma- 
tion of the fact from the equality of S(h2) and S(d2), and should know that 
only by specific interactions could the average be raised above the level of 
the multiple heterozygote. Equally, if the covariance is less than this criti- 
cal value, it is clear that the possibilities of mass selection have not been 
exhausted. 

An example may be taken from the distribution of leaf length for 13 F3 
families of lettuce given by C. E. DURST (1930, p. 266). The mean leaf 
length in FI was greater than that of either parent, while the mean in Fz 

k, 

3.014 
13.143 
1.143 
7.126 
3.742 
6.559 

10.927 
4.061 
5.102 
8.974 
8.104 
2.786 
8.200 

TABLE 2 

I 
NUMBER OF 

INDIVIDUALS 

21 
8 

39 
26 
17 
50 
25 
47 
13 
13 
35 
53 
11 

ka 

1.427 
4.572 

-0.720 
-2.381 
-1.146 
-3.122 

-24.565 
-2.660 
-0.975 

-20.700 
-9.715 
-5.631 

-18.333 

was slightly shorter than the larger leaved parent; by this indirect com- 
parison the mean of Fz may be judged to be about 2.2 units less than in Fl, 
one unit being 1.5 cm. The numbers of individuals and the values of kl, kz 
and k3 obtained for the 13 F3 progenies are shown in table 2, differences of 
1.5 cm being taken as one unit, the first unit being a t  10 cm. 
GENETICS 17: Mr 1932 
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From these we find directly the mean value of k3 to be -6.458 2.532, a 
negative value, as the theory has indicated, which is statistically signifi- 
cant, but owing to the small number of families, not well determined nu- 
merically. For the covariance of kl and kz we have +0.492, which is, in ac- 
cordance with the theory of cumulative factors, positive, though no statis- 
tical significance is to be attached to this fact as its standard error is as 
high as 2.017. 

The k3 of the means of the thirteen F3 lines is found to be -3.476 k 6.159, 
a negative value, again in agreement with the theory but not significant. 
The sampling variance of the mean k3 has been obtained from the formula 
i l / (n-  l )n  ] S(k3-&J2, where n is the number of k3’s calculated, the vari- 
ance of the k3 of the Fa means from f6n/(n- l)(n-2) ] kZ3 and the vari- 
ance of the covariance of kl and k2 from (l/n- 1) {V(kl)V(kz) +Vz(klkz) ] 
where V(kl), V(kz) stand for the estimated variance of kl and kz in different 
families and V(klk2) for their estimated covariance. 

It will be observed that very different numbers of plants were obtained 
in the different Fa families, and consequently the precision of the statistics 
derived from them must be expected to vary greatly. We may anticipate 
in general that the best possible theoretical estimates will be something 
between those obtained by giving, as above, equal weights to all families, 
and the corresponding values obtained by weighting each in proportion to 
the number of plants recorded. To ascertain whether in this case weighting 
would give appreciably increased precision, the values were recalculated 
on the latter system. The standard error of the mean k3 was reduced from 
2.532 to 2.087, and that of the covariance from 2.017 to 1.427, showing 
that it will be found a decided advantage in the use of such data for our 
present purpose if the F3 progenies are approximately equal in number. 

This advantage is emphasized equally by the circumstance that the sta- 
tistics derived from the means of a limited number of plants will be affected 
by the k3 of their distribution about their means. Both the covariance and 
the k3 of the means require for this reason a correction algebraically equal 
to -ga/s where s is the number of plants per family. With variable family 
numbers i t  will doubtless be sufficient in applying this correction to use the 
harmonic mean of the actual numbers, but the existence of a correction of 
this kind is a sufficient reason for keeping the numbers of the F3 families 
as nearly constant as is conveniently possible. 

The fourfold value of the covariance of kl and k2 is here less than the 
mean k3, indicating that h is generally less than +d;  this is true even when 
the considerable correction + .360 is added to the crude value + .492. NO 
significance can, however, in this case be attached to the comparison, con- 
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sidering the magnitude of the standard errors. It is of interest to note also 
that the k2 of the Fz progenies, 9.536, was almost twice that of the weighted 
kz of the Fa progenies, that is, 5.468. The contribution of a single factor to 
the variance of the former would be $(2d2+h2), and to the latter +(2dZ+ 
h2). The comparison of the two variances thus suggests that a large pro- 
portion of the observed variance was in both cases genetic in origin. 

For a critical study far more extensive data would be needed. The data 
given here are recognized to be inadequate except to point out how the 
problem may be attacked. Not only would more plants be required in F2 

and the FI lines but the number of FQ lines should also be increased greatly 
in order that these should adequately sample the segregation in F2. With 
the use of sufficiently extensive data it should be possible to reduce the 
standard errors to limits which would permit of exact comparisons be- 
tween the different statistics and to fix the prevailing ratio of h and d with- 
in reasonable bounds. Replication, as a means of reducing the effect of 
soil variation, would be highly desirable. 

Another example will be taken from published data on inheritance of a 
quantitative character in maize. EWERSON and EAST (1911, p. 77) pre- 
sented data on inheritance of height of maize plants from a cross of Tom 
Thumb pop and Missouri dent, two open pollinated varieties. A guess 
mean was taken at  18 dcm, 1 dcm was taken as a unit and the following 
table computed from the sixteen different Fa distributions given : 

TABLE 3 

NUMBER OF 
INDIVIDUALS 

40 
114 
64 
65 
90 
85 
82 
85 
82 
95 
87 

149 
87 
93 
87 
76 
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ki 

-7.225 
-5.114 
-6.016 
-0.785 

2.011 
0.306 
1.488 
0.635 
1.598 
4.432 
1.805 
3.745 
4.207 
4.774 
5.862 
7.145 

kr 

2.076 
6.102 
2.524 
2.734 
4.685 
6.310 
6.944 
6.162 
3.503 
5.567 
5.182 
3.070 
5.422 
4.764 
2.981 
5.512 

ki 

0.597 
3.145 
0.106 

-3.155 
-2.975 

2.698 
-4.716 
-7.731 
-0.268 
-1.393 
-5.226 
-0.657 
-2.954 

4.943 
-0.162 
-0.011 
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The k2 of the FZ was 12.499 2 1.415 and the k3 of the Fz was - 15.6942 
8.666. From the table we find the mean kz of the F3 lines to be 4.596 k 0.389 
and the mean k3 of the Fa to be - 1.110 i 0.821. The latter is negative as 
expected for a dominance bias, but cannot be considered statistically sig- 
nificant with the data available. The covariance of kl and kz is found to be 
+ 1.925 k 1.795, a positive value as expected, but again not significant. 
Twice the value of the k2 of the F3 is here even less than the kz of the F2. 
The variance of the mean k2 of the F3 lines was obtained from the formula 
{ l/n(n- 1) ] S(kz-k2)2 where n is the number of F3 families. 

In the summary of the paper by EMERSON and EAST we find a statement 
relative to the “lack of skewness in the Fz frequency distributions” for the 
crosses employed in studies on inheritance of height of plants. Taking the 
total distributions for Fz in tables 25, 26, 27, 28 and 30 and the same for 
the Fz in 1911 in table 29 we may determine statistically whether these dis- 
tributions were or were not symmetrical. We find that (k3k2c3jZ) was 

0.192 and -0.161 k0.106 in tables 25 to 30, respectively. A negative bias 
is indicated in four of the six crosses tested; although in the second alone 
is the skewness statistically significant, yet two other negative values are 
suggestively large. 

Early studies of heterosis emphasized the fact that if dominance of 
growth factors were the explanation of hybrid vigor the F2 distribution 
would be skew. Such was not the case, it was argued. With a large number 
of growth factors the Fz distribution would tend toward the normal, and 
large numbers would be needed to demonstrate a negative bias. That such 
a negative bias is fairly common is demonstrated by the negative k3 found 
from the data examined in this paper. 

The maize data were obtained from a cross of two open pollinated varie- 
ties which were undoubtedly heterozygous in many of their factors for 
height. The data are given only to show how the problem may be attacked. 
Maize offers unusual possibilities for biometrical studies on quantitative 
inheritance. Some of the advantages of maize will be enumerated. 

Selfed lines are already available which may be considered homozygous 
for the greater part of their growth factors. Crosses are easily made and a 
large number of seeds usually obtained. It would be possible, usually, to 
self a sufficient number of Fz plants to obtain seed for tests in Fa and to 
leave sufficient seed of the Fz generation for comparison of the Fz with the 
F3 progenies in the following year. Since maize is very highly cross pol- 
linated, seed from the various Fz plants may be planted in an isolated plot 
also and allowed to cross inter se. 

-0.105 k0.120, -0.254i0.096, 0.028 k0.161, 0.012 kO.105, -0.355 i 
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Parent lines, F1, F2, F3 and lines from Fz plants crossed inter se can then 
be grown in a single year in a replicated yield trial. The value of careful 
replication cannot be over-emphasized for such a study as a means of 
eliminating soil variation. Until more information is available on this point 
it may be suggested that, say, 50 to 100 plants in each of 100 FS lines ought 
to give sufficient data for a critical study. These might well be grown in five 
replicated plots of 10 to 20 plants each. 

The contribution of a single factor difference to the following statistics 
may be noted: 

Statistics of the secund degree 

Variance of Fz %(2d2+h2) 
Mean variance of Fa progenies W (2d2 +h2) 
Variance of means of F3 progenies %(2d2+ %hz) 
Covariance of FZ parental value with mean of its F3 offspring %(2d2+?4h2) 
Covariance of FZ parental value with mean of its biparental offspring x d 2  
Mean variance of biparental progenies &(4dz+3h2) 
Variance of means of biparental progenies & (4d2+ h2) 
Mean variance of maternal progenies W(3d2+2h2) 
Variance of means of maternal progenies Wd2 

The biparental progenies are those obtained by crossing two F2 plants. 
The maternal progenies are taken to be the progenies of plants exposed to 
open pollination by sister Fz plants. Whether the multiplicity of measures 
also affords a method of measuring and eliminating the effects of incom- 
plete linkage, we have not investigated; it would seem premature to at- 
tempt this until biometrical studies with visibly classifiable factors have 
shown what kind of disturbance is to be looked for. 

Of the above statistics the four variances of individual values will 
usually be sensibly increased by environmental modification; the variances 
of the means could be freed from this bias, if the progenies are not grown 
on separate areas. The two covariances should be free from bias, and the 
experimental arrangement could be devoted solely to diminishing their 
sampling errors. 

Statistics of the third degree 
k3 of F2 
Mean k3 of Fa progenies 
Covariance of means and variances of F3 
Covariance of FZ parental value and variance of F3 
ka of means of Fa progenies 
Mean k3 of biparental progenies 
Covariance of means and variances of biparental progenies 
Covariance of parental values and variances of biparental progenies 
Covariance of biparental progeny and biparental product 
k3 of means of biparental progenies 
Mean k3 of maternal progenies 
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-xhd2  
- %hd2 

(h/32) (2dz+hz) 
(h/16) (2d2+h2) 

- %hd2 
- &hd2 
- Whd2 
-(h/32) (2dz-h2) 
- g h d 2  
- &hd2 
- M d 2  
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Covariance of means and variances of maternal progenies - %hd’ 
Covariance of parental values and variances of maternal progenies -&hd2 
kt of means of maternal progenies 0 

It will be noticed that the same quantities may be obtained experimen- 
tally in many different ways. This should afford a valuable empirical test 
as to the consistency of the genetical interpretation and will also prove 
valuable in detecting and eliminating the metrical bias, to be discussed 
later, with which statistics of the third degree, apparently with the excep- 
tion of the covariance of the biparental progeny mean with the biparental 
product, may be affected. For the moment we need only notice that since 
this bias is always of the same sign, significant values of opposite signs can- 
not but indicate genuine genetical effects. 

Some of these comparisons will be subject to greater errors than others. 
The previous examples show that the mean k3 of F3 lines is determined 
with much greater precision than the k3  of the means, or the covariance of 
kl and kz. One of the objects to be aimed at  in exploratory work of this 
kind must always be to ascertain which biometrical values, of those which 
have an important genetical interpretation, can be ascertained in practice 
with a useful degree of precision. 

In any case when both parental values are known as well as the mean of 
the progeny, the effect of this negative correlation of the progeny with the 
parental product may be exhibited by a purely biometrical procedure, one 
in which the relationships of the different parent stocks are not taken into 
consideration. We may in fact always calculate the regression of progeny 
values upon the three “independent” variates, maternal value, paternal 
value and parental product. Such a partial regression equationwas calculat- 
ed from data on row number from 46 backcrosses of maize kindly supplied 
by E. W. LINDSTROK From data on row number of both parents and mean 
row number of the progeny the partial regression of mean progeny row 
number was found to be given by 0.4418~ +0.5148y -0.0364~ where x 
and y are the maternal and paternal row numbers and p is the parental 
product. The covariance of mean of progeny on the product of parental 
deviations was negative as expected, but the value shown for partial re- 
gression was not significant, having in this case a standard error * .0369. 
The regression of progeny on mother or father was about one-half as ex- 
pected. 

There are, in general, two important sources of disturbance in biomet- 
rical studies concerned with a study of quantitative inheritance. The first 
may be termed the dominance bias. When dominance favours the larger 
values the segregating generations will tend to have a negative skewness 
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(as measured by k3). The extent of this bias will depend solely on whether 
dominance is complete or incomplete. The maximum skewness would be 
obtained when dominance is complete. With h greater or less than +d this 
skewness would be reduced. It is from the properties connecting h and d 
in different types of distributions and matings that these quantities may 
be estimated, as shown previously. 

Another source of bias is encountered also very frequently. This may be 
termed the metrical bias, since it depends on the scale of measurements 
used. It is a not infrequent observation that the standard error of yield 
of a group of plots on a field of low fertility is often higher than that of plots 
on a high fertility field. The yields of plots from a low fertility field vary 
more with slight variations in soil fertility than do plots on a field which is 
already producing nearer to its maximum. The kl of yields from a group 
of plots varying in fertility would, in such cases, be negatively skew. 

An example of this “inherent” negative bias will be taken from measure- 
ments of height of barley plants grown in different plots, with different 
nitrogen fertilizers, a t  the ROTHAMSTED EXPERIMENTAL STATION in 1928. 
The heights of sixteen plants were measured in each of 24 plots, the plants 
being selected at  random within each plot. The mean height in cm to the 
auricle of the last expanded leaf for all observations was 37.6175 cm. The 
mean k2 for the 24 plots of 16 plants each was 67.107 5 2.078 and the mean 
k3 of the same 24 plots was -194.099+61.231. The covariance of kl and 
k2 was - 14.369 5 13.248. A negative skewness is evident, indicating an in- 
herent negative metrical bias. The covariance is also negative, again indi- 
cating the same type of disturbance. It is not significant, however. Since 
a normal variety of barley was used, and barley is very highly self ferti- 
lized, this bias cannot be attributed to genetic segregation for plant height 
factors. 

These two sources of bias, the dominance bias and the metrical bias, will 
tend to counteract one another in the covariance of kl and k2 of the lines 
in genetical studies of quantitative inheritance. The extent of the disturb- 
ance due to the metrical bias will depend somewhat on which statistics 
are used. It will be greatest in the covariance of kl  and kz and will not be 
as serious a source of disturbance to the mean ka. 

Extensive data on height of barley plants from a cross of a two row (Bor- 
deum distichum nutans) and a so-called six row variety (Hordeum tetrasti- 
chum) made by TEDIN and grown a t  Weibullsholm, Sweden, in 1930, will 
be used to illustrate the type of information which may be obtained from 
such data. This study was made entirely on FI material. Two hundred and 
seventy Ft lines, segregating for the factors two row versus six row were 
GENETICS 17: Mr 1932 
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grown and individual height measurements obtained on 14,759 plants in 
these lines. The number of plants varied considerably in the different lines 
but weighting was not attempted. 

The mean height of all the F3 plants was 87.4 cm. Taking 5 cm as unit 
the mean kz of the 270 F3 lines was 3.475 f 0.077 and the mean k3 -2.176 f 
0.204, a negative quantity in accordance with the theory that dominance 
of factors for plant height should give a negative k3. This quantity was 
highly significant owing to the ample data on which it was based. Another 
third degree statistic was also available, that of the k3 of the means of the 
F3 lines. This was found to be -0.932 i- 0.567, a negative quantity as ex- 
pected but not statistically significant. Since replication of the F3 lines was 
not used this quantity would not be expected to be determined very ac- 
curately. The third statistic of the third degree calculated was the covari- 
ance of kl  and kz. This was found to be -0.564 f0.124, a negative quantity 
that was highly significant. If the dominance bias had been operating alone 
the covariance should be positive. The question arises as to whether the 
clearly significant negative value for the mean k3 is to be ascribed to the 
co-operation of both measures of bias, or principally or entirely to the met- 
rical factor. 

For moderate bias it may be anticipated that the bias in the mean of the 
k3 of the progenies will be proportional to six times the mean square of 
their variances, that is, to 81.8478, while the corresponding bias in the 
covariance of the means and variances of the families will be proportional 
to four times the product of the meaR variance of the progenies and the 
variance of their means. This comes to 33.6060 or more than one-third of 
that found for the mean of k3. Since the negative value found for the co- 
variance, when corrected, as before explained, for the limited number 
measured in each family, is just less than a quarter of the mean value of 
k3, we may conclude that the negative value of the covariance may be 
wholly accounted for by metrical bias without abolishing at  the same time 
the negative values for k3. In this case, however, it is clear that metrical 
bias has been a major factor in both values, and even the ample material 
measured would not allow us to attach significance to the residual genetic 
effects remaining after the metrical bias had been removed. It would, of 
course, be not surprising with a normally self fertilized plant, such as bar- 
ley, that the pronounced bias in the dominance of genetic factors, com- 
parable with that indicated for maize, should be absent or inconspicuous. 

The average height of the 2 row, heterozygous (that is, for the 2 versus 
6 row factor pair) and 6 row plants in the F3 lines segregating for the 2 
versus 6 row factor pair was found to be 88.2405, 88.0035 and 83.1190 cm, 
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respectively. The heterozygous group of plants cannot be considered signifi- 
cantly different in height from the 2 row plants. Apparently, therefore, 
as far as height factors linked with the 2 versus 6 row factor pair are con- 
cerned, no evidence of superdominance could be found. It seemed of inter- 
est to determine next the average variance (kz) of height of the 2 row, het- 
erozygous and 6 row plants when these were segregates in the same Ft 
lines and grown on the same areas of land. The average kz’s were 87.6675, 
84.1100 and 70.9825 square cm, respectively, for these three groups. The 
mean kz of the 2 row plants was 3.5575~k3.2275 square cm greater than 
the kz  of the heterozygotes and 16.6850 k 3.5950 square cm greater than 
that of the 6 row plants. The mean kz of the heterozygotes was 13.1275 k 
2.6500 square cm greater than the k2 of the 6 row plants. The first of these 
differences is not statistically significant but the latter two are. When, 
however, the standard errors (&z) were expressed in percent of the mean 
heights, values of 10.61, 10.42 and 10.14 percent were obtained for the 2 
row, heterozygous and 6 row groups. Apparently when the standard errors 
of the heights of these three classes of segregates, grown on the same small 
plots of land, were expressed in percent of the mean height the coefficient 
of variability was practically constant for the three groups. 

SUMMARY 

1. A genetical interpretation is given for various second and third mo- 
ment statistics which are of use in studying quantitative inheritance. 

2. Published data taken from lettuce and maize, and unpublished data 
from barley crosses are used to illustrate how the problem may be at- 
tacked. The special needs of data adequate for this purpose are illustrated, 
and certain possible precautions in planning the experiments are pointed 
out. 

3. A study of the skewness of seven distributions for strains of mice 
selected for high and low tailring number indicated that the theoretical 
negative association between the statistics kl and k3 in selected strains 
could probably be evaluated. 
4. Formulae are given by which the effect of the dominance bias in the 

heterozygote in relation to the measurable characters of the homozygotes 
in Fz or F3 distributions or various types of crosses may be calculated. 

5. The two common sources of bias (metrical and dominance) are dis- 
cussed and data from a barley cross used to illustrate the results obtained 
when the former is of major importance, 

6. Since the combined effect of the dominance and metrical biases may 
be obtained experimentally in many different ways, an empirical test of 
GENETICS 17: MI 1932 
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the consistency of the genetical interpretations is available, as well as an 
opportunity of evaluating and eliminating the metrical bias. 

7. Standard errors are given for the different statistics used. 
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