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lNTRODUCTION 

A large number of ratios showing the  proportions of crossing over that 
occur between different pairs of genes have been determined experimen- 
tally for a  particular organism, Drosophila melanogaster, and published 
by MORGAN and his co-workers. These ratios show among themselves 
a number of extraordinary relations, which demand explanation from some 
unified point of view. The explanation proposed by  the workers on 
Drosophila,-the  so-called “Linear Theory,”-is that  the genes are 
arranged  in  the chromosomes in serial order, and that crossing over occurs 
by  the breaking of these linear series, and exchange of parts  by  the  two 
chromosomes a t  the time they  pair. 
GENETICS B: 393 S 1923 



394 H. S. JENNINGS 

The present author ( JENNINGS 1918) examined the numerical  relations 
involved  in  a  theory of crossing over proposed by GOLDSCHMIDT (1917) and 
showed that these are inconsistent  with the observed relations. I then 
undertook  a similar study of the numerical relations necessarily implied 
by  the “linear”  theory. At  the same time  a similar study was carried out 
by HALDANE, who published in 1919 a  paper in which some of the  mathe- 
matical  relations  required by  the linear  theory were set  forth. I therefore 
did  not at  that time complete nor  publish  my own study. HALDANE’S 

paper is, however, incomplete; it does not  bring out  many of the most 
important relations  demanded by  the linear  theory,  nor does it portray 
the complex system of relations  presented by  the observed ratios; so 
that  its  author  did  not  enter upon  a full comparison of the required and 
the  actual conditions. 

The present  paper  therefore attempts  to analyze  with some thorough- 
ness the conditions  required by  the linear  theory,  in order to see  how far 
the  ratios  and relations  found  in nature  are consistent  with  and  demanded 
by them. If the linear  theory  is to be looked upon  as  a  correct  account 
of the conditions in  nature, certainly  a full exposition of the  mathematical 
relations which it involves  is needed. And such an exposition and com- 
parison will be found to furnish an illuminating,  perhaps crucial, test of 
the  theory. As will appear,  there is  a complex system of relations of a 
really  astonishing  character shown by  the known  ratios,  and  any general 
theory  is  almost  bound to  betray  its  truth or falsity when confronted 
with  this  system. Our analysis will lead us to  deal  incidentally also with 
the other theories of crossing over. 

The time  appears ripe for such an examination. The recent extensive 
study of the  characters connected with  the second chromosome of Dro- 
sophila, by BRIDGES and  MORGAN (1919), and  the still more-recent sum- 
mary for the  three  large linkage groups of Drosophila by BRIDGES (1921), 
have,  with  the earlier  paper on the first-chromosome group by  MORGAN 
and BRIDGES (1916), and  the  many papers of more limited scope, by 
MORGAN  and his co-workers, made  available  a mass of most  valuable data 
for such an examination. 

THE SYSTEM OF RELATIONS  FOR WHICH A THEORY IS REQUIRED 

TO ACCOUNT 

Crossing over is of course a phenomenon of experimental  breeding; 
it may be dealt  with  quite  independently of any  theory of the  arrangement 
of genes or of their  relations to  the chromosome. So considered, it consists 
in  the following: When t o  form an individual  there  unite two gametes, 
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one carrying two genes AB that follow the same chromosome, the  other 
gamete carrying two alternative genes ab, we find that the  gametes later 
formed by this new individual  have mainly these same combinations, 
A B  or ab. But  in a  certain  proportion of the gametes we find the new 
combinations A b  and aB,”so that A has “crossed over” to  join with b, 
and a t o  join with B. The proportion of all cases in which these new 
combinations are found is called the crossover ratio,‘ and  it varies for 
different pairs of genes from less than one-half of one percent to  about 
fifty percent. 

It is  the  fact that the  ratios for different pairs of genes  differ, although 
there  is  a relative constancy in  the  ratio for any given pair, and  the  fact 
that these ratios when compared show a  number of striking and peculiar 
interrelations, that yield the basis for theories of the  matter. These 
interrelations  may be illustrated  as follows: 

Among the genes connected with  the first or X chromosome of Drosoph- 
ila, that have been most fully studied, are  the nine given in  the following 
table. If we examine the crossover ratios of each of these with  all the 
others  (as given by MORGAN and BRIDGES 1916), we find that they yield 
the following table, in which the order is simply alphabetical.  (The 
ratios  are given as percentages.) 

TABLE 1 

Table of best-known crossoaer ratios in chromosome I of Drosophila.  Genes arranged alphabetically. 
(From MORGAN a.nd BRIDGES 1916). 

Bar 

Bar.. . . . . . . . . . . . . . . . .  
Bifid.. . . . . . . . . . . .  

47.9 Yellow., . . . . . . . . .  
43.6 White.. . . . . . . . . . .  
23.9 Vermilion. . . . . . . .  
13.8 Sable . . . . . . . . . . . .  
2 . 3  Rudimentary, . . . .  

20.5 Miniature. . . . . . . .  
? Club.. . . . . . . . . . . .  
? 

Bifid Club 

_____ 
? ?  

. . . .  
? 

? 30.6  

? 

42.7 ? 
? ?  

31.1  18.8 
5 . 3  14.3 
5 .5   17 .7  

. . . .  

~ 

Minia- 
ture 
__ 
20.5 
30 .6  

? 

17.9 
6 . 7  
3 . 1  

33.2 
34.3 

. . . .  

__ 

Rudimen- 
tary 

2 . 3  
42.7 

? 
17.9 

14.3 
21 .1  
42 .4  
42 .9  

. . . .  

Sable 

13.8 
? 
? 

6 . 7  
14 .3  

10.1 
41.2 
42 .9  

. . . .  

- 

Vermil- 
ion 

23 .9  
31.1 
18.8 
3 . 1  

24 .1  
IO, 1 

30 .5  
34 .5  

. . . .  

White Yellow 

”- 

43.6  

1 . 1  . . . .  
34.5 30.5 
42.9  41.2 
42 .9  42 .4  
34.3 33.2 
17.7  14.3 
5 . 5   5 . 3  

47 .9  

1 . 1  . . . .  

In this merely alphabetical  table, one cannot fail to notice certain 
peculiar features. The ratios of white and of yellow with the other genes, 

The above is the sense in which  the  terms  crossover  and  crossover  ratio have hitherto been 
used in the literature. I understand that the workers on Drosophila  are  considering the substitu- 
tion of “recombination”  and  “recombination ratio” for these terms, employing the term  “cross- 
over” in another sense. 

GENETICS 8: S 1923 
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for example, are parallel  throughout  with  the  values for yellow a little 
above  those for white. A similar relation,  though less completely carried 
out, is seen on comparing the  ratios for miniature  and vermilion, or those 
for bar  and  rudimentary.  Further it will be observed that  the ratios for 
certain genes with the  rest  run higher than for certain  others. Thus, for 
miniature  the  highest  ratio  found  is 34.3, and  the average is 20.9, while 
for yellow the highest  is 47.9 and  the average  is 28.35. These and other 
relations discoverable by  study suggest that there  is some system in these 
ratios. It appears  worth while to  try arranging  them  in order with 
respect to  particular genes, allowing the rest t o  take  the places into which 
this order forces them,  in order to see if any system  is thus revealed. We 
may select for this  purpose the gene having  the lowest mean  ratios (minia- 
ture) or that showing the highest  (yellow); or any other. Various selec- 
tions give results of interest;  that obtained by selecting as  the basic gene 
the one with  the  highest  mean  ratios (yellow) gives however the most 
illuminating  results.  When we so arrange  the  other genes as t o  give the 
ratios  with yellow in order from lowest t o  highest, letting  the remaining 
ratios fall where they  must, we obtain  table 2. 

TABLE 2 

Table of best-known crossover ratios  among genes of chromosome I of Drosophila, arranged in series 
with reference to that gene having the highest mean ratios  (yellow).* 

Yellov 

Yellow. . . . . . . . . . . . .  
White . . . . . . . . . . .  

5.5 Bifid.. . . . . . . . . . .  
1.1 

4Z.9 Bar.. . . . . . . . . . . .  
42.9 Rudimentary. . , . 
42.9 Sable. . . . . . . . . . .  
34.3 Miniature. . . . . . .  
34.5 Vermilion.. . . . . . .  
17.7 Club.. . . . . . . . . . .  

l 

i 

" 

- 

White 

1 . 1  

5 .3 
14.3 
30.5 
33.2 
41.2 
42.4 
43.6 

. . . .  

- 

Bifid Club 

____ 
5.5 

? . . . .  
14.3  5 .3  
17.7 

? . . . .  
31.1  18.8 
30.6 ? 

? ?  
42.7 ? 

? ? ___- 

Vermil- 
ion 

34.5 
30.5 
31.1 
18.8 
. . . .  
3.1  

10.1 
24.1 
23.9 

Minia- 
ture 

34.3 
33.2 
30.6 

? 
3.1 

6.7 
17.9 
20.5 

. . . .  

" " 

Sable 

__ 
42.9 
41.2 

? 
? 

10.1 
6.7 

14.3 
13.8 

. . . .  

" 

Rudimen- 
tary 

42.9 
42.4 
42.7 

? 
24.1 
17.9 
14.3 

2.3 
. . . .  

Bar 

47.9 
43.6 

? 
? 

23.9 
20.5 

2.3 
13 .n 

. . . .  - 

If this  table be examined, by following the columns from  above down- 
ward, or the rows from left t o  right, it is a t  once evident that, with  slight 
irregularities, the  entire  set falls into a  system,  although we have  arranged 

* In the case of miniature (34.3) and vermilion (34 .S) the ratios with yellow are so nearly 
identical that the  difference (0.2 percent) lies far within the probable error, and  there  is conse- 
quently no  direct clue to the order in which these two genes should be placed. I have employed 
the order which relates them most  naturally to  the discoverable system of relations. If they be 
interchanged the irregularities of the system will  be slightly increased. 



ARRANGEMENT OF THE GENES IN A LINEAR  SERIES 397 

it in order only with reference to  the gene yellow. The ratios  with  white 
form  a series parallel t o  those  with yellow, but each  a little lower in value, 
while the  ratios  with  bar form a similar series, but  in  the reverse  order of 
magnitude.  For  the  other genes the  ratios fall into two partial series," 
one with  magnitudes  increasing as  in  that for yellow, the  other  in  the 
reverse order. A similar table will be given if we arrange  the  ratios 
between the best-known genes of the second chromosome of Drosophila 
in  a  table  in  their  order of magnitude  with  relation to  the gene having 
the highest  mean  ratio. According t o  BRIDGES and  MORGAN (1919), 
the  eight  best-known genes of the second chromosome are black,  curved, 
dachs,  purple,  speck, star,  streak  and vestigial. If the reader will take 
the  ratios given by BRIDGES and  MORGAN  and  arrange  them  in series of 
magnitudes  with  relation to  star or speck,  he will obtain a table showing 
the same  peculiarities as does table 2.  

Careful  examination of such a  table  reveals general relations, which 
we will formulate  under  the following numbered  basic  propositions: 

Basic  propositions 

1. The ratios vary from below  one-half percent to  about fifty  percent. 
(In Drosophila,  ratios as low as  four-tenths  percent  are recorded, 

and I am informed by  Dr.  MORGAN  that  ratios a t  least as low as two- 
tenths percent occur.) 

2. If two genes show with one another  a low crossover ratio,  they 
show nearly the same  ratio, low  or high, with  any  other gene. (Thus 
yellow and white  respectively show with rudimentary  the  ratios 42.9 
and 42.4; with  club the  ratios 17.7 and 14.3, with bifid 5.5 and 5.3, etc.) 

3. If two genes have  together  a  high ratio (as  do yellow and  bar), 
their ratios  with  particular  other genes are  very  diverse. 

4. The  greater  the  ratio of two genes together, on the whole the more 
diverse their  ratios  with  a given other gene. 

5. If any two genes, A and B, have  together  a  certain  ratio, and 
B has  with  a  third gene C a  certain  ratio,  then  the  ratio of the first ( A )  
with  the  third (C) is  either  a  little less than  the sum of the  ratios A-B and 
B-C, or a little more than  their dijerence. 

Thus,  the  ratio of yellow to club  is 17.7; of club to vermilion 18.8. 
Their  sum  is 36.5, while the  ratio of yellow t o  vermilion is 34.5. The 
ratio yellow-bifid is  5.5; of bifid-miniature 30.6; their  sum  is 36.1, while 
the  ratio of yellow to  miniature is 34.3. 

Again, the  ratio white-vermilion is 30.5; vermilion-club 18.8; their 
difference is 11.7, while the  ratio white-club is 14.3. 

'. 

GENETICS 8: S 1923 
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6. If for the gene having  the highest mean ratios, as yellow, we 
arrange in ascending order the series of its  ratios  with  the other genes," 
allowing the position of all the genes to  be thus determined,-then all 
the ratios fall into  a  systematic  table  (as  table 2),  having  the following 
characteristics: 

7. Genes having  a low ratio  with  this basic gene (e.g., white) show 
with the others a similar ascending series of ratios, but with each ratio 
slightly less. 

8. Genes having  a higher ratio  with  this basic gene  show a similar 
ascending series of ratios with genes having a still higher ratio  than its 
own with  the basic gene (though with the  ratios much decreased in value) ; 

9. But a reverse series with all the genes having a lower ratio than 
its own with this basic gene. (Cf. the  ratios of vermilion with others.) 

10. In a  table so arranged, if in any column (or  row) we take for a 
gene A its two ratios  with B and with C ,  these lying on the opposite sides 
of the diagonal, then  the sum of these two ratios gives approximately, 
but somewhat more than,  the  ratio between B and C. 

Thus if A is vermilion, B is white and C is miniature,  then  ratio A-B is 
30.5, ratio A-C is  3.1; their sum is 33.6, which is a  little more than  ratio 
B-C, which is 33.2. 

The difference between the sum and  the  ratio B-C becomes greater 
as B and C are  farther  apart  in  the table. 

11. But if B and C are so chosen that the  ratios A-B and A-C lie  on 
the same side of the diagonal, then  the dijerence between A-B and A-C is 
approximately, but a  little less than,  the  ratio B-C. 

Thus, if A is vermilion, B is white and C is club, the  ratio A-B is 30.5; 
ratio A-C is 18.8; their difference  11.7 is a  little less than  the  ratio B-C, 
which is 14.3. 

T o  these relations, evident from the  table,  must be added  certain 
others that have been established by experiment: 

12.  When there occurs a crossover between any two  genes of the 
series  (shown in  the upper row of table 2),  there occurs  also as  a rule a 
crossover between any gene lying to the  right of these two and  any other 
lying to the  left of these two. 

Thus, if there occurs a crossover between vermilion and sable, as 
a rule there occurs  also a crossover between club and sable, club and 
rudimentary, club and  bar, white and sable, white and  bar,  etc.,  etc. 

13. But in such a case there is as a rule no  crossover between two genes 
in  the series  on the same side of the two  genes that show a crossover. 
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Thus, if there  is  a crossover between vermilion and sable,  there is 
as a  rule no crossover between any of the genes yellow-white-bifid-club- 
vermilion;  these  all  remain  in the same  grouping as before. 
14. That is, such series as  are represented in  the rows or columns of 

table 2 usually in crossing over separate  into  two  groups a t  a certain 
place in  the series, all the members of one group showing a crossover 
with  all the members of the other. 

15. But in  relatively  rare cases, such  a series separates a t  two  points 
in such a way that all the genes between the two  points show crossovers 
with  all  the genes outside the two  points.  Still  more  rarely, the series 
separates a t  three  points. 

16. I n  a considerable proportion of the cases (30 to 50 percent),  no 
crossing over occurs between any of the genes of the chromosome. (Thus, 
in  the X chromosome of Drosophila, MULLER found that there  is  no 
crossing over between any of the genes from yellow to  bar,  in 54.4 percent 
of the cases.) 

17. When  a crossover occurs between two genes, A and B, having 
together  a low ratio, no crossover occurs between one of these genes 
(as A ) ,  and  any other gene C having  a low ratio with A and  lying  in  the 
series on the opposite side of A from B. Or:  such  a series as  that of 
table 2 does not  break a t  two  points that  are close together  (“inter- 
ference”). 

These  relations are shown not alone for the 9 genes given in our  table. 
If we take  the  other genes of the X chromosome, they fall, as  far as the 
data on them goes, into  this same  system. Or if we select the  most 
thoroughly  studied genes of the second chromosome of Drosophila, we 
find that  they yield a table similar to  table 2, and  the propositions set 
forth  above  apply  equally t o  them. 

It is important t o  observe that all  these  relations (table 2, and propo- 
sitions 1 to 17) are  purely  experimental  results of breeding; they  do 
not depend  in the  least  upon  any  theory of what crossing over is or of the 
arrangement of genes. So far  as these  relations have come to  the con- 
sciousness of investigators  not engaged in work on Drosophila, it appears 
to  be  the impression that they  are simply postulates of some particular 
theory. On the  contrary  they  are  statements of observed  fact. 

It is of course true  that these  relations hold only  approximately, so 
far  as precise figures are concerned. But when one considers the extremely 
long and complex process of experimentation  required  for  obtaining  each 
of the  ratios;  the  great number of extraneous  factors coming in t o  disturb 
the precision of the results, and  the  number of conditions  known to 
GENETICS 8 S 1923 
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modify the crossover ratios, it must  appear  marvelous that  the system 
reveals itself so unmistakably  as it does in  tables  arranged  as in  table 2. 
To come out so clearly from beneath such a  load of extraneous  conditions 
the system must be of some extremely well-defined character. 

It is clear then that there is a  system  underlying the  ratios of crossing- 
over; es  deutet das Chor aGj ein geheimes Gesetz. What is the law that 
yields this  remarkable  system? It is idle to  propose theories of crossing 
over that ignore or conflict with  this  system; it is for these  relations that 
a  theory  is called upon to  account. In  view of the numerous, complex 
and  extraordinary relations shown (set  forth  in propositions 1 to 17), 
it would appear  improbable that  any  great number of diverse theories 
could equally well explain the results;  apparently  a  correct  theory  should 
show itself unmistakably. 

THE “LINEAR” THEORY OF CROSSING OVER 

The so-called “linear”  theory holds that  the system set  forth  above 
is  due  to  the  arrangement of the  material genes in  a serial order; that  the 
genes either are  the particles seen under  the microscope arranged  in 
serial order in  the chromosomes a t  the stages when the  latter pair in  the 
formation of the germ cells, or that  at least  the genes have the same 
arrangement  as these  particles. Crossing over, it is held,  is the  breaking 
and  interchange of parts of the two chromosomes while they  are paired 
side by side. Naturally, it is set  forth, genes that  are  far  apart become 
separated by breaks more frequently  than  do those close together;  and 
it is to this that  the system described above  is  due.  There  results  a series 
of diverse ratfos,  from  high to  low, as found  in  experimental breeding,- 
these  corresponding t o  genes varying  in distance, from contiguity t o  wide 
separation. 

T o  judge of this  theory, we require an examination of the  relations 
that  must hold if the genes were so arranged, for comparison with  the 
relations  found  in the breeding  experiments. Would there  result  from  a 
serial arrangement  the  relations  illustrated  by  table 2, and  formulated  in 
propositions 1 t o  17 above?  Further, would there  result the  particular 
numerical  values  actually recorded in  the experimental  studies?  Under 
this second question we have specifically to  inquire: 

(1) Whether  there would result the crossover ratios found  in nature,- 
limited in  the way that  they  are; 

(2) Whether  the  distances between genes measured  in the  standard 
units of length  (each  such  as to give 1 percent of crossing over), shown 
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in  the  current  diagrams of the chromosomes (e.g., BRIDGES 1921) would 
result ; 

(3) Whether  the  numbers of breaks  in  the chromosome, that observa- 
tion,  interpreted on the linear  theory, shows t o  occur, would result  from 
the presuppositions of that theory. 

OBVIOUS  COINCIDENCES AND DISCREPANCIES  BETWEEN  THE  RELATIONS 

REQUIRED  BY  THE  LINEAR  THEORY,  AND  THOSE 

SHOWN  BY  THE  RATIOS 

On the linear  theory the genes in a chromosome are comparable to a 
string of beads. Two such strings  (in  the known pairing of the chromo- 
somes) lie side by side and  intertwine or partly fuse; they break a t  times 
and change partners; a  portion of each  string  reunites  with  a  portion of 
the  other to  form a new string. If this were true,  what would be the rules 
and  ratios of crossing over? 

The obvious strong  point of the linear  theory is  that it accounts  directly 
for the  facts  set  forth  in our propositions 12 to 15,-according to which 
crossing over occurs between continuous  groups of genes forming the 
series of table 2. If before crossing over the genes of the two chromosomes 
form the  two series 

A B C D E F G H  
a b c d e f g h  

then  after  a  break occurring between the genes C and D ,  with  resulting 
change of partners, we have 

A B C d   e j g  h 
a b c D E F G H  

And by  the occurrence of two or more  breaks we obtain such  results  as 
A B C d e   f G H   A B c d E F g  h 
a b   c D E F g h  or a b C D e   j G H  

But does the linear  theory  account for the remaining  relations? If we 
hold the genes A t o  H t o  be separated by equal  distances, say  ten  units 
each, and if we then  tabulate their  distances  from  each  other,  beginning 
with A ,  we obtain a table  having  many of the  properties shown in  table 2 
for the crossover ratios.  Such  a  table of distances  is given in  table 3. 

Examining  table 3, we find that it shows most, but  not all, of the  proper- 
ties set  forth  in our propositions 1 t o  17,  above. I n  detail,  the  identities 
and differences are as follows. The  table of distances shows, if we sub- 
stitute “distances”  for  “ratios,” precisely the  relations shown in propo- 
sitions 2, 3, 4, 6, 7,  8, 9; and  the  assumption underlying it accounts,  as 
before  remarked, for proposition 12,  13, 14 and 15. But with  regard to  
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propositions 5 ,  10 and 11,  while the relations are analogous in  the two 
cases, there is a  systematic difference. In  the  table of distances, the rela- 
tions formulated in propositions 5 ,  10 and 11 are  exact;  instead of saying 
in proposition 5 that the  ratio of A t o  C is “a  little less than  the sum or a 
little more than  the difference” of ratios A-B and B-C, we have to say for 
the distances that the distance A-C is precisely the sum or  precisely the 
difference of the distance A-B and B-C (where A ,  B and C may  represent 
any of the  letters A t o  H ) .  Similarly, in proposition 10, the sum of dis- 
tances A-B and A -C gives, not more than B-C, but  just B-C; and in proposi- 
tion 11, the difference between A-B and A-C is not less than,  but exactly 
B-C. This  systematic “more than” or “less than”  in  the table of ratios 
requires accounting for. Further we find in  the  table of distances nothing 
related to  or accounting for the  facts  set  forth  in propositions 1, 16 and 17. 

TABLE 3 

Table of distances between nine serial points lying ten  units apart on Q line. For comparison  with 
the  relations  shown in the table of crossover ratios. 

A 

A . .  
B 

E 
30 D 
20 C 
10 

80 I 
70 H 
60 G 
50 F 
40 

” 

B 

10 

10 
20 
30 
40 
50 
60 
70 

. .  

C D 

20 
10 

10 
20 
30 
40 
50 

. .  

30 
20 
10 

10 
20 
30 
40 
50 

. .  

E F 

40 50 
30 40 
20 30 
10 20 
. .  10 
10 
20 10 
30 20 
40 30 

. .  

G 

60 
50 
40 
30 
20 
10 

10 
20 

” 

. .  

H 

70 
60 
50 
40 
30 
20 
10 

10 
. .  

I 
” 

80 
70 
60 
50 
40 
30 
20 
10 
. .  

It is of course a  striking  fact that such a  table of linear distances shows 
a considerable number of the curious relations shown by  the crossover 
ratios;  this gives the linear theory  a  certain prima facie probability. 
Strictly, however, these coincidences do not  directly  support  the linear 
theory, for we are dealing in  the one  case with  ratios,  in  the  other  with 
distances. What we require is t o  know whether the  ratios themselves 
would  give such a  system, if they  are  brought  about  in  the way the linear 
theory  sets  forth. We require t o  know whether they would  show the 
same coincidences with the system found in  the genes as are shown by 
the  table of linear distances. And further, would they manifest the same 
discrepancies with  the relations shown  by the distances, that we have just 
noted in connection with propositions 5 ,  10 and 112 Can the linear theory 
account for the “less than”  and “more than” of these propositions? Does 
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i t  account for the relations set  forth in propositions 1, 16 and 17,  which 
are  not shown by  the  table of distances? If the linear theory is correct it 
must yield and indeed require all the relations set  forth  in our 17 proposi- 
tions. 

More than this,  the linear theory, if correct, must be consistent with the 
actual values found for the crossover ratios, in their relations one t o  an- 
other, and with  the frequency of occurrence of single, double, and triple 
breaks, and of no-breaks, in  the series  given in table 1. 

Can it  fulfil all these requirements? 

RELATIONS  REQUIRED  BY  THE  LINEAR  THEORY 

We  now  proceed to  an examination of the  assumptions and require- 
ments of the linear theory. 

If, as it sets  forth,  the serial strings of genes break and cross over a t  
times, either  the breaks must occur as frequently between any two con- 
tiguous ,genes as between any other two, or they occur more frequently 
a t  certain  points than at  others. Further, conditions might be such that 
(as is commonly held t o  be the case), the occurrence of a  break a t  a given 
joint would interfere  with the occurrence of another  near  by. As a basis 
for the  treatment, i t  is necessary to  examine first the generalized case in 
which breaks are equally frequent a t  all joints, and there is no inter- 
ference; then  the modifications required if these conditions do not hold 
may be set  forth. 

THE  RULES  FOR  CROSSING  OVER  WHEN  THE  OCCURRENCE OF ONE  BREAK 

DOES NOT INFLUENCE THE OCCURRENCE OF OTHERS (NO INTERFERENCE) 

On the linear theory, in a  particular chromosome, a crossover will have 
occurred between any two genes, A and M (close together or far  apart), 
when a single break has occurred between them; for then  the  two that 
were formerly in  the same chromosome  will  be in diverse chromosomes. 
But,  as shown by  the  diagrams on page 401, if just two breaks  have oc- 
curred between the two  genes, they  still remain in the same chromosome 
(though a piece between them  has been exchanged), so that in experimen- 
tal breeding no  crossover  would  be found to have occurred so far as A 
and M were concerned. And in general, consideration shows that, on 
this  theory, whenever the  number of breaks between two genes, A and M ,  
is odd, they will have passed into different chromosomes, so that a cross- 
over has occurred for the pair A - M ;  while whenever there is an even num- 
ber of breaks between them, or no break  whatever, A and M are still  in 
the same chromosome, so that no crossover has occurred for the  pair 
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A". (There  may  have been crossing over for pairs between these, but 
this will not be discovered in  breeding  experiments  limited t o  observation 
of the genes A and M ) .  

I n  other words, on the linear  theory crossing over occurs for any  particu- 
lar pair of genes when there is an odd number of breaks between them, 
and  not otherwise, and  the law of the frequency of crossing over for them 
is the law of the frequency of the occurrence of odd numbers of breaks 
between  them. So far as  the  particular pair  is concerned, the effect is the 
same  whether the odd number is 1 or 101 or any  other. Our problem there- 
fore resolves itself into  that of discovering the frequency of odd numbers 
of breaks between two genes; it is the same problem as discovering the 
frequency of odd numbers of breaks between two given beads of a  string, 
when it is  pulled, if all  breaks occur simultaneously and  are  just  as likely 
to occur in  any one place as  in  any  other. 

It is  a simple matter t o  discover the rule for this. Let us suppose that 
a  break occurs between any two adjacent beads in a  certain  proportion, b, 
of the cases; say  in oE the cases. Then  the proportion of cases in which 
a  break does not occur (which we may call a )  will be 1 -b; here & 
of the cases. Consider any single adjacent  pair:  there  is possibility of 
but 1 break between them; for convenience we may  say  there  is but one 
joint between them.  This  joint will then  break  in of the cases, not  in 
&. We can tabulate  as follows: 

Breaks 0' 1 
Proportion a( = .9) b( = .l) 

Now, if  we take  three consecutive genes or beads, A-B-C, there are two 
joints between them. At  the first  joint  there will  be 0 breaks  in 
of the cases; a t  the second, 0 breaks in Tc; so there will be 0 breaks a t  
both  in& x ?-"rj of the cases. There will be 0 breaks a t  the first, 1 break a t  
the second, in & x& of the cases; 1 break at  the first, 0 at  the 
second, in -&, X 5  ; 1 break a t  the first, 1 a t  the second, in x 
of the cases. Thus  there will be a total of 0 breaks  in  (or 2 )  cases; 
a total of 1 break in twice (A x&) (or in 2 ab) of the cases;  a total of 
2 breaks  in (or b2) of the cases. Tabulating, we have 

Breaks 0 1 2 
Proportion a2 + 2ab + b2 = (a  + b)2 

If we apply  this reasoning to the case of three  joints, we find the propor- 
tions for  the different possible number of breaks, beginning with 0, to be 
a +3a2b+3ab2+b3; and  in general for any  number, n, of joints we find 
the proportions of the diverse numbers of breaks  from 0 to  n to be given by 
the expansion of the binomial expression (a+b)". 
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Between two genes separated by n joints, the  proportion of crossovers 
is, as we have seen, given by  the  proportion of odd numbers of breaks; 
and these odd numbers are obviously given by  the  alternate  terms of the 
expansion of (a+b)", beginning with  the  second; that is,  those terms con- 
taining  odd powers of b. If we can find the  sum of these alternate  terms, 
we shall  obtain  the  total  proportion of crossovers. 

This can be done as follows. Take  as  an example the case of four  break- 
ing  joints: 

Number of breaks 0 1 2 3 4  
Proportions a4+4a3b+6a2b2+4a2b3+b4 

This expression gives the  sum of the proportions of the crossovers and 
the non-crossovers; and since a+b = 1,  any power of a +b is likewise 
equal to 1 ; so that  the sum of the proportions of crossovers and non- 
crossovers is 1. If now  we can likewise get  the difference between the 
proportion of crossovers and  that of non-crossovers, we can of course find 
the  value of each. The difference between the two is  obtained by sub- 
tracting  the terms  representing the crossovers,-those with  odd powers of 
b,-from the sum of the  others; that is, by giving the minus sign to  the 
alternate terms  containing odd powers of b. If we let N represent  the 
proportion of non-crossovers, C the  proportion of crossovers, this  then 
gives, in our  example: 

N - C = a4 - 4a3b + 6a2b2 - 4ab3 + b4 
But this  is  the expression for ( ~ - b ) ~ ,  and for any value of n, it is the 

expression for (a-b)", so that N -C = (a-b)". 
Now, a is equal to  1 -b, as we have seen, so that a-b = 1 - 2b, and we 

can substitute  this for a-b in  the above expression. We have  therefore 
obtained  the two equations: 

N+C=1 
N-C=(1-2b)"  

Subtracting  the  latter from the former and dividing  through by 2, we 
obtain : 

C =  6 - (1-2b)". . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 )  
Where C = the proportion or ratio of crossovers 

b = the frequency of a  break at  any  joint 
n= the  number of joints  separating  the two genes, for 

which the crossover ratio is  sought. 
Formula ( 1 )  gives a t  once the value of the crossover ratio C ,  in case 

there  is no interference, and a  break occurs as frequently at any  joint  as 
at  any other.  By its use we can  compute at once the  value of the cross- 
over ratio for genes separated by  any given number of joints and with 
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any given proportion b of breaks at  each joint.  Thus, if there is a break 
between contiguous genes in one  case out of 20, and two  genes are sepa- 
rated  by 10 joints, we have by (1) : 

C=+-+ (2c)10=35.57 percent 
This formula (1) shows a t  once certain  important relations, and others 

are readily developed from it. It will  be necessary to  set  forth these 
relations  both for their own sake, and because these form the key t o  our 
later development of the relations in crossing  over with interference. 

1. Formula (1) shows at  once that if there were  no interference, our 
first basic proposition must necessarily hold; that is, the crossover ratio 
C would vary from a  very low value up t o  close to 50 percent as  a  limit, 
but would never reach or  exceed 50 percent.  For if a break occurs a t  a 
given joint less frequently  than no-break, b is less than +, so that 1 - 2 b ,  
and hence (1 - 2b)", is always a positive quantity; $(l - 2b)" then al- 
ways has a positive value. But by (l), C =+ minus this positive value; i t  
is therefore always less than +, i.e., less than 50 percent. 

But (1 - 2b) is of course always less than 1 ; it is a proper fraction;  and 
as higher powers are  taken of a proper fraction, its value becomes less; 
by taking  a sufficiently high power, its value may be made as near 0  as 
one may desire. Hence with high values of n (large numbers of joints), 
the expression $ (1 - 2b)" approaches 0 in value, so that C, or + -8 (1 - 2b)" 
approaches +, or 50 percent, in value. Hence, the crossover ratio could 
approach 50 percent so closely as to  differ  from it  by less than  any given 
value, but could never reach it. 

2. It is obvious that t o  account for the  facts  in Drosophila on the linear 
theory, whether there  is or  is not interference, b must be  less than a,  and 
thus less than $; in other words, that  at a given joint  a  break is less fre- 
quent  than no-break. For otherwise every chromosome  would  show many 
breaks,-many crossovers; it would not be true,  as  set  forth in proposition 
16, that a large proportion of the chromosomes  show no crossover between 
any of the genes. 

3. For later comparison with conditions resulting from interference, 
we must bring out  a  further consequence that would  follow if, when there 
is no interference, b were equal t o  or greater than a. If in formula (l) ,  b 
is given the value 3, then whatever the number of joints n, C will  ob- 
viously be *; that is, the crossover ratio would  be 50 percent for  all  pairs 
of genes. If b is given a value above 3, then  the expression (1 -2b)  be- 
comes negative in value, and  as such a negative quantity is raised to 
successively higher powers, it is of course alternately negative and 
positive in value. It will therefore be found that the crossover value 
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C will  be alternately above and below 3, but gradually  approaching g 
as TZ becomes higher. For all genes with odd numbers of joints between 
them (TZ = 1, 3, 5 ,  etc.), C will  be above 3; for all genes separated  by even 
numbers of joints, C will  be  below 3. Thus, if the frequency of a  break 
at  any given joint were .75, the value of C would  be successively, for genes 
separated by 1, 2,  3, 4, . . . . . joints, 75, 37.5, 56.5, 46.75 percent, and 
so on. 

Thus, if a break occurred more frequently a t  a given joint than no- 
break,  the order of the genes  would not be  given by  taking  the  ratios of 
the gene a t  the end with other genes in either ascending or descending 
order. Suppose that a  break occurred a t  a given joint in .75 of the cases, 
then if there were  five  genes in the order A B C D E,  the ascending order, 
used in formulating the work  on Drosophila, would  yield the series 
A C E D B, while the descending order would  yield A B D E C,-both 
quite diverse from the  actual series. But,  as we have seen, in Drosophila 
b cannot be greater than a, so that this  situation is not  met. 

From  the formula (1) for C we may readily derive a formula showing 
directly  what number of joints  (and therefore of genes) is required to 
obtain any crossover ratio, for any given value of b (any given frequency 
of breaks a t  each joint) provided there is no interference. When there is 
but one joint, b is equal t o  C; that is, the crossover ratio is the frequency 
of a  break at  that joint. Now, for any two diverse values of b, we require 
of course diverse values of n (number of joints) to give the same crossover 
ratio. Let these be .nl and n2. Then obviously for the two cases: 

and 

which yield, by transposition of terms: 

C=l-l 2 2 (1 -2b1)"' 

C=.L-L 2 2 (1 -2bz)"' 

(1 - 2bl)"' = 1 - 2 c  
(1 -2bz)n*= 1 - 2 c  

(1 - 2 b p  = (1 - 2bl)"l 
And since C is the same in  both cases 

But if diverse powers of two different quantities  are  equal, it is a well- 
known relation that the two exponents are inversely proportional to  the 
logarithms of the two quantities. Hence in this case, 

TZ2 log (1 - 2bl) 
n1 log (1 - 2 b z )  
" - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2) 

Taking now the case that m1 = 1 ; as remarked above, b1 is now C; sub- 
stituting these two values in  the above equation,  (and  dropping  the  sub- 
script of bz, since i t  is now unnecessary) we obtain: 
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log (1 - 2C) 
log (1 - 2b) 

n= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3) 

Equation (3) gives directly, for the case of no interference, the  number 
n of joints  required t o  give any crossover ratio C, for any frequency b, of 
breaks a t  each joint.2 Thus: How many  joints are required t o  give 20 
percent crossing over if there  is no interference and  the frequency of a 
break a t  any  joint  is + percent?  Here C = .2 and b = .005. Hence: 

log ( 1 - .4) log .6 - .2218487 
n= 

log (1 - .o1 )"log .99 - .0043648 
"= = 50.83 

In  the chromosomes we of course know neither the  value of b (frequency 
of a break a t  a given joint), nor the number of joints, n, that yield a given 
crossover ratio C. For determining general relations,  therefore, we must 
obtain  formulae that  are independent of the  particular  values of b and n. 
In  experimental  breeding the workers who employ the linear  theory  have 
attempted t o  do this  by taking-as  the  unit of measurement that length 
of the chromosome that yields 1 percent of crossovers; this  length  is  then 
aid off as  a  foot-rule on the chromosome (by processes of breeding that 

we need not go into  here),  the  distances between specific genes, and  the 
distances  required to  give particular crossover ratios, being thus  deter- 
m'ned  in  terms of this unit. This  permits comparison of the distances 
required t o  give diverse values of the crossover ratio. It is found  thus, 
for example, that genes 30 units apart do not yield a crossover ratio  three 
times that of two genes 10 units apart,  but definitely less; and similarly of 
other cases. T o  determine for the ideal  linear  theory  without interfer- 
ence these  relations,  independently of the values of b and n, the following 
must be taken  into consideration. In  formula (l), n is the distance 
(number of joints) from one of the two genes t o  the  other.  With  any given 
value of b,  two different crossover ratios, Cl and Cz, are produced, of course, 
by  different powers (values of n), as nl and nz. Hence we have: 

C1=+-1(1-2b)"' 2 

Cz=+-'(1-2b)": 2 

(1 -2b)n'= 1 -2c, 
(1 -2b)"'= 1 -2cz 

By transposition of terms,  these  equations yield 

I t  is to be noticed in using logarithms of decimal fractions for such purposes as  are em- 
ployed in this paper,-and particularly in .cases  where the exponents are fractiona1,"that the 
logarithms of decimals smaller than unity are minus quantities,  not the plus quantities 
(mantissas) given in the usual tables of logarithms. They  are obtainable from the logarithms 
taken from the tables by  subtracting  the latter from 10 and giving the result the minus sign. 
Thus for .2 the logarithm obtained from the table is 9.301030; subtracting  from 10 and using 
the minus sign, this yields -.6989700; for ,002 the logarithm is  -2.6989700, and so on. 
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Now, it is  a well known general relation that when we have  two  diverse 
powers of a single quantity (in  this case 1 -2b), the two  exponents  are 
proportional t o  the  logarithms of the resulting  powers: so that  in this case 

n2 - log (1 - 2C2) 
n1 log (1 - 2Cl) 
“ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (4) 

By this  equation we can  therefore  readily find for the case of no  inter- 
ference the proportional  distances  required t o  produce,  with any given 
va“ue of b, any two crossover ratios. If it be asked:  How  many  times  as 
great a  length  is  required t o  produce 40 percent crossovers as to  produce 
20 percent, we have 

~2 log (1 -.SO) log .2 - -.6989700=3.1507 
nl log (1 - .40) -log .6 - .2218487 

That is,  the  distance between two genes that is required to yield 40 
percent crossing over would be, if there were no  interference, 3.1507 
times that required t o  give 20 percent. 

If now we wish to use the distance  required to  produce some particular 
crossover ratio  (as 5 percent) as a unit of measurement, we have but  to 
let nl = 1, and give to Cl this  particular  value; we may  then find for  any 
other crossover value CZ the  number of times  this unit  distance  that  is 
demanded, by  an equation  derived  thus directly from equation (4). 
Letting  “the  number of times  this unit distance” be represented by r,  
and replacing in (4) the  left side of the  equation  by  this, we have 

log (1 - 2C2) 
log (1 - 2C1) 

r =  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (5) 

For comparison with the measurements given by  the workers on Dro- 
sophila, we have but t o  let Cl in ( 5 )  be 1 percent or .01; then 1 - 2C1= .98; 
this will give us  the  number of units,  each sufficient to  give 1 percent 
crossing over, that  are required t o  produce the crossover ratio C2. We 
may replace the  letter r of formula (5) by  the  letter U ,  signifying units; 
dropping  the  subscript of C2,  as now unnecessary, we have for the case of 
no  interference : 

U=”-“--- log (1-2C) log (1°C) . . . . . . . . . . . . . . . . . . . .  
log .98 ,-.0087736 

, or= 
- 

For example, in case there were no interference, how many  units of 
distance are required to  produce 49.9 percent crossing over?  Here 

log .002 U =  = 307.617 
- .0087739 

Again, how many  units of distance  are required to produce 4 percent 
crossing over? 
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log .99 U = - -  - .497 (of one unit) 
log .98 

Certain  other numerical relations require elucidation: 
Suppose we have  a  certain crossover ratio Cl, for a  certain  length.  What 

will be, if there is no interference, the crossover ratio C2 for a  stretch r 
times  as  great?  Here we have but  to arrange  equation ( 5 )  so as t o  solve i t  
for the value of C2. Equation ( 5 )  yields directly 

Now, if the  logarithm of (1 - 2C2) is r times that of (1 - 2C1), the quantity 
(1  -2C2) is of course the rth power of (1 -2C1) ; that is, 

Whence, by transposition,  etc., 

log (l"Cz)=r log (1-2C1) 

l - 2c2 = (1 - 2Cl)' 

1 - (1 - 2CJ 
c2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7) 

2 
Thus, suppose a  certain  stretch on the chromosome  gives 20 percent of 
crossing over. What crossover ratio will  be  given by  a  stretch  three times 
as long? 

Here 

c2 = = .392 = 39.2 percent 
1-(1--.4)3 

2 
Suppose that we know the distance apart of two genes in our standard 

units (each yielding a  l-percent  ratio).  What is their crossover ratio? 
For  this we have but to  solve formula (6) for C; i t  may be transformed, on 
the principles employed above,  into 

C =  1 - .98' 
2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ' ' (8) 

Thus, suppose U = 20. Then 

c = 7 = 16.62 percent 
1 - .98'O 

L 

When there  is no interference,  what crossover ratio  is given by  the sum 
of several stretches,  the crossover ratio for each of which is  known? Call 
the  partial  ratios Cl, C2, CS, etc., and  the  ratio for the  entire  stretch, C. 
We  could  find the value of the  ratio C for the  total  stretch by finding by 
(6) the values of U for each partial  ratio,  adding these values of U ,  and 
determining by (8) the corresponding value of C. Performing these 
operations algebraically, we  find that they yield the formula 

Log (1-2C)=log (1-2C1)+log (1-2C2)+log (1-2C3), etc. . . . .  . . ( g )  
which is  equivalent t o  

1 - 2C= (1 -2C1) (1 -"2C2) (1 -2Ca),  etc. 
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Whence 
1-((1-2C1) (1-22c2) (1-2C3),  etc. C=- . . . . . . . . . . . . . . . . . . . . . . .  

2 
(1 0)  

EXAMPLE: Four crossover ratios for successive stretches  are,  in chromo- 
some I of Drosophila: 1.1, 5.3,  31.1, and 10.1 percent. What should be 
the crossover ratio of the two genes a t  the extremes if there were no 
interference? 

1-(1-.022)  (l-.106) (1-.622) (1-.202) C =  
2 

= 36.8 percent 

For  the common case of the crossover ratio t o  be expected  from the  sum 
of two  contiguous regions, the  ratio for each of which is  known,  formula 
(10) yields for the case of no  interference the well known  formula 

c=c1+c,-2c1 cz.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (1  1) 
In formula (8) we have  the crossover ratio  determined  for  a given num- 

ber, U ,  of units,  each of such  a  length as t o  yield a l-percent crossover 
ratio. Obviously, it makes  no difference in  the  validity of the formula 
whether  these  units are  all of the same  absolute  length or not; whether  all 
contain  the  same  number of joints or not. If the frequency of a  break is 
greater a t  certain  joints  than a t  others,  then  certain of these standard 
units will contain more joints than others; but  the effect of all  the  units 
on the crossover ratio will be the same. That is, with  formula (8) we have 
emancipated ourselves from the  assumption  with which we began, that 
breaks are equally  frequent  between any two adjacent genes. All formulae 
in which these standard  units  are employed are similarly  independent of 
the relative  frequency of breaks a t  different joints;  the consequences 
flowing from  them  are valid,  whether  this  frequency is or is not  the  same 
for different joints. This applies  practically, in  fact,  as will be seen, to our 
entire  exposition. 

Before proceeding by  the use of the  above  formulae to a  comparison of 
the relations  required by  the linear  theory  with  those  found in experimen- 
tation, one other  matter requires  formulation. This concerns the  number 
of breaks  to be expected in  an entire chromosome, or between any  two 
genes having  a given crossover ratio. 

The  number of breaks  to be expected  between any  two  genes, in crossing 
over without  interfereme 

As before noted, on the linear  theory the crossover ratio  for  any  two 
genes is given by  the frequency of odd numbers of breaks  between  them. 
The  number of breaks  might run  up  into  the  hundreds; if the  number were 
odd,  a crossover would result,  exactly as if there were but one  break. 
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But  the conditions in  inheritance  do  not  admit of large  numbers of 
breaks. If we interpret on the linear  theory the  facts  set  forth  in our prop- 
ositions 12 t o  16, page 398, we are forced t o  assume that in  a  large 
proportion of the cases there  is, for a  particular chromosome, no break 
whatever  (proposition 16, page 399) ; that for most  other cases there is but 1 
break  (propositions 12 t o  14); that tw.0 breaks occur only very  rarely, 
and  that more than two occur with  extreme rarity. 

The question  arises  whether  these  assumptions are consistent  with the 
fundamental  postulates of the linear  theory. If the genes are  in series and 
crossing over occurs by breaks in  this series, would the numbers of breaks 
in  the chromosomes be those which the breeding  results,  interpreted on 
the linear theory,  require? 

We have seen on page 404 that  the proportions of the cases showing 
the different possible numbers of breaks from 0 to n are given by  the 
successive terms of the binomial (a+b)”. The exponent of b in each term 
indicates  the  number of breaks of which the  total value of that term gives 
the proportional  number. For  any given number of breaks d,  the propor- 
tion will be that shown by  the  value of the  term  containing bd. The  term 

a(n--d)bd 
containing bd is of course 

d ! ( n - d ) ! ‘  
If we let Bd represent the proportion 

of cases in which just d breaks occur between two genes separated  by n 
joints, then (if we substitute for a its value 1 - b )  we have: 

n!  (1 -b)(n-d)bd 
d !  (n-d)!  

Bd = . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

For our later purposes,  this and similar factorial expressions are  better 
written  in such  a  way as t o  make the  factors  in  the  numerator  and denomi- 

nator  as few as possible. The expression, is  equivalent to  an ex- 
n! 

d !  (n  -d )  ! 
pression in which the  numerator consists of d factors, beginning with n 
and descending by differences of 1, while the denominator  is  factorial d.  
Methods of writing in a  formula “ d  factors beginning with n and descend- 
ing by differences of 1” vary,  and  all those that I have observed are 
cumbersome. There  appears t o  be no ambiguity  involved ‘n writing 
this simply d d ,  and I shall  therefore employ this  method.  Thus 2314= 
23X22X21  X20. .  Using this  method,  formula (12) becomes 

(Where d !  =factorial dl and n!d= d factors beginning with n and descend- 
ing by differences of a single unit.) 
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This formula gives us  the  proportion of cases having any number d of 
breaks when the  value of n and of a and b are known. But in practice 
these are  not  known, except that b is less than .005. What we desire to 
know is  the proportion of chromosomes having  each  particular  number of 
breaks for a given crossover ratio. In  other words, we wish to know the 
value of Bd in  terms of C, the crossover ratio. 

For  this purpose, we may begin with Bo, the  proportion of chromo- 
somes that have no break. This  is,  as we have seen (1 - b)". 

Now, by formula (3), page 408, the  number of joints n is given by  the 
formula : 

log (1 - 2C) 
n= 

log (1 - 2b) 
We can,therefore  substitute  this for n in  the expression Bo= (1 -b)"; 

in  other words the value of Bo is given for  any value of-C  by raising 1 - b  
log (1 - 2C) 

to  the power represented by 
log (1 -2b)' 

To  do this, we may of course 

multiply  the  logarithm of (1 - b) by log (1 - 2C) 
log (1-2b)' 

and  this will give us the log- 

arithm of Bo. Performing  this  operation  (and  changing the order of the 
factors), we obtain: 

Log  Bo=log (1 - 2C) . "~ 

log (1 - 2b) 
log (l-b) . . . . . . . . . . . . . . . . . . . . .  

NOW,  as we have seen, b is necessarily less than .005. It will be found 

that  for b = .005, the  value of the expression 
log (1 -b) 
log (1 -2b) 

is  almost  exactly+ 

(it is .49874), and  that  as b is  made  smaller, this expression approaches 
as a  limit.  For all of the possible values of C it may  be  therefore  taken  as 
4, SO that our  equation becomes 

Log Bo=+ log (1 -2C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (15) 
But of course if log Bo is 3 of log (1 - 2C), it follows that BO is  the  square 

root of 1 -2C. We  obtain  then  the following 
Bo=d1-2C. .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .(16) 

That is, if there  is  no  interference, for two genes showing a given 
crossover ratio C, the  proportion (Bo) of cases in which there is  no  break 
between the genes is  the  square  root of (1 -X). Thus if the crossover 
ratio is 10 percent (C = . l ) ,  the  proportion of cases in which there  is  no 
break between the two genes is d2, which is 89.44 percent. If C 4 0 ,  
Bo= =44.72 percent. 
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We  have  then  the value of BO expressed entirely in terms of C,  without 
regard t o  the precise value of n and b. To obtain corresponding expressions 
for B1, Bz, and  in general for Bd, we may  note  the following: The value of 
BO is (1   -b)" ,  and  this is, therefore, as we have  just seen, equivalent, in 
the cases with which we are dealing, to  d 1 - X .  We may there- 
fore substitute 4 1 - 2 C  for (1   -b)"  in  formula ( 1 3 )  for Bd. Noting that 

(1   -b)"  ( 1  - b)  (n-d)  = ~ we thus obtain: 
( 1  - b)d' 

%!d bd 
Bd = 

d !  ( l - b ) d '  
dl - 2 c .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

In this  formula, the expression signifies d factors, beginning with n 
and descending by differences of 1. For our purposes,  as we shall see, only 
low values of d have to be considered,-from 0 up t o  5, or thereabouts. 
Furthermore,  as before remarked, we know that  the value of b is less than 
.005. We wish to determine  whether, as n is  increased,  there  is  a fixed  or 
limiting  value for the proportion of cases having  any  particular  number of 
breaks, as 0, 1 ,   2 ,  3, etc. 

Now, for high values of n, with low values of b and d, we can substitute 
nd for nId in formula ( 1 7 ) ,  without  making  any appreciable difference in 
the  result,  as will be seen if b is given the value of .005, d any  value  up  to 
1 0 ;  and n any  value  above 20. In  no case will there be a difference in  the 
result  greater than a unit  in  the  fourth decimal place, which is, of course, 
negligible. For  the conditions in crossing over,  therefore, we can  make 
this  substitution,  and  with slight change in  the  arrangement of the  terms 
we obtain from ( 1 7 )  the following: 

Now, as we have seen earlier, when n = 1 ,  b =C,  so that in  this case 
n b  C -=- 

l - b   I - b  
For  any higher value of n, with  the same value of C ,  we have  by  equa- 

tion (S), 
log ( 1  - 2 C )  

n= 
log ( 1  - 2b) 

From  this  equation we can  obtain  the  values of b and of 1 -b,  in  terms 
of n and C .  The  steps  may be indicated as follows. We have  directly 

log (1   -26 )  = 
log (1   -2C)  

n 
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Now, if log (1 -2b) is equal t o  log (1 - 2C) divided by n, i t  of course 
follows that 1 -2b is the nth root of 1 -2C; that is 

1-2b=;/1-2C 
" 

whence 
l-71-2c 

b =  ~ 

and 1 +71-2c 1-b=-- 
2 

From which it follows that 
nb n ( I - V I - ~ C )  

l - b  1+;//1"C 
" - 

and theref  ore 
n(l-Vl-2C) d .  2/1--2c . . . . . . . . . . . . . . . . . .  B,=( l + V F Z )  d !  (19) 

Now, in  the expression 71 -2C, the  quantity under the radical is 
necessarily a proper fraction (since C is less than 4). As we extract succes- 
sively higher roots of a proper fraction, it becomes greater,  approaching 1 
as a limit.  Thus, for high values of n, the expression '31 -2C approaches 
1 as  a  limit. Hence, in  the first member of the  above value for Bd, the 
denominator, 1 + v1 -2C, approaches 2 as  a  limit,  as n becomes large. 

In  the case of the  numerator, n (1 - ;/l - X ) ,  if the numerical values 
of this expression are worked out for a given value of C with successively 
higher values of n, i t  becomes obvious that  it is approaching a limit. Now 
the  limit of the expression n ( v x  - 1) is  the  natural  logarithm of x. Our 
expression is of the same form, with (1 - 2C) taking the place of x, and  with 
the signs reversed. That is, the limit of n (1 - V1 -2C) is  the minus 
natural  logarithm of (1 -2C) .* Since 1 - 2C is itself a proper fraction,  the 
minus natural  logarithm is itself a positive quantity. 

Substituting-the - two limits we have  thus  obtained, in formula (19), 
we get: 

- 

- 
[-natlog (1 -2C)ld. d1-2C 

B d  = . . . . . . . . . . .  
2 d  a !  . . . . .  (20) 

We have now obtained an expression for the value of B d  corresponding 
to  any given value of C, that is quite  independent of the  particular values 

* I am indebted to Professor L. S. HULBURT of the Mathematical Department of TEE JOHNS 

HOPKINS UNIVERSITY, for pointing this out to me. The  natural logarithm of any number is of 
course obtained from its common logarithm by multiplying the latter  by 2.30258509. In 
practice, the natural logarithm of a decimal fraction $ obtained by taking its logarithm from a 
table, subtracting 10 from it, and multiplying the remainder by 2.30258509. 
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of n and of b,  provided that .n is large and b is small (as we know to  be  the 
case). 

An example will make clear the use of formula (20). If the crossover 
ratio is 25 percent,  in  what  proportion of the cases are  there  three  breaks 
between the two  extreme genes? Here d =3, while C =  .25; so that  the 
proportion of cases yielding B3 is: 

("at log . 4.50 
B3 = 

23 3! 
.693147193  .70710678 - - - X  

8 
= .004906,  or  .49 of 1 percent 

6 
The values given by this  formula are  the'limiting values in case n is a 

large  number, and  this condition  is fulfilled when the frequency of a  break 
between  two  contiguous genes is  small; that is, when b is  small.  We 
know that b is certainly smaller than .005. The lowest possible values of 
1z will therefore be higher than those corresponding to  the value of .005 
for b;  these may be obtained for any value of C by equation  (3), page 408. 
If now we work out  by formula (13), page 412, the values of Bo, BI, Bt ,  Bt, 
etc., for b = .005, we find that these  do  not differ, for any possible value of 
C, or for any  number of breaks from 0 t o  5, by  any appreciable amount 
from the values given by  the general formula (20);  in no instance  is  the 
difference as  great  as  one-tenth of one percent.  For example, for 25 per- 
cent crossing over, if we take  the value of b t o  be .005, and determine by 
(3) the  number of joints necessary to  produce this crossover ratio,  then 
work out directly by  the binomial formula (13) the proportion of cas& 
yielding 0,  1, 2 and 5 breaks, we obtain  the  result given as (A) below, as 
compared  with the proportions in (B), work.ed out  by  the general for17 ula 
(20) : 

Number of breaks 0 1 2 5 

(A) from binomial formula (13). . . . . . . ,70671 ,24507 .042177 .0003955 
(B) from  general formula (20). . . . . . . . ,70710 ,24594 .042467 .000425 1 

The values given a t  (A) are lower than  the lowest possible limits, those 
a t  (B) are  the highest possible limits, for the proportions. Such minute 
differences are obviously negligible, so that  the values  obtained from 
formula (20) may be taken  as  the correct  proportions of cases showing 
the different number of breaks. In table 4 are given these  proportions 
for a series of values of the crossover ratio C. 

Table 4 shows in'general that for moderate  values of the crossover ratio, 
the  number of breaks to be expected is small, much as  appears t o  be the 
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case in  nature, if interpremted on  the linear  theory.  More precise com- 
parisons are  found  in  the following section. 

TABLE 4 

Linear  theory; no interference.  'Showing for  typical  diverse  vducs  ojthe crossover ratio C,  the distance 
apart of the genes ( in  units each of a  length to give a crossozlw ratio  oj l percent), com- 

puted  by formula (6), and the percentages ojthe cases i n  which there would be 
0, l ,  2 ,3 ,4  or 5 breaks between the two genes yielding the given 

ratio C computed from formda (20). 

C 

1 
5 
10 
15 
20 
25 
30 
35 
40 
45 
49 
49.9 

DISTANCE I N  

UNITS OF 1 
PERCENT 

1 .oo 
5.22 

11.05 
17.66 
25.29 
34.31 
45.36 
59.60 
79.67 

113.97 
193.64 
307.61 

PERCENTAGE  THAT  SHOWS  THE  INDICATED  NUMBERS OF 

BREAKS,  FROM 0 TO 5, BETWEEN  THE  TWO  GENES 

0 

98.997 
94.868 
89.413 
83.666 
77.428 
70.711 
63.199 
54.795 
44.721 
31.623 
14.141 
4.472 

-___ 
1 2 

0.01 . . . . . . 
4.998 

14.928 
0.557 9.979 
0.132 

21.590 13.928 
26.930 27.598 
20.958 36.407 
14.480 35.988 
9.905 33.046 
6.615 29.074 
4.247 24.507 
2.497 19.858 
1.330 

___- 
3 

. . . . . .  
0.002 
0.021 
0.079 
0.205 
0.491 
0.992 
1.963 
3.884 
8.043 

17.518 
22.362 

" 

" 

1 - 

4 

. . . . . .  
0.0000; 
0.0006 
0.0035 
0.0124 
0,0425 
0.1104 
0.2885 
0.7814 
2.315 
8.547 
7.372 

" 

" 

I 

5 

, . . . . . . 
. . . . . . . . 
. . . . . . . . 
0.000001 
0.000006 
0.000029 
0.000106 
0.000361 
0.001258 
0.005330 
0.033743 
0.107957 

COMPARISON OF THE  CONDITION  RESULTING  FROM  SERIAL  ARRANGEMENT 

OF  THE  GENES, IF THERE  WERE  NO  INTERFERENCE,  WITH  THOSE  FOUND 

I N  NATURE 

By  the use of the formulae and tables set  forth above, it becomes a 
simple matter  to determine how far  the  conditions  demanded by  the 
linear  theory, would, if there were no interference,  agree  with  those 
found in experimental breeding,-as summarized in propositions 1 to 17, 
pages 397-399. It will be well to examine  these  relations  here,  for com- 
parison later  with  the more complex and less perspicuous case in which 
there  is  interference. For  this  purpose it will be helpful to  tabulate  the 
crossover ratios for a  number of genes, A to H ,  that  are successively 10 
units  apart (each unit of length to  yie1d.a one-percent crossover ratio), on 
the  assumption that there  is  no  interference. This  is of course readily 
done by the use of formula (8). The results are shown in  table 5 .  

Table 5 shows that if there were no  interference,  all of the general  rela- 
tions  set  'forth in our fundamental  propositions 1 to  17 (pages 397-399) 
as requiring  explanation would be fully  accounted  for,  except that num- 
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bered 17.  We have  already seen that the linear theory accounts immedi- 
ately for proposition 1 (page 397) and propositions 12 t o  15 (page 398). 
We  saw also that the distances between objects in serial arrangement 
show the relations numbered 2,  3, 4, 6, 7, 8, 9, but do not show accurately 
those numbered 5 ,  10 and 11  (see page 397, and  table  3).  Examination 
of table S shows that when we take  the required crossover ratios,  in place 
of the distances, all these relations (propositions 1 t o  11) are fully ac- 
counted for. In the case of propositions S ,  10 and 11,  which the distances 
did not correctly fit, the required ratios  (table S) show  precisely the con- 
ditions found in the  ratios discovered in breeding. The theory requires 

TABLE 5 

Crossover ratios for eight genes, A to H ,  ij they are separated by successive stretches each 10 units in 
length  (when there is  no  interfrrence). 

A B 

A 
R 

, . . .  

C 

9.2 
9.2 _ . . .  

16.8  9.2 
D 22.9  16.8 
E 

35.2  37.7 H 
31.6  35.2 C 
27.5 31.6 F 
22.9  27.5 

C 

16.8 
9.2 

. . . .  
9.2 

16.8 
22.9 
27 .S 
31.6 

n 11 G F E 

22.9 27.5 

27.5  22.9  16.8  9.2 _ _ . _  
31.6  27.5  22.9  16.8 9.2 
3.5.2 31.6 27.5  22.9 16.8 
37.7 35.2  31.6 

9.2  16.8  22.9 
. . _ .  9.2 16.8 
9.2 . . . .  

. . . .  9.2  16.8 
9.2 

-_____________ 

precisely that,  as in proposition 5, the  ratio of gene A t o  gene C should 
not be just equal t o  the sum or the difference of ratios A to B and B t o  C, 
but should be either somewhat less than  the  sum, or somewhat more than 
difference; this will  be  seen by examination of the  ratios  in  table 5 .  In  the 
same way, the theoretical ratios of table 5 show  precisely the peculiar 
relations of the  actual  ratios that are formulated in propositions 10 and 
11. Further, table 4 shows that, as  set  forth  in proposition 16, a consider- 
able proportion of the chromosomes  would  be found that show  no breaks 
whatever even between genes lying far apart  (as indicated by  the high 
crossover ratio  they yield). 

It remains t o  inquire,  as  set  forth page on  403,  how far  the requirements 
of the linear theory,  without interference, are consistent with  the  actual 
numerical values of the  ratios discovered in  the experimental studies, 
and with  the  actual numbers of breaks in  the chromosome that observa- 
tion,  interpreted on the linear theory, shows to  occur.  We shall a t  the 
same time  inquire how far  the distances apart of the genes, represented 
on the  maps  constructed by  the  students of Drosophila, are consistent 
with  this form of the linear theory. 
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With regard to  the observed numerical  values of the  ratios, we find, by 
application of formula (lo), page 411, that  the  actual  ratios for genes 
that  are, on the linear  theory,  far  apart,  are  systematically  too high in 
comparison with  the  ratios for the  partial distances of which these  longer 
stretches  are made up, so that  they could not be accounted for on the 
linear  theory  without  interference.  For  making  these comparisons, it is 
necessary t o  employ only ratios that have been determined  with sufficient 
accuracy to  be fairly  dependable; we will arbitrarily select as such  those 
based on statistics from a t  least 5000 cases. We find determinations  based 
on numbers  above 5000 for several  stretches of chromosome I of Droso- 
phila given by  MORGAN  and BRIDGES (1916), and  certain  additional ones 
are obtainable from the  data of PLOUGH (1917). For  the  shorter  stretches 
of chromosome I we find the following ratios  in  MORGAN  and BRIDGES: 
yellow-white, 1 . l  ; white-vermilion, 30.5; vermilion-miniature, 3.1 ; 
miniature-rudimentary, 17.9. 

If now we compute  from  these the  ratios for longer stretches  required 
by  the linear  theory if there  is  no  interference, we find these  required 
ratios  to be the following, in comparison with  the observed ratios: 

Required Observed 

Yellow-miniature.. . . . . . . . . . . . . .  31.6 34.3 
White-rudimentary. . . . . . . . . . . . .  38.2   42 .4  

Again, we find another  set of satisfactorily  determined  shorter  stretches, 
as follows: White-vkrmilion, 30.5; vermilion-sable, 10.1; sable-bar,  13.8; 
bar-fused, 2 .5. 

Computing  from  these  the  required  ratios for the longer stretches,  and 
comparing  with the observed, we have: 

Required Observed 

White-bar. . . . . . . . . . . . . . .  38.7 43.6 
Vermilion-bar. . . .  . . . .  21.1  23.9 
Vermilion-fused. . . . . . . . . . . . . . . .  22.5  25.8 

From PLOUGH (1917) we have  the following additional data: sable- 
garnet, 1.4;  garnet-forked, 12.0; giving: 

Required Obseroed 

Vermilion-forked. . . . . . . . . . . . . . .  20.0 22 .S 

For chromosome 11, BRIDGES and MORGAN (1919) give the following 
ratios,  each based on more than 5000 cases:  star-black,  37.9;  black-curved, 
22.7; curved-speck, 30.2; yielding for longer stretches: 

Required Observed 

Star-speck. . . . . . . . . . . . . . . . . . . . .  47.4 48.3 
Star-curved.. . . . . . . . . . . . . . . . . . .  43.4  45.9 

GENETICS 8: S 1923 



420 H. S. JENNINGS 

With  the  additional  ratio  black-purple  6.2, we obtain: 

Required Observed 

Star-purple. . . . . . . . . . . . . . . . . . . .  39.4 43.7 

We  have also the  ratios  dachs-black,  17.8; black-vestigial, 17.8, which 
yield : 

Required Obseroed 

Dachs-vestigial.. . . . . . . . . . . . . . . .  29.3 29.6 

Further, from the  ratios  black-arc, 42.6; arc-morula, 7.9; purple-curved7 
19.9; and curved-speck, 30.2, we obtain  the comparisons: 

Required Observed 

Black-morula. . . . . . . . . . . . . . . . . .  43.8  46.6 
Purple-speck.. . . . . . . . . . . . . . . . . .  38.1  45.7 

For  the  third chromosome, GOWEN (1919) gives the following ratios 
(each based on 31,456 cases) : 
Sepia-dichaete, 11.5 ; dichaete-spineless, 9.9; spineless-sooty, 10.6 ; sooty- 
rough, 20.3. 

For  the longer stretches  these yield the following comparison of required 
and observed  ratios : 

Required Observed 

Sepia-rough.. . . . . . . . . . . . . . . . . . .  35 .5  39.1 
Dichaete-rough. . . . . . . . . . . . . . . .  32 . O  36.1 
Sepia-sooty. . . . . . . . . . . . . . . . . . . .  25.7  26.2 1 

Thus, it is  a fact  that  the crossover ratios between genes that  are (on the 
linear  theory)  far apart,  are found t o  be regularly  greater than is possible 
on the linear  theory  without  interference, when we consider what  the 
ratios  are for shorter  intervening  stretches  taken  separately. It is  there- 
fore clear that  the linear  theory  without  interference  cannot  account for 
the  actual numerical  relations  found  among the  ratios. 

As to  the  actual numbers of breaks  occurring between given distant 
genes of a chromosome, determinations,  based on the  theory of the linear 
arrangement of the genes, have been made  by  MULLER (1916), PLOUGH 
(1917), WEINSTEIN (1918) and  GOWEN (1919), for the  first, second and 
third chromosomes of Drosophila  melanogaster. Certain unpublished 
determinations for the first chromosome of Drosophila  virilis have been 
furnished  me, further,  by WEINSTEIN. T o  compare the proportions of 
these observed numbers of breaks  with  the  proportions  required by  the 
linear  theory  without  interference, the observed proportions  having  no 
break (BO) must  be  taken  as  the  point of reference, since these (as set 
forth  later)  are  not  altered  by interference.  From  equations (16) and (20) 
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a formula is readily obtained for determining  the  proportion (Bd) of cases 
showing any given number of breaks d, corresponding to  the proportion 
with no breaks (BO) ; it is : 

.(20a) 

In order t o  avoid repetition, the results of this comparison are  tabulated 
on a later page, in connection with those of a similar comparison for 
different extents of interference, in  table 13, page 449. As will  be found on 
examination of this  table,  in every case the proportion of cases with one 
break is in  nature much too high, while the proportion  with more than one 
break  is much too low, as compared with  what is required by  the  linear 
theory  without interference. For example, in GOWEN’S study of the 
numbers of breaks  in  the  third chromosome of Drosophila, based on 
31,456  cases, with 54.6 percent showing no break, the proportion required 
by  the  theory is 33.1 percent  with one break, while the observed propor- 
tion  is 38.9 percent. On the  other  hand, for two breaks the theory requires 
10.0 percent, while only 6.3 are  found;  theory requires 2.0 percent  with 
three breaks, but only  0.3 percent are  found;  and these results are typical. 

Thus  the linear theory  without interference will not account for the 
proportions having the different numbers of breaks  actually observed; the 
latter show an excess of those with but 1  break;  a deficiency of those with 
2 or more breaks. 

We may  inquire finally as  to  the consistency of the  “map distances” 
between the genes,  given by  the  students of Drosophila, with  the linear 
theory  without interference. These map distances are of course not 
matters of direct observation, but they  are determined by such careful 
methods that we may  accept  them  as  approximately  what  must be the 
actual  relations, if the genes are arranged serially. Table 6 shows the 
“map distances” given by BRIDGES  (1921) for  the more important genes 
of chromosomes I and I1 of Drosophila, in comparison with the distances 
required by  the linear theory  without interference. The  map distances 
are of course given in  units, each of such length  as to  yield by itself a 
l-percent crossover ratio.  For chromosome I, I have used the  distances 
from the gene white instead of the gene  yellow,  since the crossover ratios 
from the former have been much more accurately  determined.  These 
ratios are given in  table 2. The  ratios for the second chromosome, from 
the  end gene, star,  are those given by BRIDGES and  MORGAN (1919). 
From  these  ratios  the  number of units required by  the linear theory  with- 
out interference are computed from formula (6). 
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As table 6 shows, if there were no  interference, the distances  (measured 
in  units of length to give 1 percent crossing over) required to  give the 
observed crossover ratios would be much  greater  than those determined 
by BRIDGES in  the chromosomes of Drosophila. 

In  sum, therefore, we find that if the genes  were arranged  in  linear series, 
and crossing over took place by breaking and exchange of partners,  and 
if a  break a t  a given joint  did  not  interfere  with  a  break elsewhere, then 
all of the general relations  found t o  hold among the observed ratios, 
summarized in our basic propositions 1 t o  17  (page 397), would necessarily 
hold,  except the  last one (number  17). 

TABLE 6 
Comparison of the map distances given by BRIDGES (1921) with those required by the linear lhewy 

without interference. 
l 

I CHROMOSOME I1 CHROMOSOME I 

Gene 

White. . . . . . . . . . . . .  
Bifid. . . . . . . . . .  
Club . . . . . . . . . . . . .  
Vermilion. . . . . . . . .  
Miniature. . . . . . . . .  
Sable. . . . . . . . . .  
Rudimentary. . . . . .  
Bar. . . . . . . . . . . .  

Map distances 
RRICGES 1921 

0.0 
5.8 

15.2 
31 .S 
34.6 
41 .S  
53 . O  
55.5 

Required 
(no inter- 
ference) 

Gene I 1 Required Map distances 
BRIDGES 1921 

I I I 
0.0  
5.5 

16.7 
26.6 
54.0 
86.0 
93.2 

101.8 

Star. . . . . . .  
Streak. . . . . .  
Dachs. . . . . . .  
Black, . . . . . .  
Purple. . . . . .  
Curved.. . . . .  
Speck. . . . . .  

0.0 
15.4 
29.1 
46.5 
52.7 
73.5 

105.3 

0.0 
18.2 
42.5 
70.2 

102 .a  
123.8 
167.4 

But  in addition t o  this  discrepancy as t o  proposition 17, we find three 
discrepancies as to  the numerical  relations  involved.  These are: 

(1) The observed numerical  values of the ratios could not occur; the 
observed ratios for distant genes are regularly  greater than  they would 
be on the assumptions set  forth above. 

(2) The proportions of the chromosomes showing the different numbers 
of breaks, from 0 to 3 or 4, would not be those actually  found;  the  latter 
show a  marked excess in  the proportion of those  with 1 break,  and a corre- 
sponding deficiency of those with 2 or 3 or more  breaks. 

(3) The  “map distances” of the genes that have been determined  in the 
chromosomes of Drosophila are  much less than  are required by  the linear 
theory  without  interference. 

THE HYPOTHESIS~OF ~ INTERFERENCE 

TO account for the relation  set forth  in proposition 17, namely, that 
when a crossover occurs between two genes having  together  a low crossover 
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ratio,  no crossover occurs between one of these genes and  any other gene 
having a low ratio  with it and lying on the same side of the crossing-over 
break,  in  the series given by such  a table  as  table 2, we know that  the 
students of Drosophila  have  proposed the hypothesis of interference. 
This  asserts that  the occurrence of a break a t  a  certain  joint in  the linear 
series interferes in some way  with  the occurrence of another  break at   any 
joint  near  by.  Various suggestions have been made as  to how such inter- 
ference might  be  brought  about;  with  these we are  not concerned. 

The hypothesis of interference was proposed only to account  for  the 
relation  set forth  in our proposition 17 ,  not  at  all  with reference to  the 
three  numerical discrepancies above  set  forth. We have now to examine 
whether it would in  fact do away  with  these  three  discrepancies;  whether, 
in  other words, interference would ( 1 )  increase the crossover ratios of 
distant genes in proportion to those of genes close together; (2) increase 
the proportion of cases with  a single break at  the expense of those  with 
more than one break; (3) decrease the  “map distances” in  the chromo- 
somes. Would it have  these effects to  just  the  extent required to bring 
the  facts  into consonance?  And of course it might turn  out  that  inter- 
ference would disturb some of the  other relations,  set forth  in basic 
propositions 1 t o  16: this would be fatal. 

It is obvious that  the fulfilment of these  conditions imposes a  severe 
test on the  theory of interference. T o  this  test we now turn. 

CROSSING  OVER  WITH  INTERFERENCE, IN CASE  THE  GENES  ARE  ARRANGED 

I N  A SERIES 

We  next examine the conditions which must hold if crossing over occurs 
in linear series of genes in  the  method  set  forth  in  the linear  theory, but  the 
occurrence of a break at a  certain  joint  interferes  with  the occurrence of 
another  break at   any joint within  a  certain  distance. 

When there  is  no interference, the  proportions of the chromosomes 
showing the diverse numbers of breaks,  from 0 up, between genes 
separated by n joints, are given, as we have seen by  the successive terms of 
the binomial (a+b)”, where b is  the frequency of a  break at   any joint, 
and a = l - b .  

Giving, for example, the value 4 t o  n, we have  the following propor- 
tions : 
Number of breaks 0 1 2 3 4  

Proportions a4+4a3b+6a2b2+4ab3+b4= 1 
Now, in case there  is  interference, it is  evident that this  formula  suffers 

the following transformations: 
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(1) The proportion showing 0 breaks (an) remains  unaltered, for inter- 
ference is effective only after  the chromosome concerned has a  break. 

(2) All those that would give a single break if there were no interference 
-that  is,  the second term, rt.a(””)b,-still give a single break, since 
interference does not come into action  until  after  there  is one break. 

(3) The proportions that would give respectively 2 , 3 ,  etc., breaks,-that 
is, the  terms beyond the second-are  now reduced, some of their compo- 
nent  parts giving in case of interference  a smaller number of breaks. 

Thus, those chromosomes which would have 2 breaks  (the  proportion 
of which is 6a2b2 in  the above  instance) will some of them, if there  is 
interference,  have but 1 break. All those in which the two  breaks would 
be  within  the  distance over which interference occurs, will  now have but 
one break;  the  rest will retain two breaks. 

Similarly, for the proportion  (fourth  term) that would otherwise have 
3 breaks; if all  these  three  breaks are within the distance over which 
interference  is effective, there will be but 1 break; if but two are within 
this dis,tance,  these  two will be reduced t o  1, while the  third will remain; 
so that  the chromosome will have but 2 breaks in place of 3. In  the same 
way, some that would have 4 breaks will  now be reduced t o  3, 2 or 1 
break;  and so of all  the  other  terms. 

(4) That is, the proportion that  has  just one break will in case of inter- 
ference, be increased  by  contributions from all the succeeding terms. The 
proportion for any greater  number, as 2 breaks, will be decreased by  the 
contributions which it makes to those  having but 1, but increased by 
contributions from all the  terms for higher numbers of breaks. 

It is thus obvious that among the general results of interference as 
compared  with the results if there were no interference, are  the following: 
(a) the  proportion of chromosomes with  no  breaks  is  unaltered;  (b)  the 
proportion  with  a single break  is increased. This,  as we saw on an earlier 
page (421), is what  is required t o  bring the results as  to numbers of breaks 
into consonance with  the  linear  theory.  Whether it will do  this  in  the 
correct  proportions, and whether it will, as required,  increase the crossover 
ratios between distant genes in comparison t o  those between genes that 
are near  together,  and decrease the  map  distances; also whether it will in 
any way disturb  the consonance of the observed relations  with the linear 
theory,-these remain t o  be  determined. 

TO determine  these  things, we require  formulae giving the crossover 
ratios and  the numbers of breaks occurring, in case there  is  interference; 
we can  then compare the results  with  those from crossing over without 
interference. A general formula for  the numbers of breaks occurring in 
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case of interference would be obtained from the binomial expression 
(a+b)", by determining  what part of each of the  terms  is t o  be trans- 
ferred to  the  terms preceding it. What  part of those that without  inter- 
ference would  show two breaks, will  now show but one?  And so of the 
remaining  terms. 

Complete  interference 

We shall  deal  first  with the relatively simple possible case that a single 
break  in the chromosome prevents  the occurrence of another break in  this 
entire chromosome. As before, we let b represent  the  frequency of a  break 
at   any particular  joint so long as interference has not come into  operation, 
while a represents the frequency of no-break at   any particular  joint,  under 
conditions of no  interference. The  total  number of joints in  the chromo- 
some we designate n; interference  extends over the  entire n joints. 

When  there  is  no  interference,  as we have seen, the  relative  numbers of 
chromosomes showing the different possible numbers of breaks,  from 0 
up,  are given by  the successive terms of the binomial (a+b)". If, when 
there  has occurred a single break, no other occurs, it is obvious that all 
the chromosomes will  now show a single break,  except  those which, in 
case there were no interference, would show no  break. The proportion 
of these  latter  is given by  the first term of the binomial (a+b)"; it is of 
course an. The proportion of the chromosomes showing a single break  is 
therefore in  the case of complete  interference, 1 -an; and  this of course 
will be the crossover ratio,  as well as  the value of B1 (the  proportion of 
cases having  a single break). We therefore  have for the case of complete 
interference for the  entire  length of the chromosome the  formula: 

C=B1= 1 -an.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21) 
From  this  formula it is clear that, if interference  is  complete throughout 

the  length of the chromosome, C may  have  any  value between 0 and 1. 
Crossover ratios  above 50 percent  may occur as readily as  ratios below 
50 percent.  For  whatever  value be given to  a (the  proportion of cases in 
which a given joint  is  not  broken, so long  as  interference has  not come into 
action), if n be taken sufficiently great an will become less than 3, so 
that C will be greater than* or 50 percent. Thus, if for b we take  the 
super-maximal  value of .005, so that a= .995, then for n= 138.28, C=% 
or 50 percent; for n=277,  C=75 percent; for n=455,  C=90 percent. In  
general the  number of joints n, between the two extreme genes, necessary 
to give for them  any  particular crossover ratio C is given by  transforming 
formula (21) as follows: 

1 - - C = a n  
GENETICS 8: S 1923 
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Whence 
log (1-C) 

12 = . . . . . . . . . . . . . . . . . . . . .  
log a 

I n  formula.(22) of course n is  the  total  number of joints  in  the  ,chromo- 
some, and C the crossover ratio  for  the  two  end  genes. 

In   the  case of complete  interference, if any given  joint  shows a break 
as frequently as any  other,  the  actual  mean  frequency of a break (which 
we may call p, to  distinguish it from b,  the  frequency  when  there is no 
interference)  is, of course: 

fl=-" 
l -an 

. . . . . . .  
?a 

And  for  genes  separated  by  any  number, m, o f  joints  the crossover ratio 
is the  frequency of a single break  in  the  total ?n joints: so that: 

m(1 -an) C = B ,  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I 2  

(Where IZ is  the  total  number of joints  in  the  chromosome.) 
In   this  case,  for  comparing  the  crossover  ratios of two  stretches of the 

chromosome, it is  evident  from (24) that  their  ratios  are  directly  propor- 
tional  to  the  number of joints  they  contain.  That is, if C1 is  the  ratio 
for m l  joints,  then  for Cz, the  ratio  for m2 joints, we have 

CZ m2 m2 C1 
Cl ml 
- , whence Cz= ~ . . . . . . . . . . . . .  "" 

m1 
And of course the crossover  ratio  for  the  sum of two or  more  contiguous 
stretches of the chromosome is the  sum of the  ratios  for  the  several 
stretches  taken  separately.  The  value of the crossover ratio  between  any 
two genes  would be  the  same as the  number of units (each  yielding 1 per- 
cent of crossing  over.) 

No cases are  thus  far  known of complete  interference;  the  observations 
show  that,  interpreted on the  linear  theory,  some of the chromosomes 
show  more  than a single break.  We  proceed  therefore to  examine: 

Partial iTcterference 

In  partial  interference,  the occurrence of a break  a t  a given  joint  inter- 
feres  with  another  break  within a certain  distance  from  that  joint,  but 
this  distance  is  not so great as to  include  the  entire  length of the  chromo- 
some.  Hence,  two or more  breaks  may occur in  the  chromosome,  depend- 
ing  on  its  length. 



The generalized problem of partial interference is complicated by  the 
fact that  the results differ slightly,  depending on the order in which the 
fate of the different joints of the chromosome is  determined.  This  may be 
illustrated by a simple example. Suppose that when a  break occurs, this 
prevents  the occurrence of another  break for  three  joints  in  each  direction. 
Then if in  the 6 joints shown below, there would without  interference 
occur three  breaks ( b ) ,  a t  joints 1, 3 and 5, 

1 2 3 4 5 6  
b b b  

as shown, the number of breaks  remaining in case there  is  interference 
will depend  upon which of the  three  breaks  is  produced  first. If number 1 
is produced  first,  this will interfere  with  number 3, but  not with  number 5, 
so that there will remain two breaks. But if number 3 is produced  first, 
this will interfere  with both  the  other two  breaks (since these are  both 
within  3  joints of it), so that there would now remain but a single break. 
The order of d'etermination affects in  other ways  also the  proportions 
showing particular  numbers of breaks. 

If, however, the linear  theory  holds for the chromosomes, it is extremely 
probable that  the  determination of the  fate of the  joints occurs in serial 
order,  from one end of the chromosome to  the  other.  For  the cytological 
evidence indicates that when the conjugation of the chromosomes occurs, 
in  the  very long  thread-like  stage, the union begins a t  one end  and pro- 
gresses toward the  other;and  the  separation of the two  united chromosomes 
appears  to  take place in a similar manner. The determination of the 
fate of the joints  must  apparently occur either when the two chromosomes 
are  uniting, or when they  are  separating. 

It appears therefore that a  solution of the problem  for  determination 
of the  fate of the  joints successively in linear  order, is  what we require. 
In  any case, however, it appears that when the frequency of breaks is 
small, and  the number of joints  is  large,  as we know to be the case in  the 
chromosome (if the linear  theory  holds), the difference in  the  results  due 
to different orders of determination would be so minute as ' to be entirely 
negligible. A number of typical  particular  diverse  orders  worked  out 
gave  results differing only in  the  fourth or fifth decimal place or b e y ~ n d . ~  

If it be  held that the first. break occurs as frequently at  any one joint as a t  any other, and 
that  any given order of determining the  fate of the entire n joints occurs as frequently as any 
other;  then there would  be n! equally frequent orders of determination. By transforming, in 
accordance with these principles, the binomial (a+b)n into an expression giving the mean result 
for all these n! orders of determination, in case of interference extending for any given number of 
joints, a solution under these conditions would  be obtained. Apparently such a solution would 
not differ in numerical results appreciably from that given  in the  text. 

GENETICS 8: S 1923 



428 H. S. JENNINGS 

We assume then  that  the  determination of whether  each  joint  is to 
show a  break or no  break occurs in serial order, from one extremity of the 
chromosome to  the  other.  Thus  in  the series 

1 2 3 4 5 6 7 8  
the  fate of number 1 is  first  determined, then  that of number 2, and so on. 
(Determination proceeding serially from the middle in  both directions, as 
might occur in V shaped chromosomes, would give essentially  identical 
results.) 

We shall, as  in  the case of no interference,  first develop formulae in 
which b,  the frequency of a  break at   any given joint,  and n, the  number 
of joints,  are assumed t o  be known; from these we shall  then  obtain general 
formulae showing the relations even when b and n are  not known. 

It is convenient t o  designate as k the number of joints whose fate is 
determined (in one direction, of course, if the order of determination is 
serial), when a  break occurs a t  a given joint, including  in k the  joint a t  
which a  break occurs. Thus, if, when a  break occurs, this  prevents  a 
break  in  the  four succeeding joints,  the  value of k is 5 .  

The problem of the results of interference in  a series of n joints, in case n 
is greater  than  the distance of interference, may be attacked directly,  in 
the following manner. 

The chromosome has n joints  between its n+l genes. At each  joint, so 
long as interference does not come into operation,  a  break occurs in  the 
fraction b of all  cases;  no-break in  the fraction a (= 1 -b) .  Whenever the 
fate of a  certain  joint  is  determined as no-break,  this has no effect on the 
fate of succeeding joints. But when a  certain  joint receives a  break,  then 
a  certain  number ( k  - 1) of the succeeding joints  are  determined  as yield- 
ing  no  break, so that  at  any break  a total of K joints  is  determined. 

For convenience of illustration, we will designate  a  break by  the  letter 
b; no-break (when independently  determined) by  the  letter a; these will 
also represent the proportions of cases in which these  conditions occur. 
We may  further  designate  a  “no-break” which is  determined by a fore- 
going break, by the Greek letter a. If then, for example, n = 8, k =4, 
and  the first  break occurs a t  the  third  joint, while no other occurs, we 
represent the condition as follows 

a a b a a a a a  
And the proportion of cases in which such  a  result will occur is given by 
the  product of the a’s and  the 6’s; so that  in this case the proportion is 
a4b (that is, in .06561 of all cases, if a = .9, b= .l). The a’s do  not  have 
to be included in  the  product, since they occur in all cases after  a b has 
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occurred at the given point;  the  value of each a as a  factor would be 1, 
thus  not  altering  the result. 

Now, the problem which we have to solve is  this:  in  what  proportion of 
the cases would no b,  lb,  2b, etc., occur in n  joints, if a b, on its occurrence, 
is  inevitably followed by (K - 1)  a’s (no-break)?  For convenience, let  us 
represent, as before, the proportions  having  no  breaks, 1 break,  etc.,  by 
Bo, B1, Bz; or in general, let Bd represent the  proportion of the chromo- 
somes showing (within the  stretch of n genes) any required  number of 
breaks d. 

We must distinguish  two cases for  the occurrence of the b’s followed 
by a’s: 

( 1 )  If a  break b occurs a t  a sufficient distance  from  the  (latest  deter- 
mined) end of the chromosome, it is followed by (K - 1)  a’s. Thus there 
occur blocks of K joints, in all of which joints  the fate  is  determined  by  the 
occurrence of b. For example, if K is 4, these blocks are each b a a a.  The 
chromosome would show such  combinations as: 
b a a a a a a a a   o r a a a a b a a a a  or a a a a a b a a a  or b a a a a b a a a ,  etc. 

(2) But if a  break b occurs very  near  the  (latest  determined)  end of the 
chromosome, it cannot be followed by ( K -  1)  a’s, but  by some lesser 
number (from 0 to K - 2 ) .  We shall then (if K = 4) have  such  combinations 
as : 

a a a a a a a a b  or a a a a a a b a a  or b a a a   a a a b a ,  and  the like. 
We will distinguish the former case as  that  in which all  the K-blocks 

are complete, while in  the second case some of the K-blocks are incomplete. 
These two cases must be dealt  with  separately. 

(1) All K-blocks  complete. If the  number of joints  n  is  large  in  proportion 
to  K, (the  distance over which interference occurs), this  first  group will 
contain  by  far  the  larger  proportion of the crossovers; and  this is the  situa- 
tion that we find in  the chromosomes. The  proportion of these  having 
any given  number  d of breaks  is  determined as follows. There will be 
d complete K-blocks, such as b a a   a .  These will occupy of course dk  of 
the n joints,  and  there will of course be left  n-dk  joints to  be occupied by 
the  independently  determined a’s, as  in  the following 13 joints: 

a b a a a a a b a a a a a  
In  such  a  set of n  joints,  there are obviously d b’s and  (n -dK) inde- 

pendent a’s, so that  the frequency of each  is a(n-dk)bd. But  the K -  
blocks can occupy different positions, and  the frequency of d  complete 
K-blocks  will be given by  determining  the  number of diverse  positions in 
which d such blocks may occur. 
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We may look upon each k-block as a single unit. Our problem is re- 
duced to general terms by considering these k-blocks as  units of one 
kind;  the a’s as  units of another  kind. Since there are d of the K-blocks, 
( z  -dl;) of the a’s, the  total  units  are ?z -dk +d. Our problem then  is: 
Now many different arrangements of n -dk+d things  can be made, if 
I.Z -dk are of one kind, d of another  kind?  The number  is of course 

(n-dk+d) ! 
( n - d k ) !  d !  

(see text-books of probability;  e.g.,  Carpenter’s “Choice and  chance”.) 
As each occurs with the frequency ~ ( ‘ “ ~ ~ ) b ~ ,  the  total proportion of 

cases with d complete k-sets is 

(PZ - dk +d) ! ~ ( ~ - ~ ~ ) b ~  
(a-dk)!d! 

(2) Some of the k-blocks not complete (since a b occurs within the distance 
(k - 1) of the  termination). It is obvious that there will be k - 1 possible 
cases in which a b occurs within the distance k - 1 of the  end; these will be 
followed by a’s in numbers  ranging from 0 to k - 2 .  T o  determine the 
proportions of these in which there  are d breaks, we may deal  first  with the 
set  in which the final b is just k - 1 joints from the  end, so as to  be followed 
by (k - 2) Q’S. Then of the n joints, (d - 1) k will be taken up  by complete 
h-blocks, while K -  1 are occupied by  the  terminal incomplete  block, 
making  dk- 1 that  are occupied by  the k-blocks. Thus there  are left 
(W -dk+l) independently  determined a’s. The incomplete k-block is 
fixed a t  the end of the chromosome, so that we have (d - 1) blocks of k 
each, that can  be  shifted about  among  the  (n-dk+1) a’s. The  total 
number of units t o  be considered is therefore  again n -dk+d,  and we re- 
quire  the  number of diverse arrangements that can be made of these if 
n - d k  + 1 are of one kind; d - 1 of another.  This  (with  the  total  frequency, 
in view of the number of a’s) is: 

(n - dk +d) ! a ( n - d k + l ) b d  

(n-dk+l)! ( d - l ) !  

Similar reasoning applies to  the remaining ones of the (k - 1 j sets  in 
which b is less than k joints from the  end. If we work these out,  and  add 
them to those  already  obtained, we obtain  the  complete formula for the 
frequency of any specified number of breaks, Bd, in case of interference, 
with the order of determination serial. This  formula,  fundamental for 
crossing over with  interference, is given below: 



Let n= the  total  number of joints  dealt  with. 
K = the  number of joints  in one direction over which interference 

extends,  including in K the  joint a t  which the  break occurs. 
b =the frequency of a  break at   any one joint, when the conditions for 

interference are  not  present. 
a= the frequency of no-break a t  any one joint when the conditions 

for interference are  not  present (so that 'a = 1 -b) .  
d =the number of breaks of which the  relative  frequency is required. 

Bd= the frequency of just d breaks,  in case there  is  interference ex- 

Then  the  value of Bd is  found to be made up of bd times the sum of 
tending over K joints. 

R terms,  as follows: 

B d  = b d  c (-n-(d-l)K+d-2)! a(n - (&l )k - l )  + ( n - ( d - l ) K + d - 3 ) !  
( m - ( d - 1 ) K - l ) ! ( d - l ) !  (72-(d-l)k-22)! ( d - l ) !  

a(n-(d-~)k-2)  + ( n - ( d - 1 ) K + d - 4 ) !  a ( n - ( d - l ) k - 3 )  + . . . . . . . . 
( n - ( d - l ) k - 3 ) !   ( d - l ) !  

. . . . . . . . t o  ( K  - 1) terms,  the ( K  - 1 )  th term  being: 

j f i -dk+d) !  
( n . - d k + l ) !   ( d - l ) !  

then + (n-dk+d) a(n-dk)  

(n -dk) !  d !  1 . . . . . . . . . . .  . . .  . . . . .  

It will be observed that, of the  terms  within  the  brackets, for the first 
( K  - 1) terms  the  numerator  (factorial) of the  fraction  and  the  first  term 
of the  denominator  (factorial)  are decreased,.from the first term on,  SUC- 
cessively by 1, while the exponent of a is likewise diminished  throughout 
successively by 1 .  In  case n is  small in  proportion  to K ,  not  all  the  terms 
will be realized; as soon as a  term  is  reached  in which the  numerator or 
first  term  in  the denominator becomes a  minus  quantity,  that  and all 
succeeding terms  are  to be omitted. It is important to  remember, how- 
ever, that when the  numerator or a term of the  denominator becomes O ! ,  
this has  the value of 1 (since in general O !  = I ) .  

The  last  term of the formula  represents the frequency of the complete 
8-blocks; the  other  terms  the  frequencies of the incomplete K-blocks at 
the  terminus of the chromosome (or of the  part of the chromosome 
considered). 

It may be observed that this  formula (26) is an entirely  general  formula 
for the successive terms when in  a series of things the occurrence of a 
GENETICS 8 S 192.3 
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certain chance result for one unit determines also its results for a  number 
of the contiguous succeeding units,  the  order of determination being 
serial. If we let k = 1, so that no other  units  are  determined, we have  the 
case of no  interference, and formula (26) yields the usual binomial expres- 
sion for the kxpansion of (a+b)". 

For Bo and B ,  (the proportion of cases having no break,  and 1 
break,  respectively),  formula (26) simplifies directly into  the following 
expressions : 

BO=U ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (27) 
B1=u(fl-k'b ( l+a+a2. .  . . . . . . . . . .  .a'k"))+(n-k) d n - ' ) b . .  . . . . . .  .(28) 
Since b = 1 -a, the first member of this expression for B1 is  equal to  

U('+") (1 -ak)  (see text-books of algebra,  e.g., HAWKES'S Advanced 
(1905), page 22). Substituting  this we have for B ,  the more convenient 
expression : 

B = a(n-k) (1 -uk)+(n-k)  ~ ( ' - ~ ) b . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (29) 

Formulae (26) t o  (29) give the proportions for  the  different possible 
numbers of breaks between two genes, in  terms of n, k and b. If these 
three  values  are  known, the crossover ratio C can be discovered by their 
aid, since it will be the  sum of all the cases in which there  are odd num- 
bers of breaks between the two genes separated  by n joints; that is, it 
will be the  sum of B1, . B 3 ,  B,, etc., up to  (plus 1 for any remainder  above 
an integral  quotient). 

But for the conditions in inheritance we know neither n, k nor b, so that 
it is desirable t o  obtain  formulae for Bo, B,, Bz, etc.,  and for the cross- 
over ratio C, that shall be independent of the precise values of n, k and b,  
depending merely upon  certain general limits  to be assigned them,  as we 
did for the case of no interference. 

In  this case as  in that of no  interference, we know that  the frequency 
of a  break a t  a single joint  is less than .005. 

With regard to  k ,  we know, not  the  actual number of joints over which 
interference  extends, but  the  extent of the chromosome, measured  in 
percentage of crossing over, over which it extends. According to BRIDGES 
(1921), in chromosome I of Drosophila,  interference  is  practically complete 
over a  distance which itself yields about 15 percent of crossing over;  in 
chromosome I1 near  the  ends  this  distance gives about 20 percent of 
crossing over, while in  the middle region it is about 10 percent. 

For our purposes, consider the case that two genes are  separated by 
just k joints. In  this case there  can  be but 1 break between them. The 
frequency of no break  whatever between them will of course be uk (since 
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n = K ) ,  so that  the frequency of a single break will be 1 -ak (since all 
cases that do  not show no-break must show a single break). 

Now, suppose that we know the percentage of crossing over yielded by 
the  distance over which interference occurs (as we approximately  do in 
Drosophila). This percentage of crossing over is  due  to a single break 
(since only 1 break  can occur in  that region of interference). It is therefore 
equal t o  1 -ak. Let this  percentage be called P, and for convenience let 
l -P  be called A .  Since P = 1 - a k ,  A or 1-P=ak.  Thus, if P be .20 
(as  in  the second chromosome of Drosophila),  then A = .80, and  this we 
know to be equal to  ak. 

Now, if A = a k ,  of course a = d A ,  and since b = l - a ,  b = l - $ x .  
We  now have  the  values of a and b transmuted  into terms, one of which 
a t  least ( A )  is  approximately  known,  experimentally. If now we can in 
some way replace k and n by known  quantities, we shall be on the  way 
t o  a  solution of our problem. 

Consider the case that n, although  unknown, is some definite  number 
of times k .  Thus, if k be 20 units,  each of which gives 1 percent crossing 
over, we may readily  deal  with  a  distance of 25 or 30 or 40 or 100 of such 
units;  that is,  distances  in which n =  1.25 k ,  1.5 k ,  2 k or 5 k.  This is of 
course done in  practice  in Drosophila. In  general, let n = mk. 

Now substitute these  values in formula (26). That is, for a substitute az, or A for b, substitute 1 - Qt? ; for 1z, substitute mk. 
We may first undertake  this for the values of Bo and B1, in formulae 

(27) and (29). 
From  formula (27), we obtain 

k -  

B; = (Qz)mk, which of course yields directly 

Making  the proposed substitutions  in formula (29), for B1, we obtain 
directly  (with  a  slight  change  in  the  arrangement of the  factors of the 
second member) ' 

Bo = A  " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (30) 

B,=A("-')(l-A)+(m-l)A("") . k ( 1 - $ 2 )  
In  the first  member of this expression, 1 - A  is of course P, the  extent 

of interference. I n  the second member we find the expression k (1 -$x), and  this we recognize again (as on page 415) t o  approach, as k 
becomes large, the  limit given by  the minus natural  logarithm of A .  
Substituting these, we obtain  the following formula (31) for B1, depending 
entirely on the observationally  knowable  quantities A ,  P and m: 

B1 =A("") . P+(m- l)A("-I). (-nat log A )  . . . . . . . . . . . . . . . . .  (31) 
For example, suppose that interference  extends over a  distance that 

yields 25. percent crossing over, what is the crossover ratio between  two 
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genes lying twice this  distance apart? Here  the  total crossover ratio will 
be due t o  the value of B,. We have P =  .25, A = . 75 ,  m =  2 .  Hence: 
C=B1=.75X.2S+.75X(-nat log .75)=40.33 percent. 

In  the case of the general formula (26), for the value of Bd (that is, for 
the proportion giving any designated  number of breaks),  the  conditions 
are of course more complex. It will be observed that  the expression within 
the parenthesis  in  formula (26) consists of k terms,  each  containing  a 
coefficient composed of factorials,  and a certain power of 0, so that  the 
form of each  term  is 

P! 
( P - d !  4 !  

a'. Now: such  a  factorial expression is a definite function of 

p and q, which can be written  in  the simpler form, more convenient for our 
purposes : 

- a', in which p!* signifies q factors, beginning with p ,  and descending 
p!q 

Q !  
by successive differences of 1.  

We may  then  write  the  terms of formula (26) in  this  manner, a t  the same 
time  making  the  substitutions proposed. For reasons that will appear 
later, we also multiply  the  numerator  and  denominator  by kd; this of 
course does not  alter  its value. We thus  obtain: 

+ ( (m-d+ l )k+d-3 ) ! (d""  A ( n t - d + 1 - - 2 / k )  

(a-l)! etc., to k - 1 terms: 

then + ( (m-d)  A ( m - d )  
d !  1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (32) 

This  formula  can be simplified for practical  working  purposes,  and  the 
unknown quantity k gotten rid of, without sensibly altering  the numerical 
results which it yields, by  the following series of considerations, and 
changes based on them: 

(1) The  numerator of the first term of the expression for Bd is the  dth 
power of K (1 - $2). In  this  latter  again we find an expression the  limit 
of whose value,  as k is increased, is  the minus natural logarithm of A (see 
page 415). We know that k is  a  large number; if b is  taken as .0025 
(which is beyond doubt  an extreme  upper  limit for it), t o  yield 20 percent 
interference K would have t o  be SS+, while if b is less than this, k would 
be still  greater.  We  may  therefore replace the  numerator of the  first 



member of the expression ( 3 2 )  for Bd by  the  dth power of the minus 
natural logarithm of A .  

The  quantities  within  the  large  brackets that enclose the second 
member of the expression for Bd (formula ( 3 2 ) )  are a series of k terms, of 
powers of A,-the coefficients and exponents of A changing  according to 
definite laws. The  exponents  and coefficients must be dealt  with sepa- 
rately. 

( 2 )  For  the first K - 1 terms, the exponents of A form a series decreasing 
successively by a difference of the  very small quantity i, and  the  total 
difference between the first and  last  term of these k - l terms  is 1 .  (The 

1 
k k 

first  exponent  is m - d + 1 - - ; the  last is m - d + 1 - -) . As the difference 
k - l  

between the extremes of this long series of slightly differing powers of A 
is so slight, it  will make  little difference in  the  total  value of the expression 

if we substitute for each  exponent the mean of all, which is 
2 m - 2 d + l .  

2 
(Whether  this  substitution does make an appreciable difference will of 
course be tested  later.) 

( 3 )  We have  thus  brought  all  the  terms  within  the  brackets  except 
the  last one to a common power of A .  If now we can add together  their 
coefficients, we shall obtain a single expression for  the  total  value of these 
k - 1 terms.  The coefficients are, for successive decreasing  numbers, the 

functions  represented by  the form - . The first coefficient of formula 
p ! s  

U !  
( ( m - d + l ) k + d - 2 ) ! ( d - ' )  

( 3 2 )  is -- while for the ( k -  1)th  term  it is 
( d - l ) !  

( (m-d)k+d)! 'd")  - 
( d - l ) !  

. Now, the sum of a series of successive terms of the form 

p ! g  
- , beginning with  a  value of 1 (in which case p and q are  equal), so that  
9 !  

q!p (q+1)!4  (q+2)!4 p ! q  ( p +  1)!(q+l) 
the series runs 

;! + q l  

+- up  to -, is . Re- 
q !  Q !  ( q + l ) !  

placing p and q by their  values in  the coefficients of formula ( 3 2 ) ,  we 
find that  the  total sum of all the coefficients, from the  value 1, up t o  the 

( ( m - d + l ) k + d - l ) ! d  
highest value given in  the first  term, is 

d !  
But  the lowest of these ( k -  1 )  terms does not  have  the  value 1 ,  but 

( ( m - d ) k + d ) i c d - l )  
instead  the  value . Hence, from the  total  sum,  just 

( d -  l)! 
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given, must be subtracted  that  part of the sum given by  the series from 

the value 1 up to  
( ( m - d ) K + d - l ) ! ( d - l )  

(d  - 1 )  ! 
. This  part will, according to  the 

rule just given, be 
( (m-d )k+d) ld  

d !  
The  actual sum of the ( k -  1 )  co- 

efficients of A T  is  therefore: 
Zm-Zd+l 

( ( m - d + l ) k + d - l ) ! d   ( ( m - d ) k + d ) l d  
d !  

- ; so that  the  total value of the first 
d !  

( k  - 1 )  terms  within the large  brackets  is 
( ( m - d + l ) h + d - I ) ! d   ( ( m - d ) k + d ) I d  AT 

d !  
- 

d !  1 
There  remains the Kth  or last  term of the expression in  the  brackets of 

( 3 2 ) :  this is . We add  this,  and a t  the same  time 

we divide  each  term  within the large  brackets  by kd ,  thus removing kd  
from  the  quantity outside the  brackets.  This gives us as  the  present 
condition of the formula for Bd the following: 

Bd = (-nat log A ) d  

( (m-d )k+d) Id  
d !  

( (m-d+l )K+d- l ) Id   ( (m-d )k+d) Id  (2m--2d+1) [( d !   k d  
- ) A 7  

d !   k d  

+- ( (m-d)K+d)ld 
d !  kd 

A (m-d) 1 
From  this we can  obtain an approximate  formula that shall not include 

the unknown quantity K ,  and  that will give results differing from the com- 
plete  formula by only a negligible amount (as will be shown). This 
results  from  the following considerations : 

The: first coefficient 
( ( m - d + l ) K + d - l ) ! d  

d !  K’ 
as k becomes larger  approaches 

(m”dS1)d  as a  limit.  Thus, for the values m = 4 and d = 2 the value of 
d !  

this  limiting expression - is 4.5. 
( m - d + l ) d  

d !  
If now we make k =40, the 

value of 
( ( m - d + l ) k + d - I ) ! d  

d !   k d  
” is 4.5375; if k is 100, its value is 4.515. 

Similarly the second and  third coefficients within the parenthesis  each 
(m - d)d  

approaches ~ 

d 
as K becomes large. We may therefore substitute 
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these values for the three coefficients.  We then  obtain  as our final ap- 
proximation formula for Bd the following which is to be employed in 
computing  the crossover ratio, C, in case there is interference: 

Bd= (.--at  log A)d 
( m - d + l ) d - ( m - d ) d  

d !  
A 2  

+- A h - 4  (m 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

d !  1 (33) 

In  formula ( 3  3 )  : 
d = the  number of breaks between the two genes in question. 

A = 1 -P, where P is the average number of standard  units of length 
(each unit yielding 1 percent of crossing over), over  which inter- 
ference extends. 

m= the distance between the two genes for which the crossover ratio 
is sought, in  units, each of which is P. Thus, if the  distance be- 
tween the two  genes is 1.25 times the mean distance over which 
interference extends, m = 1.25. 

C, the crossover ratio,  is obtained from this formula (33) by  taking 
the sum of the values of Bd for odd values of d As it  turns  out, 
usually, the only odd values of d that have an appreciable value 
are 1 and 3, so that  as a rule C=Bl+B3. The value of B1 is most 
readily obtained from formula (31); that of B3 from ( 3 3 ) .  

It is t o  be noted that there  may be d breaks and so a real value for B d ,  
only if m is greater than d - 1. ,Thus if the chromosome has  length just 
twice that over  which interference extends, it is not possible that there 
should be three breaks within that distance. But if it extends beyond 
twice the interference distance,  then  there can be three breaks. If now m 
is greater than d -  1, but less than d ,  a  number of terms  in the  above 
expression ( 3 3 )  disappear, and  the expression for Bd becomes simplified. 
It is  perhaps unnecessary t o  give in  detail  the  steps of that simplification; 
it will  be found that  in this case the formula takes  the form given in  the 
following (34); that is: 
When the value of m lies between d and d - 1, 

Bd= the  proportion of cases having any number d of breaks. 

Bd = (-nat log A ) d  . . . . . . . . . . . . . . . . . . . . . .  (34) 

The justification for making the above approximations of course re- 
quires test. Such test was fully supplied in  the course of this  investiga- 
tion,  through  the fact  that,  as  may be supposed, these changes, 
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approximations and simplifications, did  not suggest themselves a t  first, 
but came after  much  labor  and  many  divagations. At first it appeared 
necessary t o  discover the effects of interference by employing the  funda- 
mental formula for Bd, in  terms of ?a, k and b ,  given in formula (26). 
A maximum value was assigned t o  b,  using for this .005, since as before 
remarked, b is  certainly less than  this.  Then if we assume a  certain ex- 
tent of interference P, we can  determine the corresponding value of k 
through  the  relation P = 1 -ak,  set  forth on page 433; from this it follows 
that 

log (1 -P) log A 
log ( 1 - b ) '  log a 

k =  

When b is  put  at .005, so that a =.995, we find that for interference 
extending over a  distance yielding 20 percent crossing over, k =45; for 
25 percent, k = 58; for 30 percent, k = 72, and  so,on.  Taking now values of 
n that  are a  certain  number of times k ,  we work out  the crossover ratios 
by  adding  the values of the odd numbers of breaks, B1+B3+B5,  etc.  The 
value of B1 is  obtained from formula (29); those for BS, B5, etc.,  are 
gotten  with  great  labor from formula (26). It is  found that  the results 
do  not differ sensibly from  those given for the same  extent of interference 
and same  proportion of n t o  k by our simple general approximation 
formula , ( 3 3 ) .  The following are  typical  comparative  results of the two 
methods, for certain  values of m, when the interference  extends over a 
distance yielding a crossover ratio of 25 percent. 

or =- 

TABLE 7 

Crossooer ratio, percent. 

COXPLETE FORNULA (26) ASSUMING 
b= .OOS 

25.00 
34.08 
40.27 
44.22 
46.69 
49.02 
49.49 

APPROXI&IATION  FORMULA (33) 

2s .oo 
34.11 
40.32 
44.26 
46.77 
49.06 
49.78 

AS table 7 shows, the approximation  formula ( 3 3 )  is  quite  accurate 
enough for all purposes, even for so high a  value of b as .005; for the 
actually smaller values it is of course still more accurate. It even gives 
results  accurate t o  the  third decimal place for values of Bd when there is 
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no  interference. In  this case the value of R is 1,  and m = n, while P = b 
and A =a. Letting b = .005, we find by (33) that B3 = .012007, while by 
the simple binomial  formula it is .012430. 

Throughout  the  remainder of this  paper,  therefore we employ the 
results yielded by formula (33) and  its modifications. Thus,  the crossover 
ratio C in case of interference  is: 

C=B1+B3+B5, etc ... , . . . . . . . . . . . . . . . . . . . . . . . . . . . (35) 
The values of B,, BS,  B5, etc.  are of course found by (31),  (33) and (34). 

The general relations in crossing over with  interference 

In  formula (33) with its modifications, formulae (30), (31) and (34), we 
have an  instrument  by which we can  determine the crossover ratios  for 
any degree of interference,  with the rules and general relations of crossing 
over when there  is  interference, discovering whether  interference alters 
any of the general relations  found to hold for linear crossing over without 
interference; how far  there  is  agreement  with our 17  basic propositions; 
and how far  the conditions  resulting agree with  those  found in  nature. 

1,. We may first examine a table of crossover ratios  between genes ten 
units  apart,  with a degree of interference  comparable to  that held to be 
found  in Drosophila. Selecting for  this  purpose  interference  extending 
over a  distance that itself yields 20 percent crossing over, we obtain  table 
8. 

TABLE 8 

Crossover ratios for genes A to L, ij they are separated by successive stretches eock 10 units in length, 
and there is interference  extemiingfor20 twits (worked out from formtsla (33)). 

For comparison with the reszllts when there is no inter- 
ference (table 5) ,  and  with the cond.ilions in 

natnrc (tnble 2) .  

A B  "_ - - 
A 

47.7 48.4 L 
46.8 47.7 K 
45.6 46.8 J 
43.8 45.6 Z 
41.5  43.8 H 
38.3 41.5 G 
33.9 38.3 F 
27.9 33.9 E 
20.0 27.9 D 
10.0 20.0 c 
. . . .  10.0 B 
10.0 .... 

GENETICS 8: S 1923 

__ 

C 

20.0 
10 .o 

10.0 
20.0 
27.9 
33.9 
38.3 
41.5 
43.8 
45.6 
46.8 

- 

... .  

__ 

D E  

27.9 33.9 
20.0 

20.0  10.0 
27.9 

43.8 45.6 
41.5 43.8 
38.3 41.5 
33.9 38.3 
27.9 33.9 
20.0 27.9 
10.0 20.0 
. . . .  10.0 
10.0 . . . .  

- 
F 

38.3 
33.9 
27.9 
20.0 
10.0 

10.0 
20.0 
27.9 
33.9 
38.3 
41.5 

- 

. . . .  

- 

- 
G 

41.5 
38.3 
33.9 
27.9 
20.0 
10.0 

10.0 
20.0 
27.9 
33.9 
38.3 

- 

. . . .  

- 

__ 
H 

43.8 
41.5 
38.3 
33.9 
27.9 
20.0 
10.0 

10.0 
20.0 
27.9 
33.9 

- 

. . . .  

___ 

- 
I 

45.6 
43.8 
41.5 
38.3 
33.9 
27.9 
20.0 
10.0 

10.0 
20.0 
27.9 

- 

....  

- 

J 

46.8 
45.6 
43.8 
41.5 
38.3 
33.9 
27.9 
20.0 
10.0 

10.0 
20.0 

- 

.... 

- 
K 

47.7 
46.8 
45.6 
43.8 
41.5 
38.3 
33.9 
27.9 
20.0 
10.0 

10.0 

- 

. . . .  
- 

- 
L 

48.4 
47.7 
46.8 
45.6 
43.8 
41.5 
38.3 
33.9 
27.9 
20.0 
10.0 

- 

- ....  , 
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A study of table 8 in connection with  the  fundamental  assumptions  as 
to  the serial order of the genes, shows that interference  extending for 20 
units does not  alter  any of the general relations  already  found t o  hold for 
crossing over without  interference,  except of course our basic proposition 
17, which it satisfies. That is,  linear crossing over with  interference of 
about 20 units requires and accounts for all of the general relations  set 
forth  in our 17  basic propositions of pages 397-399. T o  this  very  remark- 
able  fact we return  later. 

2 .  For full  understanding of the relations just mentioned and of those 
t o  follow, it is necessary to  note  the effect of interference on the  actual 
length of the  standard  “units”  in which the chromosome is  measured, 
and on certain  other  quantities. A unit is the  length  (or  number of joints) 
necessary t o  give one percent of crossing over. Assuming that before  the 
conditions of interference  arise, any given joint shows a  break on the  aver- 
age in  a  certain  proportion b of cases, then  with the same  value of b, 
as in.terference increases,  the  length of the  unit  increases. 

With  a given value of b, if k is the number of joints over which inter- 
ference extends, then for genes separated  by  just k joints  the crossover 
ratio C is given by  the simple formula C = 1 -ak (where a = 1 -b) .  (This 
is derived directly from formula  (29), replacing n by k, and remembering 
that  in this case C =  Bl.) From  this  again we can of course obtain  the 
value of k for any  extent of interference P, by replacing C by P in  the 
above  formula, and solving for k. This yields: 

log (1 -P)  
log (1 -b) 

k =  

The number of joints  in  a  unit is then given by dividing the  value of k 
by P (considering the  latter  as  integral  percents). An example will make 
this clear. Let  the frequency b of a  break at  any joint be .002, so that 
1 -b = .998. It is required t o  know how many  joints  there  are  in k if 
interference  extends over a  distance that yields 20 percent crossing over. 

Here C=P=.20, so that k = -  =111.455. log .S 
log .998 

If 111.455 joints  are  required to  give 20 percent crossing over, to give 1 
percent 5.573 are required (since within the  stretch k the values are simply 
additive), so that a  unit is 5.573 joints. 

Working out  the value of a  unit for a  number of different extents of 
interference by this  method, we obtain  table 9. 

3. I n  case there  is  interference, it is necessary t o  distinguish  carefully 
between the frequency of a  break a t  any  joint before the conditions for 



interference  have  arisen  (this  frequency we have called b ) ,  and  the  actual 
average  frequency of a break at   any joint,  in view of the  fact  that  after 
one break has occurred interference does arise. This  actual  average 
frequency of a break at  any joint,  in case of interference, we may designate 
p. With  constant b, the value of p decreases as interference  increases. 
This  may be obtained for the  distance k ,  over which interference  extends, 
by  dividing the value P ( = C  for K joints)  by h. The  value of p for differ- 
ent  extents of interference when b= .002, is given in  the  third row of 
table 9. 

TABLE 9 

Arumbcr of joitlts h c  a single unit gi-uing 1 percent crossing oner, for certain d<flercnt ralrrcs of i n f w  
fcrence, ita case b, the jreqmncy of a break at anyjohtt before thr 

cortditions for interference arise, is ,002. 

Extent of interfer- 
l 

ence, percent. . . . 50 ~ 75 i 90 3.5 1 40 30 2.5 2 0  0 
-___._____"."-.-- 

ATumber of joints 
6.94 6.38 6.15  5.94 5.75 ' 5.57 5.04 for 1 unit..  . . . . . 

! 

- _ _ _ _ _ _ _ _ _ _ _ _ - ~  
.\verage  frequency 

of a break at 
any joint (=p). ,00157 ,00163 .00168 ,00174 ,00179 .C02 

I I 

4. If interference  extends for not more than 30 units,  the crossover 
ratio satisfies the first of our basic propositions  (page 397),--namely, that 
the  ratio rises t o  about 50 perynt,  but does not go appreciably  above 50 
percent. 

5. But if  interference  extends for a  distance  greater than 30 units, 
then as the  distance between the genes becomes greater,  the  ratio 
rises above 50 percent. A t  interference of 30 units it rises theoretically to 
a maximum of 50.6 percent  (at a length of 120 units); for still  higher  values 
of interference it rises still  higher, as shown in  table 10. If interference  is 
sufficiently extensive it  may rise to  any  value less than 100 percent. 

It is to be kept  in mind, of course, that for the different grades of inter- 
ference the  units  are of diverse  lengths  (table g), so that  the  third column 
of table 10 does not give the  relative  actual  lengths a t  which the maxi- 
mum ratio is reached.  These may be obtained  by  multiplying  the  values 
in  the  third column of table 10 by  the corresponding lengths of the 
units  in  the second row of table 9. If we adopt  the lowest of these  values 
as  a  unit,  the  relative  lengths  are shown in  the  fourth column of table 
10. 
CENETIC~ 8: S 102.3 
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6. When as a  result of interference the maximum crossover ratio rises 
above 50 percent,  then  as  the  distance between the genes is  still farther 
increased, the  ratio undergoes oscillatory changes illustrated  in  the 
curves of figure 1. Beyond the maximum the  ratio begins t o  decrease, 
falling to 50 percent,  then below 50 percent. The  amount  by which it 
thus goes  below 50 percent  is somewhat less than  the  amount  by which, a t  
its highest, it exceeded 50 percent. As the distance between the genes is 

TABLE 10 

Limiting values of the crossover ratio,  with  different  extents of interference (mea.sured in units each of 
which gives 1 percent crossing over);  with the number of units distance at 

which the ratio is at the maxinaum. 

EXTENT O F  LIMITING CROSS- 

INTERFERENCE OVER RATIO I N  

UNITS PERCENT 

0 

90.0 90 
77.9 75 
60.6 50 
54.9 40 
52.4 35 
50.6 30 
50 25 
50 20 
50 

4PPROXIMATE  DISTANCE AT 

WHICIl  THE MAXIMUM 

VALUE IS  ATTAINED, 

IN  UNITS 

APPROXIMATE  RELATIVE 

ACTUAL LENGTHS AT WHICH 

MAXIMUM IS ATTAINED 

. . .  

. . .  
175 
120 
95 
90 
85 
90 
90 

. . . .  

. . . .  
1.75 
1.24 
1.02 
1 .oo 
1.03 
1.45 
2 .oo 

still farther increased it turns again and $limbs once more above 50 per- 
cent, but does not  again  reach the maximum previously attained. It 
then  falls  again,  and  continues  to oscillate about 50 percent,  the  divaga- 
tions  above and below that value becoming less and less, until it finally 
settles down a t  approximately 50 percent,  the oscillations becoming im- 
perceptible. As the curves of figure 1 show, the dips below 50 percent are, 
in  the case of high  interference,  often less in  amount  than  the  later rise 
above 50 percent, so that  the oscillations above and below the line of 50 
percent are  not symmetrical. 

These oscillations in  the  value of the crossover ratio  are due to  the  fact 
that odd  numbers of breaks give crossing over, while even ones do not. 
At  the maximum  value of the  ratio  the  prevailing  number of breaks  is 1; 
this  then decreases, while the proportion  with 2 breaks increases, thus 
decreasing the  ratio;  and so on. For example, when the interference  is 
75 percent, the maximum  value of the  ratio ('77.9 percent),  is likewise 
the percentage  with  a single break, while now only 3.2 percent  have  two 
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break-s. At  the rhinimunl value (38.8 percent),  there  are but 29.4 percent 
with 1 break and 9.4 percent  with 3 breaks, while 58.8 percent  have two 
breaks (the remainder, 2.4 percent  having no breaks). 

Figure 1 shows sketches of comparative curves of the crossover ratios 
for diiTerent amounts of interference, from 0 to  90 percent. The lengths 
are measured in  the  standard  units of length yielding 1 percent crossing 
over. It is to  be remembered of course that these  units are of different 
Icngths for different degrees of interference,  as shown in  table 8. 

Examination of the curves of figure 1 shows that for different degrees o f  
interference the curves diverge more and more widely until  the genes are 
about  ninety  units apart; here the divergence between the different curves 
is a t  a  maximum. Then  the curves approach,  and for genes distant  apart 
about 150 units  the crossover ratios  are  nearly  the  same (in the neighbor- 
hocd of 50 percent) for all degrees of interference. For still  greater dis- 
tances the divergences increase and decrease in  an oscillating manner. 

7. It is obvious that for high  extents of interference,  in which the 
crossover ratio goes above S0 percent, the serial  order of the genes would 
not  be given by  the increase of the crossover ratio measured from the 
end gene. Genes farther from the end gene  would often  have  a lower 
ratio  than those nearer. Genes near the end gene would give with it a 
low ratio,  this  gradually  increasing  with  the  distance, to  above 50 percent, 
then decreasing with  greater  distance,  again increasing, and so on. A 
chromosome map  constructed, like those in use in Drosophila, on the 
basis that increased crossover ratios  meant  greater  distances would give 
incorrect and inconsistent  results, the genes seeming t o  be in different 
orders when different basic genes were used from which to  measure the 
ratios of the  rest. 

Even  in such cases, however, a map giving the genes in  correct order 
could be obtained by considering successively genes having low crossover 
ratios  (say 10 percent or less). The order of 3 genes whose ratios all fall 
within 10 to 20 percent would be first  determined,  then  the order of two 
o f  these  with  a fourth  that was near;  by a  concatenation of such successive 
determinations,  in  the  manner now practically employed by  the  students 
of  Drosophiia. the correct order would finally be obtained for the  entire 
c-hromosome. 

None of these  diffculiics or inconsistencies are normally met  in  the case 
of  Drosophila, so far as present knowledge goes; since interference does 
not extend so far as t o  give crossover ratios  above 50 percent. A case 
giving results  akin to  these was however described briefly by MULLER at  
the meeting of the AMERICAX SOCIETY OF ZOOLOGISTS in December, 1921. 

1 



In a  particular  instance a gene was present which ihterfered  with  a 
break  in the chromosome for a longer distance than  usual; for genes more 
than twice that distance apart two breaks were more  frequent  than  1, so 
that'the crossover ratio became less for genes farther  apart  than for those 
nearer  together. 

At  the same  meeting IBSEN (1922) described in  the guinea-pig  certain 
genetic results that could be explained by assuming that 75 percent 
crossing over had occurred in  parents of both sexes. This possibility had 
not been subjected to a  critical test. If substantiated,  it would  follow that 
in  the guinea-pig the relative  frequency of crossing over between genes 
would not  indicate  the  serial  order of the genes in  the chromosome:  this 
serial order would  be determined only by dealing successively with genes 
having low crossover ratios. 

8. In  comparing the computed  relations  with  those  found in experi- 
mental breeding, it is to  be noted that our curves and  computations  are 
for certain definite average extents of interference. The general results 
would be similar whether  this  average  represented  a single invariable 
distance over which interference  extends, so that no second break ever 
occurred within that distance, while beyond that distance  there was no 
interference; or whether it is  an average of the different distances over 
which interference  extends  in different cases. In  Drosophila it is clear 
from the breeding data  that  the distance over which interference acts 
is not  invariable; at certain  distances from a given break  another break is 
merely less frequent  than would be the case if the given break  did  not 
exist. The distance over which interference  extends  is not given by  the 
students of Drosophila as  an average, but simply as  the  distance over 
which interference is practically  complete. It appears clear that  the  aver- 
age distance over which interference  extends would be somewhat  greater 
than  this  distance over which interference  is  practically  complete. 

According to BRIDGES (1921, p. 127), this  distance over which inter- 
ference is  practically complete is (from the results of experimental  breed- 
ing) in  the  first or X chromosome of Drosophila about  l5  units or 1.5 
percent;  for  the second and  third chromosomes of Drosophila it is about 
20 percent in  the end regions, 10 percent in  the middle regions. These 
would correspond to averages  somewhat higher, +perhaps from 20 to  25 
percent. In  none of these cases therefore  should  there occur crossover 
ratios  above 50 percent,  and according to BRIDGES (1921, p. 128) no  ratios 
above 50 percent  have yet been met  in Drosophila. The serial order of 
the genes would be indicated  in  all  such cases by  the increasing crossover 
ratios  with the end gene. 
GENETICS 8: S 1923 
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9. On page 422 it was shown that there  are  four  sericus discrepancies 
between the crossover relations  found in  nature  and those which must 
occur if crossing over occurs as  the linear  theory holds, but without  inter- 
ference. One of these discrepancies consisted of the very  facts for explain- 
ing which the hypothesis of interference was introduced.  The three  others 
were numerical discrepancies, not held in view (nor even  known) when the 
hypothesis of interlerence was proposed. It remains t o  determine  whether 
these discrepancies would be removed if interference occurs. We  will deal 
with  the  three  in succession. 

10. The first  numerical  discrepancy was, that  the observed values of 
the  ratios  are  inconsistent  with each other; if crossing over occurs without 
interference, the observed ratios for distant genes are regularly  greater 
than they should be as compared  with those for genes  close together. 
That is, if we compute from the  shorter  stretches of the chromosome the 
necessary crossover ratios for the longer stretches,  made up of the  shorter 
ones, we find that these  ratios  computed on the basis of no interference 
are always less than those  actually observed (see page 419). 

Examining the  results of interference, we find that this does increase 
the crossover ratios for distant genes, as compared  with  those between 
genes close together, thus causing the required  conditions t o  approach 
those  actually  found.  For example, if we take  the crossover ratio between 
genes 10 units apart as that for genes “close together,”  and employ this 
as  unity,  then  table 11 shows what  number of times  this ratio is yielded by 
genes separated  by  greater distances,-in the case of certain degrees of 
interference. 

TABLE 11 

DISTANCES BETWEEN  THE  GENES,  IN  UNITS OF 10 PERCENT 

INTERFERENCE I T  20 30 160 

2 .oo 4.99 
4.37 1 4.91 

2.90 

0 
2.00 
1 .S3 2.48 3.84 6o l :0;4 

5.03  4.60  5.04 3 .oo 2 .oo 30 
25 

4.97 4.15  4.77 2.79  20 
5.25 

l ;  
It will be observed in  this  table  that for distances up to  100 units 
(where the crossover ratio reaches 47 to  49 percent)  the more the  inter- 
ference, the greater  is the proportion of the longer stretches  as compared 
t o  the  shorter ones. At very long distances, however, the two become 
equalized, and finally the proportion  is  greater for no interference.  Most 
of the’crossover  ratios usually dealt  with fall in  the  intermediate region. 
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T o  determine how closely the theoretically  required  ratios  approach 
those  found in  nature, we may  compute from the  ratios observed for short 
distances  those that  are required for longer distances, on the basis of dif- 
ferent degrees of interference.  For the  short  distances, we  will employ 
the well-established ratios,  each  based on more than 5000 cases, that  are 
set  forth on page 419. In  table 12  are given for the longer stretches: 
(a)  the  ratios required if there  is  no  interference; (b) those  required by 20 
percent  interference; (c) those required by 25 percent  interference;  (d) 
the observed ratios. 

TABLE 12 

Comparison of the crossover ratios  for  the long stretches between the genes named,  as computed f rom 
the  component shorter stretches given on page 419, for  different  extents of 

interference (a,  b  and c) ,  zoith those observed (d) .  

Chromosome I 

Yellow-miniature. . . . . . . . . . .  
White-rudimentary . . . . . . . .  
White-bar . . . . . . . . . . . . . . . . .  
Vermilion-bar . . . . . . . . . . . . . .  
Vermilion-fused . . . . . . . . . . . .  
Vermilion-forked . . . . . . . . . . .  

(a) 
NO 

INTERFERENCE 

31.6 
38.2 
38.7 
21.1 
22.5 
20.0 

(b) 
INTERFERENCE 

20 PERCENT 

32.8 
40.0 
40.9 
23.4 
25.3 
23.0 

Chromosome I1 

(c) 
INTERFERENCE 

25 PERCENT 

33.3 
4 0 . 5  
41.6 
23.9 
26.2 
23.5 

( 4  
OBSERVED 

RATIOS 

34.3 
42.4 
43.6 
23.9 
25.8 
22.5 

Star-speck. . . . . . . . . . . . . . . . .  I 47.4 
Star-curved.. . . . . . . . . . . . . . .  43.4 
Star-purple . . . . . . . . . . . . . . . .  

Purple-speck.. . . . . . . . . . . . .  . I  38.1 
43.8 Black-morula. . . . . . . . . . . . .  
29.3 Dachs-vestigial.. . . . . . . . . . . .  
39.4 

47.9 
44.1 
39.8 
31.4 
44.3 
39.4 

49.0 
45.4 
40.6 
32.9 
44.8 
40.9 

48.3 
45.9 
43.7 
29.6 
46.6 
45.7 

Chromosome I11 

Sepia-rough. . . . . . . . . . . . . . . .  35.5 
Dichaete-rough.. . . . . . . . . . .  1 32.0 Sepia-sooty. . . . . . . . . . . . . . . .  25.7 

39.1  41.2  39.1 

29.2 26.2 
34.3 1 i3:: 1 36.1 

Table 1 2  is  made by  the aid of extensive and  detailed  tables  computed 
in  the course of this  investigation, showing the crossover ratios corre- 
sponding to  many different numbers of units of length, for nine different 
extents of interference,  ranging from 0 to  90 percent. 
GENETICS 8: S 1923 



As table 1 2  shows, in all  cases, the observed values  for  the  ratios  are 
greater  than  those permissible in case there were no  interference. No 
exact coincidence of the required  with  the  observed  values  is, of course, t o  
be  expected, owing to  the  numerous  sources of irregularity  and  inaccuracy 
in  the observed  ratios; but  the  systematic  diversity  in  one  uniform  direc- 
tion  is  significant.  With 20 percent  interference  the  required  ratios 
approach  more  nearly  the  observed ones, bu t  still  remain below them (in 
all  except  two of the fifteen  cases). With 25 percent  interference  the re- 
quired  values  approach still more closely the observed  ones;  now in nine 
of  the fifteen  cases the required  ratios  are  either  practically  identical  with 
the  observed ones  (vermilion-bar,  star-curved,  dichaete-rough) or are a 
little  above  them. It is clear that  with  the  addition of interference of 
about 20 or 25 percent,  our  first  numerical  discrepancy  disappears;  the 
observed  ratios  for genes close together become consistent  with  those  for 
genes far  apart. 

11. The second  numerical  discrepancy  between  the  observed  facts 
and  the  requirements o f  the  linear  theory  without  interference  was  that 
the  proportions of the chromosomes  showing the different  numbers of 
breaks would not  be those  actually  found.  The  latter show a marked ex- 
cess in  the  proportion  having  but one break,  with a  corresponding defi- 
ciency' of those  having  two or more  breaks  (page 421). Interference, we 
have  seen (p. 424), tends  to  produce  just  this  effect;  the  question  here is: 
does it produce  this effect to  just  the  extent  demanded  in  order to  bring  the 
observations  and  the  requirements  into  unison? 

I n  table  13  are  given  the  proportions  for  the  different  numbers of breaks 
observed in  experiments  directed  upon  this  point,  by MULLER (1916), 
PLOUGH (1917),  WEINSTEIN (1918) and  GOWEN (1919), together  with  the 
proportions  required  on  the  linear  theory  (a)  without  interference,  (b) 
with 20 percent  interference,  and (c) with 25 percent  interference. I n  all 
cases the observed  proportion  showing  no  breaks  is considered the fixed 
point,  since  this  proportion is not  altered  by interference.  From  this  are 
computed  the  required  proportions  for  1, 2, 3  or  4 breaks.  For no inter- 
ference  this  computation  is  made  by  the  forniula (20 a),  page  421; for the 
different  degrees of interference  the  computation  was  made  by  the  use of 
formulae 30, 31, 33 and 34, in connection  with  extensive  tables  made  for 
producing  the  curves of figure 1. 

Table  13 shows that  with no  interference  the  proportion  with one 
break  is  uniformly  much too low, while the  proportions  with 2, 3, 4 breaks 
are  much too high,  as  compared  with  the  observed  proportions. As 
interference is made  greater  the  proportion  with one break  gradually 



TABLE 13 
Comparisola of the propcrtions showing 0, I ,  2, 3 cr 4 beaks  in rlzrolwosonles o j  Drosophila, with thc 

flopmlions reqabired by the lineor tlaecr?l, ( a )  when fhcre is no intcrftrence; (b )  when there is 20 
percent interference; (c)  when tlacrc is 25 pwcrnt  intcrjcmuc.  Tke data arc all for Drosophiltr 

?nelanoaastcr. except the CQSC last Riven, i n  u~lliclt the da,ln are for Drosophila eirilis. 

Number of breaks. . 

Percentages: 
Observed 
Required: 

Interference 0 
Interference 2096 
Interference 25% 

Observed 
Required : 

Interference 0 
Interference 2OY0 
Interference 25% 

Observed 
Required : 

Interference 0 
Interference 20% 
Interference 25% 

Observed 
Required: 

- 

Interference 0 
Interference 20% 
Interference 25% 

Observed 
Required: 

Interference 0 
Interference 20% 
Interference 25% 

Observed 
Required: 

Interference 0 
Interference 20% 
Interference 2.5% 

Observed 
Required: 

Interference 0 
Interference 20% 
Interference 2.5% 

Observed 
Required: 

Interference 0 
Interference 20% 
Interference 25% 

Observed 
Required: 

Interference 0 
Interference 20% 
Interference 25% 

__ 

0 

54.2 

__ 
32.6 

" 

7 7 . 3  

__ 
75.2 

__ 
78.1 

__ 
47.3 

__ 
54.6 

~ 

51.2 

32.6 

1 

41.6  

33.1 
40.0 
41.6 
51.1 

36.6 
44.7 
47.2 
22.5 

19.9 
22.6 
22.7 
23.5 

21.4 
24.2 
24.8 
21 .8 

__ 

- 

19.3 
21.7 
21.9 
45.9 

35.4 
42.6 
44.8 
38.9 

__ 

__ 

33.1 
39.6 
41.3 
43.4 
__ 

34.3 
41.4 
43.1 
43.8 

36.6 
44.7 
47.2 

2 

1 3  

10.2 
5 .8  
4 .3  

15 .0  

20.5 
19.5 
18.6 
0.2 

2.4 
0.05 

0 
l . 3  

3 .0  
0.6 

0 
0.1 

2 .4  
0.1 

0 
6.6 

__- 

___ 

___ 

~ 

- 

13.2 
9.7 
7.9 
6.3 
- 

10.0 
5.6 
4.2 
5.1 

11.5 
7 .3  
5.8 

20.2 

20.5 
19.5 
18.6 

__ 

- 

___ 

3 

0 

2 . 1  
0 .1  

0 
1 . 3  

7 . 7  
3 .0  
1 .9  

0 

0 .2  
0 
0 

~ 

0 

0 . 3  
0 
0 
0 

0.2 
0 
0 

0.2 

3 . 3 
0 . 4  
0 . 1  
0.3 

2.0 
0 . 1  

0 
0 . 3 

2.6 
0.2 
0 01 

- 

- 

__ 

- 

3.2 

7 . 7  
3 .0  
1 .9  __ 

__ 

4 

0 

0.3 
0 
0 
0 

2 . 2  
0 . 1  
0.02 

0 

__ 

~ 

0 
0 
0 
0 

__ 

0 
0 
0 
0 
- 

0 
0 
0 
0 

_ _ _  

0.6 
0 
0 

0.003 

0 . 3  
0 
0 
0 

__ 

__ 

0.4  
0 
0 

0.2 
___ 

2 . 2  
0.1 

0 __ 

AUTHORITY A N D  

CHROMOSO8lES 
- 

A%LKIJ?R 191 6 

1. Yellow to bar 

MULLER 1916 

IT. Star  to balloon 

PLoncIr 1917 

I. Vermilion t o  
forked 

- 

PLOUGH 1917 

11. Black to curved 

WEINSTEIN 1918 
(data from BRIDGES) 
I. Vermilion to 

forked 

WEINSTEIN 1918 

I. Eosin to cleft 

GOWEN 1919 

111. Sepia to rough 

GOWEN 1919 

1II. Dichaete to 
rough 

WEINSTEIN 
(unpublished) 

- 

I. Drosophila virilis 

~ " _ _ _ _ _ _  

___ 
UMBER O F  

CASES 

712 

460 

5134 

" 

17,225 

3394 

2572 

31,456 

2381 

4540 
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increases, while the proportions  with more than one correspondingly 
decrease. A t  20 or 25 percent  interference the proportions for the dif- 
ferent  numbers of breaks become extremely close t o  those observed. 

Thus, if there  is  interference our second numerical  discrepancy, like 
our first one, disappears;  and  the degree of interference  required to make 
them  disappear  is the same for both. 

12.  The  third numerical discrepancy between the results of the linear 
theory  without  interference  and  the observed relations was that  the 
“map distances”  determined for the chromosomes, are much too small 
(see table 6, p. 422). What effect will interference  have on these  relations? 

These map distances  are  measured  in  units,  each of which is the  length 
required to give 1 percent crossing over. Table 14 shows the  map distances 

T A B L E  14 

Conlparison of the m a p  distances (in units of 1 percent  crossing  over),  given by BRIDGES (1921) ,  with 
those  required by the  linear  theory: ( a )  withozht interference; (b)  with 20 

pcrcent  interference;  (c)  with 25 percent  interference. 

GENE 

White 
Bifid 
Club 
Vermilion 
Miniature 
Sable 
Rudimentar) 
Bar 

CHROMOSOME I 
DISTANCES  FROM  GENE  WHITE 

Given by 
BRIDGES 

(1921) 

0 .0  
5 . 8  

15.2 
31 .S  
34.6 
41 .S 
53 . O  
55 .S 

” 

(a) (b) 
Inter- 

ence  ence 
fer- fer- 

Inter- 

0 20 
per- 
cent 
” 

0.0 
5 .3  5.5 
0.0 

54.0 
34.0 46.6 
14.3  16.7 

68.8 101.8 
63.7  93.2 
58.8 86.0 
38.8 

- 
(c) 

Ynter- 
fer- 
ence 
25 

per- 
cent 
- 

- 1  
GENE 

” 

0.0 

59.8 
Speck 55.8 
Curved 52.3 
Purple 36.0 
Black 32 .O 
Dachs 14.3 
Streak 5 . 3  
Star 

CHROMOSOME I1 

DISTANCES  FROM  GENE  STAR 

Given by 
BRIDGES 
(192  1) 

0.0 
15.4 
29.1 
46.5 
52.7 
73.5 

105. 3 

” 

(a) (b) 
Inter- Inter- 

fer- fer- 
ence ence 

0 20 
per- 
cent 
” 

0.0 0.0 
18.2 15.4 
42.5 31.4 
10.2 49.0 

102.8 69.2 
123.8 83.1 
167.4 101.6 

- 
(c) 

[nter- 
fer- 
ence 
25 

per- 
cent 

0.0 
15.4 
29.7 
44.5 
60.2 
62.7 
89.9 

- 

given by BRIDGES (1921) for the best-known genes of chromosomes I and 
I1 of Drosophila melanogaster, in comparison with  those  required:  (a) if 
there  is no interference;  (b) if there is 20 percent  interference; (c) if there 
is 25 percent  interference.  These  distances are computed from the most 
reliable data  as to  the crossover ratios for the two  end genes. For chromo- 
some I, the gene white  is  taken  as the terminus, since its  ratios  with  the 
others  are much better determined than  are  the  ratios  with yellow, 
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commonly taken  as  the  terminus of reference. The  ratios employed are: 
for I, those given by MORGAN  and BRIDGES (1916) ; for 11, those given by 
BRIDGES and  MORGAN (1919). The numbers of units  required for d i f -  
ferent  ratios,  in  the cases of 20 and 25 percent  interference, were obtained 
in  connection  with the extensive tables  computed for making  the  curves 
of figure 1. 

As table 14 shows, while the distances  required by  the linear  theory in 
case there were no  interference are entirely  incompatible  with  those set 
forth  by BRIDGES,  with 20 t o  25 percent  interference the required dis- 
tances  approach  those given by BRIDGES. In  chromosome I the  distances 
for 25 percent  interference are  very close t o  those of BRIDGES (save in 
the case of the gene sable;  the suspicion is raised that  the crossover ratio 
of this  with  white (41.2 percent  according t o  MORGAN  and BRIDGES 1916) 
may  have been inaccurately  determined.) In chromosome 11, the  better 
agreement  is given, on the whole, by 20 percent  interference,  although 
here there  are considerable irregularities. This agrees with  the  facts  set 
forth  by BRIDGES (1921), namely, (a) that  in  the second chromosome 
different  parts show different extents of interference, and  (b) except  near 
the ends,  this chromosome shows less interference than chromosome I. 

In  view of the considerable irregularities to be expected  from the  many 
sources of error in  determining  the crossover ratios, and from the  fact  that 
different parts of a chromosome may  have different degrees of inter- 
ference, it is clear that  the effect of interference  is to  bring  the distances 
required by  the linear  theory into essential  agreement  with  those set  forth 
by  the workers on Drosophila. 

CONCLUSION AND DISCUSSION 

Thus, if there  is  interference  averaging about 20 to 25 percent, the 
theory that  the genes are  arranged  in  a  linear series and  that crossing over 
takes place a t  conjugation of the chromosomes by  breaks a t  certain  points 
in  the series, with  interchange of sections of the two chromosomes, yields 
and requires the  entire  system of complex and peculiar  relations  found  in 
nature (set forth  in  the 17 propositions of pages 397-399) ; and  at  the same 
time it requires and  accounts for the specific numerical values,-the 
relative crossover ratios of different genes, the “maIj  distances,” and  the 
relative  proportions of chromosomes showing 0, 1, 2, 3 or more  breaks 
between given genes. 

~ No other  theory of crossing over that  has been proposed makes so much 
as a beginning in accounting for this  system of relations. The theory of 
GOLDSCEMIDT (191 7), as shown in a  previous  paper ( JENNINGS 1918), re- 
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quires  a definite system of relations between the crossover ratios, but  it  ip  

not  this  system; it is  a  system  quite  inconsistent  with  this one. The 
theory  set  forth  by  CASTLE (1919 a, b) likewise does not yield this sys- 
tem;  it  appears now to have been abandoned by  its  author.  The redupli- 
cation  theory  supported by some English students gives not  the  slightest 
ground for the existence of any such  system of relations. In view of the 
complexity and  extraordinary  character of the system, and  in view of the 
precise numerical  proportions in which it is embodied, it is  almost  im- 
possible to  conceive that more than one set of conditions could produce it. 

It is t o  be noted that  the conditions  required for producing the ob- 
served system are  simply: (1) the  arrangement of the genes in linear 
series, with  breaking and exchange a t  the time of pairing of the chromo- 
somes; and (2) interference  extending over an average  distance of 20 to  2.5 
units. It is  not required that breaks should be as  frequent between any 
two genes as between any other  two,  nor that equal  absolute  distances 
should in  all cases give the same crossover ratio.  The possible case 
that this  is  true was first  investigated,  as  the simplest condition, and  this 
yielded the  fundamental  formula  (1). In  this  formula the  units of length 
are  the single joints between the genes, and  the crossover ratio varies, in 
the way shown by  the formula,  with the distance apart of the genes in 
these units. But  as soon as we transform our formulae so as  to express 
the relations in  the  “standard”  units, each of which is the distance neces- 
sary to  give one percent of crossing over (formula (6) and those following 
it for no interference;  formulae (30), (31), (33) and (34) for interference), 
they  no longer require that breaks should be equally  frequent at  all joints, 
nor that equal  absolute  distances  should give the same ratios. The only 
difference made if breaks are  not equally  frequent  in all parts of the 
chromosome is that  the  absolute  length of the  “standard  units” varies  in 
different regions: the formulae  based on these  units  retain  their  validity, 
and  the system of relations  (propositions 1 to 17, page 397) remains un- 
changed. BRIDGES (1915), STURTEVANT (1917, 1919), PLOUGH (1917) and 
others  have shown that various  conditions,  environmental or germinal, 
may  alter  the frequency of the breaks and exchanges in crossing over. 
The frequency may be reduced in one part of the chromosome, remaining 
unchanged in  other  parts  (STURTEVANT 1919);  then obviously the  “stand- 
ard  units”  are no longer of equal  absolute  length.  GOWEN (1919) shows 
that  the frequency of breaks  is  very  variable, and  DETLEFSEN  and 
ROBERTS (1921) show that  the  variations  are heritable and  that  by 
selection the frequency  in  a given stock  can be greatly  changed. But all 
this does not affect the  validity of our formulae that are based on the 



standard  units; does not affect the general  system of relations  (proposi- 
tions  1 to  17) ; these  depend only on the serial arrangement of the genes. 
If i t  could be shown that in a set of genes having  (according t o  the linear 
theory)  the  order A-B-C, the crossover ratios  between A and B and 
between B and C can be changed without correspondingly altering that 
between A and C, then  indeed  there would be difficulty for the linear 
theory,  but no indication of this  has been shown. 

DETLEFSEN (1920), in view of the change in  the crossover ratios 
through selection, entitles a paper “Is crossing-over a  function of dis- 
tance?”  and concludes that  “In view of these  considerations it would 
perhaps be simpler to conclude that linkage  is not a  function of distance; 
i.e., crossing over is  not necessarily proportional t o  distance”  (p. 670). 
Obviously in view of the considerations  above set  forth, crossing over does 
not  depend on distance  alone and is therefore “not necessarily propor- 
tional to  distance”;  many  other  things affect it. On this  there  is  no dis- 
pute;  (‘actual  length of the section between loci is only one of the  factors 
determining the  amount of crossing over between the loci” (MORGAN 1922, 
p. 188). The  standard  unit yielding one percent of crossing over need not 
be the same  in different cases: “It has often been pointed  out (e.g., 
STURTEVANT 1913, p. 49; MORGAN, STURTEVANT,  MULLER and BRIDGES 
1915, pp. 67-68) that 1 percent of crossing over must  not be supposed to 
represent the same actual morphological distance  in different chromosomes 
or in different regions of the same chromosome” (STURTEVANT 1919, p. 
238). But distance  remains  nevertheless an  important  factor,  in  that, of 
two genes differing in distance,  in the same  direction,  from a given gene A ,  
the more distant one  will have  the higher ratio (provided of course that 
interference does not go beyond 30 units). 

If this  relation of the  ratios t o  distance be abandoned,  the  entire 
complex system of relations observed between the crossover ratios  (page 
397)  becomes unintelligible and should not exist. 

All the evidence is that  the genes are  in a linear series; the complex sys- 
tem of extraordinary  relations shown by  the crossover ratios is not 
explicable on any  other  ground. If the order of the genes is thus serial, 
this  entire  system  results,  whether  the  frequency of breaks between genes 
is or is  not uniform in all parts of the chromosomes. 

SUMMARY 

1. In  the only organism adequately‘studied (Drosophila),  the  diverse 
ratios of crossing over between different‘genes show among  themselves a 
complex system of remarkable  relations.  These are  illustrated in table 2, 
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page 396, and  are  formulated  in seventeen  propositions, pages 397--399. 
The reader  should refer to  this  formulation  as an essential part of the 
present  summary. 

2. Any  set of conditions which are assumed t o  account for the diverse 
ratios of crossing over must, if valid, yield and account for this  system of 
relations, and  for  the numerical  proportions  in which it is expressed. 

The “linear theory,”-the theory that  the genes are  arranged  in series 
in  the chromosomes and  that crossing over occurs by breaking and 
exchange a t  certain  points  in  the series, a t  the time of conjugation,-is 
examined as  to whether it fulfils this  test. 

3. Crossing over without interference: From  the conditions in  the 
linear  theory,  formulae  are developed for the crossover ratio,  first  in case 
the occurrence of a  break a t  one point does not affect the occurrence of 
breaks elsewhere (“no  interference”).  Formula (l), p. 405, gives the 
value of the  ratio  in  terms of the number of genes  or joints  and of the 
frequency of a  break a t  any  joint; formula (8) the value for any  number of 
“standard  units” (each of such a  length  as to  yield one percent of crossing 
over); formulae (10) and (11) the  ratio produced by adding  together 
lengths, for each of which when taken  separately the  ratio  is  known.  For- 
mulae (16) and (20) give for any value of the crossover ratio  the  propor- 
tion of cases showing any  particular  number of breaks,  as 0 ,  1, 2, 3, 4, etc. 

4. By the aid of these  formulae,  a series of crossover ratios  as  required 
by  the linear  theory  without  interference are computed and their  relations 
developed (table 5, p. 418); these are compared  with the conditions  found 
in  nature. These  required  ratios are found t o  show the  entire  system of 
complex_relations found  in nature  and  set  forth  in  the 17 propositions of 
pp. 397-399, except the  last one (that for which the hypothesis of inter- 
ference has been proposed). But besides this exception, three important 
numerical discrepancies are found t o  exist between the conditions  re- 
quired by  the linear  theory  without  interierence, and those observed in 
nature. These are: 

(a) The observed numerical  values of the  ratios could not  occur: the 
observed ratios for distant genes are regularly  greater than  they could be 
on the linear  theory  without  interference. 

(b) The proportions of the chromosomes showing the  different  numbers 
of breaks (0, 1, 2 ,  3, etc.)  are  not  what  are  required;  there is a  marked 
excess in  the proportion showing only one break,  and  a corresponding 
deficiency in  the proportion showing 2, 3 or more breaks. 

(C) The  “map distances” of the genes, that have been determined for 
the chromosomes of Drosophila by MORGAN and associates are much less 
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than  are required by  the linear theory  without interference (table 6, 
page 422). 

Thus  the linear theory  without interference, in  spite of the  fact that  it  
yields all but one of the general relations found in  nature,  can  not  account 
for the observed ratios  and  their precise relations. 

5. The  linear  theory  with  interference: T o  account for the  fact  set  forth 
in proposition 17, page 399, the hypothesis of interference has been 
proposed. This assumes that the occurrence of a break at  a  certain  joint 
in  the linear series of genes interferes in some way with  the occurrence of 
another  break a t  any  joint within a  certain distance. 

If valid, the existence of interference must preserve intact  the  validity 
of propositions 1 to  16, pp. 397-399; and i t  must  not only account for propo- 
sition 17, for which it was devised, but it must also do away  with  the  three 
discrepancies just mentioned, for which i t  was not devised. T o  determine 
whether it can meet this sever~e test,  mathematical formulae are developed 
for crossing over with any extent of interference. First  are developed 
formulae for the case,  possible but apparently  not realized, of complete 
interference,-a break a t  any  point in the chromosome preventing any 
other break in  that chromosome (formulae (21) to  (25)).  For  interference 
extending over only a part of the chromosome, for any given distance  in 
units,  the  fundamental formula is (33), page 437; important special cases 
are covered in formulae (30),  (31) and (34). 

6. By  the  aid of the formulae for the crossover ratios required by  the 
linear theory,  with interference, a series of ratios  are  computed  (table 8, 
page 439, and figure 1); and their interrelations  are  investigated and com- 
pared  with those found in nature.  The following are found to be the  facts: 

(a) Crossing  over as required by  the linear theory  with  interference 
extending over a distance of not more than  about 30 percent (30 units) 
yields ratios  not rising above 50 percent, and  the  greater  the  distance 
between two genes, the greater the crossover ratio between them.  These 
are  the same conditions occurring in crossing over without  interference. 

(b) If interference extends for a  distance  greater than 30 percent,  then 
as  the distance between the two  genes  becomes greater,  the crossover 
ratio rises above 50 percent. If interference is sufficiently extensive, it 
may rise to  any value less than 100 percent (see table 10, page 442). 

As the  distance between the genes is  still farther i ncreased,  the crossove 
ratio begins to decrease, falling again below  50 percent. It thus undergoe 
oscillatory changes, rising and falling successively above and below  50 
percent, but  the oscillations becoming less and less marked,  until a t  a 
sufficiently great distance the  ratio  settles down to  about 50 percent 
GENETICS S: S 1923 



These oscillations are  illustrated, for different extents of interference,  in 
the curves of figure 1, page 443. 

(c) Thus, for interference  extending over long distances  (above 30 per- 
cent),  the serial order of genes would not be given by  the increase of the 
crossover ratio  measured from the end gene. Genes farther from the 
end gene would often  have  a lower crossover ratio  with it than genes nearer 
t o  it.  Thus, if the  magnitude of the  ratios were taken  as giving the order 
of the genes, they would appear to  be in different orders, when the  ratios 
were measured  from different basic genes. 

(d) But crossing over as  required by  the linear  theory,  with  interference 
extending on the average over a  distance of not more than 30 units 
shows  and  requires all the general relations set forth in propositions 1 to 17, 
pages 397-399, as  characteristic of the relations  found in  nature. 

(e) Interference  extending on the average t o  a  distance  equivalent t o  
about. 20 to 25 percent crossing over requires and accounts for the condi- 
tions giving rise to  the  three  numerical discrepancies (a), (b) and (c) of 
paragraph 4 of this  summary. 

7. Thus,  in  sum,  the linear  theory of crossing over, with  inter- 
ference of 20 t o  25 percent, gives the  entire  system of complex and peculiar 
relations found in  nature (set forth  in  the 17  propositions of pages 397- 
399) and  at  the same  time  requires and accounts for the specific numerical 
data,-the  relative  ratios of different genes, the  “map distances,” and 
the relative  proportions of chromosomes showing 0, 1, 2 ,  3 or 4 breaks. 

No other  theory that  has been suggested yields any such system. In  
view of the complexity and  extraordinary  character of this  system,  and 
in view of the precise numerical proportions it involves, it is  difficult to  
conceive that  any other  set of conditions than t.hat  set forth  in  the ‘‘linear 
theory” could produce it. 
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